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We perform numerical simulations of a new proposal of laboratory experiment that would allow

the transformation of a classical °uid into a quantum-type (super)°uid through the application
of a generalized quantum potential. This quantum potential is simulated by using a real time

retroactive loop involving a measurement of density, a calculation of the potential in function of

the measured density, then an application of the calculated potential through a classical force.
This general experimental concept is exempli¯ed here by the case of a nonspreading oscillating

wave packet in a harmonic oscillator potential. We ¯nd signatures of a quantum-like behavior

which are stable against various perturbations. Finally, the feasability of a realization of this

concept in an actual plasma experiment is analyzed.
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1. Introduction

One of us has recently proposed a new general concept of macroscopic quantum-type

laboratory experiments.1�3 It consists of applying, through a real time retroactive

loop, a generalized quantum potential on a classical system. Indeed, one can show

that the system of equations (Euler equation and continuity equation) that describes

a °uid in irrotational motion subjected to such a generalized quantum potential, that

reads Q ¼ �2D2�
ffiffiffi
�

p
=
ffiffiffi
�

p
in terms of the density �, is equivalent to a generalized

Schr€odinger equation. In this derivation, the quantum potential is no longer founded

on the quantum Planck's constant }, but on a new constant D which can take any

macroscopic value. While it would be impossible with present days technology to

simulate standard quantum e®ects by this method because of the smallness of D,

which is given by D ¼ }=2m in standard quantum mechanics, the use of a macro-

scopic value for this constant nevertheless preserves some of the properties of a
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quantum-like system. Namely, its density distribution is given by the square of the

modulus of a complex function which is solution of a Schr€odinger equation. Therefore

such a system is expected to exhibit some quantum-type, super°uid-like macroscopic

properties (though certainly not every aspects of a genuine quantum system).

In the present paper we validate this concept by numerical simulations of a °uid

subjected to such a generalized quantum force, as an anticipation of a future real

laboratory experiment. The example chosen for this ¯rst attempt is the appearance

of a nonspreading quantum-like oscillating wave packet in a compressible °uid (e.g. a

plasma) subjected to an attractive harmonic oscillator potential.

2. Theoretical Background

Let us sum up the results described in more detail in Ref. 2. We consider a classical

macroscopic compressible °uid described by the Euler and the continuity equations:

@

@t
þ V � r

� �
V ¼ �r�; ð1Þ

@�

@t
þ divð�V Þ ¼ 0; ð2Þ

where � is an exterior scalar potential. We assume as a ¯rst step that the pressure

term is negligible and that the °uid motion is potential, i.e.

V ¼ rS: ð3Þ
We now assume that we apply to the °uid (using density measurements and a

retroaction loop) a varying force which is a function of the °uid density in real time,

namely, a \quantum-like" force FQ deriving from the potential

Q ¼ �2D2
�

ffiffiffi
�

pffiffiffi
�

p : ð4Þ

This potential is a generalization of the standard quantum potential,4 since here the

constant D can have any value, while in standard quantum mechanics it is restricted

to the only value D ¼ }=2m. As recalled in what follows, this generalization still

allows to recover a Schr€odinger-like equation.

The Euler and continuity system becomes

@

@t
þ V � r

� �
V ¼ �r �� 2D2

�
ffiffiffi
�

pffiffiffi
�

p
� �

; ð5Þ

@�

@t
þ divð�V Þ ¼ 0: ð6Þ

The system of Eqs. (5) and (6) can then be integrated under the form of a generalized

Schr€odinger equation.
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Indeed, Eq. (5) takes the successive forms

@

@t
ðrSÞ þ 1

2
rðrSÞ2 þr �� 2D2

�
ffiffiffi
�

pffiffiffi
�

p
� �

¼ 0; ð7Þ

r @S

@t
þ 1

2
ðrSÞ2 þ �� 2D2

�
ffiffiffi
�

pffiffiffi
�

p
� �

¼ 0; ð8Þ

which can be integrated as

@S

@t
þ 1

2
ðrSÞ2 þ �þK � 2D2

�
ffiffiffi
�

pffiffiffi
�

p ¼ 0; ð9Þ

where K is a constant that can be renormalized by a rede¯nition of the potential

energy �. Let us now combine this equation with the continuity equation as follows:

� 1

2

ffiffiffi
�

p @S

@t
þ 1

2
ðrSÞ2 þ �� 2D2

�
ffiffiffi
�

pffiffiffi
�

p
� ��

þ i
D

2
ffiffiffi
�

p @�

@t
þ divð�rSÞ

� ��
eiS=2D ¼ 0: ð10Þ

Finally we set

 ¼ ffiffiffi
�

p � eiS=2D; ð11Þ
and Eq. (10) is strictly identical to the following generalized Schr€odinger equation

D2� þ iD @

@t
 � �

2
 ¼ 0; ð12Þ

as can be checked by replacing in it  by its expression (11). Recall that such an

equation has also been directly obtained, in terms of a density of probability instead

of a density of matter, as the integral of the equations of geodesics in a non-

di®erentiable space-time.5,6 Given the linearity of the equation obtained, one can

normalize the modulus of  by replacing the matter density � by a probability

density P ¼ �=M, where M is the total mass of the °uid in the volume considered:

this will be equivalent.

The solutions  ¼ j j � expði�Þ of this equation directly provide the density and

the velocity ¯eld of the °uid at every point, namely

V ¼ 2Dr�; � ¼ M j j2: ð13Þ
Its imaginary part and its real part amount, respectively, to the continuity equation,

and to the energy equation that writes:

E ¼ � @S

@t
¼ 1

2
V 2 þ �� 2D2

�
ffiffiffi
�

pffiffiffi
�

p : ð14Þ

1250035-3

Numerical Simulation of a Macro-Quantum Experiment



The above transformation from the °uid mechanics-like equations to the

Schr€odinger-type equation is similar to a Madelung transformation,7 but it is

here performed in the reversed way and generalized to a constant di®erent from

}=2m.2

It could be therefore possible by this method to simulate a \Schr€odinger system,"

e.g. a partly quantum-like super°uid system coming under two of the axioms of

quantum mechanics, namely, (i) it is described by a wave function  which is solution

of a Schr€odinger-type equation and (ii) such that � / j j2.

3. Application to the Oscillating Wave Packet

As an example of application and as a preparation for a laboratory experiment, let us

consider the simpli¯ed case of one-dimensional °uid motion in an external harmonic

oscillator potential � ¼ ð1=2Þ!2x2. This system is described by the two following

equations:

@V

@t
¼ �V

@V

@x
� !2xþ 2D2 @

@x

@2
ffiffiffi
�

p
=@x2ffiffiffi
�

p
� �

; ð15Þ

@ ln �

@t
¼ � @V

@x
� V

@ ln �

@x
: ð16Þ

Here we have written the continuity equation in terms of ln � instead of its usual

expression in terms of �. This form of the continuity equation which be useful in the

numerical simulations that follow. These two equations are equivalent to the one-

dimensional generalized Schr€odinger equation:

D2 @
2 

@x2
þ iD @ 

@t
� 1

4
!2x2 ¼ 0: ð17Þ

It is well-known that it is possible to ¯nd a solution of this equation in the form of a

wave packet whose center of gravity oscillates with the period of the classical motion

and which shows no spreading with time.8�10 Assuming that the maximal amount

by which the center of gravity is displaced is a, the wave function  ¼ ffiffiffiffi
P

p � eiS=2D

reads in this case

 ¼ !

2�D
� �1

4
e�

!
4Dðx�a cos!tÞ2 � e�i 1

2!tþ !
2Dax sin!t� !

8Da
2 sin 2!tð Þ: ð18Þ

Therefore the probability density reads

P ¼ j j2 ¼
ffiffiffiffiffiffiffiffiffiffi
!

2�D
r

e�
!
2Dðx�a cos!tÞ2 ; ð19Þ

and the action S ¼ 2D�

S ¼ �D!t� a!x sin!tþ 1

4
a2! sin 2!t: ð20Þ
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It is easily generalized to a three-dimensional wave packet oscillating in one direc-

tion. In this case the probability reads

P ¼
ffiffiffiffiffiffiffiffiffiffi
!

2�D
r

e�
!
2D½ðx�a cos!tÞ2þy2þz2�: ð21Þ

In what follows we shall consider only the x dependence.

This is an interesting case for a test of a genuine quantum-like behavior, since it

involves a nonvanishing phase in an essential way although this is a one-dimensional

system. The velocity ¯eld is given by

V ¼ �a! sin!t: ð22Þ
The quantum potential reads

Qðx; tÞ ¼ D!� 1

2
!2ðx� a cos!tÞ2; ð23Þ

and the quantum force,

FQðx; tÞ ¼ � @Q

@x
¼ !2ðx� a cos!tÞ: ð24Þ

Therefore the energy E ¼ �@S=@t, which is here a \¯eld" depending on the space

and time coordinates, takes the form

Eðx; tÞ ¼ 1

2
V 2 þ �þQ ¼ D!þ a!2x cos!t� 1

2
a2!2 cosð2!tÞ: ð25Þ

When it is applied to the center of the wave packet x ¼ a cos!t, this expression

becomes

Ec ¼ D!þ 1

2
a2!2: ð26Þ

We recognize in the second term, as expected, the energy of a classical pendulum.

Concerning the ¯rst term, since standard quantum mechanics corresponds to the

particular choice D ¼ }=2m (here with m ¼ 1), the term D! is the generalization of

the vacuum energy for an harmonic oscillator, Evac ¼ ð1=2Þ}!.
Therefore we verify that the application of a quantum potential on the °uid has

given to it some new properties of a quantum-like nature, such as a zero-point energy

and the conservation of the shape of the wave packet.

4. Proposed Laboratory Experiment

In order to prepare a real laboratory experiment aiming at achieving such a new

macroscopic quantum-like (super)°uid, we shall now present the result of numerical

simulations of such an experiment. To this purpose these simulations are not based on

the Schr€odinger form of the equations, but instead on the classical Eulerþ continuity

equations and on the application by feedback of a generalized quantum-like force.
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The suggested experiment consists of:

(i) measuring with detectors the density at regular time interval ftng on a grid at

positions fxjg;
(ii) computing from these measurements the quantum force ðFQÞn ¼ 2D2rð� ffiffiffiffiffi

�n
p

=ffiffiffiffiffi
�n

p Þ at each time tn;

(iii) applying the new value of the force to the °uid at each time tn, therefore

simulating by such a feedback the presence of a quantum-like potential.

The advantage of such a proposal is that one is no longer constrained by the standard

quantum value D ¼ }=2m that ¯xes the amplitude of the quantum force, and that

one can therefore give to it a macroscopic value, vary it, study its transition to zero

(quantum to classical transition), etc.

5. Iterative Fitting Simulation

In this ¯rst simulation, we assume that the quantum force (which is a third deriv-

ative of the density) is not computed directly from the values of the density, but from

a polynomial ¯t of the distribution of ln �. In the special case considered here (the

oscillating wave packet), we use a Gaussian ¯t of the density distribution (i.e. a

second-order polynomial ¯t to ln �), so that we need to know only the mean and

dispersion. More generally, one can decompose the distribution of ln �ðxÞ into its

successive moments. Therefore the density is written as

�nðxÞ / exp � 1

2

x� �xn

�n

� �
2

� �
; ð27Þ

so that, once the mean and dispersion �xn and �n at time tn are computed, the

quantum force to be applied at each step (n) writes:

ðFQÞnðxÞ ¼
D2ðx� �xnÞ

�4
n

: ð28Þ

5.1. Numerical simulation

Our numerical simulation is performed by a simple Mathematica program which

reproduces the steps of the real experiment, namely, at each time step tn:

(i) We compute the mean and the dispersion of positions x according to the

density distribution:

�x ¼
X
j

�ðxjÞxj

,X
j

�ðxjÞ; ð29Þ

�2 ¼
X
j

�ðxjÞðxj � �xÞ2
,X

j

�ðxjÞ: ð30Þ
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(ii) The force FQ to be added then writes in terms of these quantities

ðFQÞnðxÞ ¼
D2ðx� �xnÞ
�4
n �x3

; ð31Þ

where �x is the grid interval and intervenes here because we use ¯nite di®er-

ences.

(iii) We compute the logarithm of the density ln � and the velocity V at next time

step tnþ1 by transforming Eqs. (15) and (16) into centered ¯nite-di®erence

equations (forward time centered space, FTCS scheme) using the Lax–Frie-

drichs method,11 namely,

ln �nþ1
j ¼ ln �n

jþ1 þ ln �n
j�1

2
� �t

2�x
fðV n

jþ1 � V n
j�1Þ

þ V n
j ðln �n

jþ1 � ln �n
j�1Þg; ð32Þ

V nþ1
j ¼ V n

jþ1 þ V n
j�1

2
þ �t �V n

j

V n
jþ1 � V n

j�1

2�x
þ F n

j þ ðFQÞnj
� �

: ð33Þ

The lower index (j) is for space x and the upper one (n) is for time t; �t is the

time step and F ðxÞ ¼ �!2x is the external harmonic oscillator force. In the

above Lax method, the terms ln �n
j and V n

j are replaced by their space average,

which has the advantage to stabilize the FTCS scheme.

The initial conditions are given by the density distribution Eq. (19) for t ¼ 0.

Although this is a simple scheme (we have not attempted at this stage to better

control numerical error di®usion), it has given very encouraging results, since it has

reproduced on several periods the expected motion of the quantum oscillating wave

packet (see Fig. 1).

5.2. Perturbation of initial conditions

One of the possible shortcomings in the passage from the simulation to a real ex-

periment may come from °uctuations in the initial conditions. Indeed, in the pre-

vious simulations, we have taken as initial density distribution that of the exact

quantum wave packet. In order to be closer to a real experimental situation, we have

therefore performed a new simulation similar to that of Sec. 5.1, but with an initial

density distribution that is perturbed with respect to the Gaussian solution Eq. (19):

We have multiplied its values �ðxjÞ at each point fxjg of the space grid by ef�j , where

�j is random in the interval ½0; 1�. In other words, we have added random values f�j

to the initial values of ln �0
j , i.e.

�0ðx; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
!

2�D
r

� ef�ðxÞ�ðx�x0Þ2=2� 2
0 : ð34Þ

A typical resulting initial density distribution is given in Fig. 2 for a °uctuation

amplitude f ¼ 1 (equivalent to
ffiffiffi
2

p
�0 according to the above equation), followed by

1250035-7

Numerical Simulation of a Macro-Quantum Experiment



the distributions obtained on a full period (sub-¯gures 1�12) after application of the

generalized quantum force.

Once again the result obtained is very encouraging as concerns the possibility of

performing a real laboratory experiment, since, despite the initial deformation, the

wave packet remains stable during several periods. Moreover, not only the mean and

dispersion of the evolving density distribution remain close to the ones expected for

the quantum wave packet, but, as can be seen in Fig. 2, the initial perturbations have

even been smoothed out during the feedback process.

5.3. More general account of uncertainties

5.3.1. Density °uctuations

This encouraging result leads us to attempt a numerical simulation under far more

di±cult conditions: In order to simulate the various uncertainties and errors that

may occur in a real experiment, in particular as concerns the density measurement,

the application of the force and physical e®ects not accounted in the simulation such

as vorticity (when going to more than one dimension), etc. we now add a °uctuation

at each step of the retroactive loop (for the e®ect of pressure, see below). Namely, at

each time step tn, we multiply the density �ðxjÞ at each point fxjg of the space grid

by ef�j , where �j is random in the interval ½0; 1�. In other words, Eq. (35) becomes

ln �nþ1
j ¼ ln �n

jþ1 þ ln �n
j�1

2
� �t

2�x
fðV n

jþ1 � V n
j�1Þ

þ V n
j ðln �n

jþ1 � ln �n
j�1Þg þ fd�j: ð35Þ

30
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Time

0

0.05

0.1
Density

30
40

50

60

70

Position

Fig. 1. (Color online) Result of the numerical integration of a Eulerþ continuity one-dimensional system
with generalized quantum potential for the oscillating wave packet in an harmonic oscillator ¯eld. The

quantum force applied on the °uid is calculated from a Gaussian ¯t of the density distribution. The ¯gure

gives the density distribution obtained in function of position (space grid from 25 to 75) and time (time

steps from 1 to 75, i.e. 1.2 period).
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As can be seen in Fig. 3, despite the large errors added, the numerical simulation

shows an oscillating wave packet with large °uctuations which nevertheless keeps its

coherence. In particular, it keeps the values of the mean and dispersion (to about 5

percent) expected for the quantum solution during the whole simulation (which ends

because of numerical errors after a full period for fd ¼ 1=2 and half a period for

fd ¼ 1).

5.3.2. Velocity °uctuations

Another way to put the stability of the simulation to the test consists in adding

°uctuations directly on the velocity ¯eld instead of the density. This test is more

Fig. 2. Result of the numerical integration of a Eulerþ continuity one-dimensional system with added

quantum potential, in the case of an oscillating wave packet. The conditions are the same as in Fig. 1,

except for the addition of a perturbation on the initial density distribution (left top ¯gure). The quantum
force applied on the °uid is calculated from a Gaussian ¯t of the density distribution. The successive ¯gures

give the density distribution obtained in function of position (space grid from 25 to 75) and time (64 time

steps corresponding to one period, among which 12 of them, equally distributed, are shown).
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adapted to anticipating the possible e®ects of vorticity and turbulence, owing to the

fact that the velocity is to the square in the energy equation. Once again we add a

°uctuation at each time step of the process, similar to a self-sustained °uctuation of

the type provided by turbulence. Here the °uctuation added is chosen to be

Gaussian.

Therefore Eq. (33) becomes:

V nþ1
j ¼ V n

jþ1 þ V n
j�1

2
þ �t �V n

j

V n
jþ1 � V n

j�1

2�x
þ F n

j þ ðFQÞnj
� �

þ fv�; ð36Þ

where � is a stochastic variable with a normalized and centered Gaussian

distribution.

An example of the result obtained is given in Fig. 4 (for fv ¼ 0:2). Clearly, the e®ect

of velocity perturbations is stronger than that of density perturbations (as expected).

Fig. 2. (Continued )
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However, we see that the wave packet, although it loses its Gaussian shape and

becomes highly °uctuating, keeps its mean motion and its dispersion during all the

simulation (which ends here after about half a period due to numerical errors). This is

an encouraging result which allows one to expect that, in a real experiment, small

deviations from potential motion and other velocity °uctuations, although they would

certainly perturb the experimental process, would not prevent the main researched

structure to appear, i.e. that of an oscillatory nonspreading wave packet.
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Time

0

0.05

0.1
Density

Position

100
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140
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20
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40
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Time

0

0.05

0.1Density

Fig. 3. (Color online) Result of the numerical integration of a Eulerþ continuity one-dimensional system
with added generalized quantum potential, in the case of an oscillating wave packet. The conditions are the

same as in Fig. 1, except for the addition of a perturbation ef�ðxÞ on the density distribution at each time

step of the simulation. The °uctuation �ðxÞ is simulated by a stochastic variable which is random in the

interval ½0; 1�. The quantum force applied on the °uid is calculated from a Gaussian ¯t of the density
distribution. The ¯gures give the density distribution obtained in function of position and time. The top

¯gure corresponds to a °uctuation amplitude f ¼ 1 (the simulation ended after one half period due to

numerical errors). The down ¯gure corresponds to a °uctuation amplitude f ¼ 0:5. In this case the

simulation was continued on nearly a full period before ending due to numerical errors.
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5.4. Account of pressure

The addition of a pressure term in the initial Euler equation still allows one to obtain

a Schr€odinger-like equation in the general case when rp=� is a gradient, i.e.

rp=� ¼ rw. This is the case of an isentropic °uid and, more generally, of every cases

when there is an univocal link between pressure and density, e.g. a state equation.12

The Euler equation with quantum potential and external potential reads

@

@t
þ V � r

� �
V ¼ �r �þ w� 2D2

�
ffiffiffi
�

pffiffiffi
�

p
� �

; ð37Þ

and it can therefore, in combination with the continuity equation, be integrated in

terms of a Schr€odinger-like equation,

D2� þ iD @

@t
 � �þ w

2
 ¼ 0: ð38Þ

Now the pressure term needs to be speci¯ed through a state equation, which can be

chosen as taking the general form p ¼ kp�
	 . The special case 	 ¼ 1 can be recovered

and its amplitude established by taking the acoustic limit p ¼ p0 þ p0, � ¼ �0 þ �0

and p0 ¼ c2s�
0, where cs is the sound velocity in the °uid. Therefore one obtains a

linear relation p ¼ aþ c2s�, so that the pressure term in the Euler equation ¯nally

reads rp=� ¼ kpr ln �, while w ¼ kp ln � ¼ kp ln j j2, with kp ¼ c2s. This means that

the integrated equation is now a nonlinear Schr€odinger equation,

D2� þ iD @

@t
 � kp lnj j ¼ 1

2
� : ð39Þ

In the highly compressible case the dominant pressure term is rather p / �2 and the

ln j j term is replaced by j j2 in the nonlinear Schr€odinger equation (see e.g. Ref. 13).
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Fig. 4. (Color online) Result of the numerical integration of a Eulerþ continuity one-dimensional system
with added generalized quantum potential, in the case of an oscillating wave packet. The conditions are the

same as in Fig. 1, except for the addition of a Gaussian perturbation on the velocity distribution at each

time step of the simulation, with here fv ¼ 0:2 (see text). The quantum force applied on the °uid is
calculated from a Gaussian ¯t of the density distribution. The left ¯gure gives the velocity ¯eld and the

right ¯gure the density distribution obtained in function of position and time. The simulation ends after

about half a period.
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The numerical integration is now performed by generalizing Eq. (33) as

V nþ1
j ¼ V n

jþ1 þ V n
j�1

2

þ �t �V n
j

V n
jþ1 � V n

j�1

2�x
þ F n

j þ ðFQÞnj
�

� kp
ln �n

jþ1 � ln �n
j�1

2�x

�
: ð40Þ

The result is given in Figs. 5 and 6 for two di®erent values of the pressure amplitude

kp. One ¯nds that the addition of pressure leads to a small oscillation of the width of

the wave packet, but that its main quantum °uid-like features are preserved, since it

nearly recovers its shape after half a period.

6. Full Finite Di®erence Simulation

The success of this ¯rst simple simulation leads us to attempt a more direct feedback

in which the quantum force is computed by ¯nite di®erences from the values of the

density itself (while in the previous simulation we used an intermediate polynomial

¯t from which the force was analytically derived).

To this purpose, we use a form of the generalized quantum potential and of the

generalized quantum force according to which they can be expressed in terms of only

r lnP (or equivalently r ln �). Setting

H ¼ r lnP ; ð41Þ
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Density
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Fig. 5. (Color online) Result of the numerical integration of a Euler and continuity one-dimensional

system of equations with added generalized quantum potential and account of a pressure term, for the

oscillating wave packet. The quantum force applied on the °uid is calculated from a Gaussian ¯t of the

density distribution. The ¯gure gives the probability density in function of position (space grid from 90 to
140) and time (time steps from 1 to 32). In this simulation (near half a period), the amplitude of the

pressure term is kp ¼ 5.
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we ¯nd:

Q ¼ �D2 r �H þ 1

2
H2

� �
; ð42Þ

FQ ¼ �rQ ¼ D2 �H þ ðH � rÞH½ �: ð43Þ
In one dimension it reads

FQ ¼ D2 @3 lnP

@x3
þ @2 lnP

@x2

@ lnP

@x

� �
: ð44Þ

1 2

3 4

5 6

Fig. 6. Result of the numerical integration of a Euler and continuity one-dimensional system of equations

with added generalized quantum potential and account of a pressure term, for the oscillating wave packet.

The quantum force applied on the °uid is calculated from a Gaussian ¯t of the density distribution. The
¯gure gives the density distribution in function of the position (space grid from 120 to 160), for 12 equal

time steps which cover a full period. In this simulation, the amplitude of the pressure term is kp ¼ 1. One

sees that the e®ect of pressure amounts to a small oscillation of the width and height of the wave packet,

which nearly recovers its shape after half a period.
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The numerical integration proceeds following the same lines as in the previous

simulation, except for the ¯rst steps aiming at computing FQ, which are replaced

by a ¯nite di®erence calculation according to Eq. (43). Such a way to compute the

force FQ to be applied on the °uid is therefore directly similar to its calculation in

a real laboratory experiment from digitalized measurements of the density by a

grid of detectors. Namely, we calculate successively, for all values of the position

index j,

Hn
j ¼ ln �n

jþ1 � ln �n
j�1

2�x
; ð45Þ

then similar relations for positions xj�1, xjþ1, xj�2 and xjþ2, then

Qn
j�1 ¼ �D2

Hn
j �Hn

j�2

2�x
þ 1

2
Hn

j�1

� 	
2


 �
; ð46Þ

7 8

9 10

11 12

Fig. 6. (Continued )
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then a similar relation for Qðxjþ1; tnÞ and ¯nally

ðFQÞnj ¼ Qn
j�1 �Qn

jþ1

2�x
: ð47Þ

The calculation of ln � (from the continuity equation) and of V (from the Euler

equation) are the same as previously.

We have also attempted to use other more precise formulas for the calculation of

the ¯rst, second and third order derivatives in the expression of FQ, namely,

expressions valid up to order Oð�x4Þ (see Appendix A),

f 0 ¼ �f2 þ 8f1 � 8f�1 þ f�2

12�x
; ð48Þ

f 00 ¼ �f2 þ 16f1 � 30f0 þ 16f�1 � f�2

12�x2
; ð49Þ

f 000 ¼ �f3 þ 8f2 � 13f1 þ 13f�1 � 8f�2 þ f�3

8�x3
; ð50Þ

where the indices are here the di®erences with j and where xj ¼ 0. This has led to

essentially the same result.

Despite, once again, the roughness of the chosen integration method, the result

obtained is satisfactory, since the motion of a quantum nonspreading oscillating

wave packet has been reproduced on up to a full period before divergence due to the

e®ect of computing errors (Fig. 7). We stress once again the fact that this result has

been obtained without using the Schr€odinger equation, but instead an apparently

\classical" hydrodynamic Euler/continuity system with an externally applied gen-

eralized quantum potential.

130

140

150

160

2.5

5

7.5

10

0
5

10
15

20

Fig. 7. (Color online) Result of the numerical integration of a Eulerþ continuity one-dimensional system

with generalized quantum potential for the oscillating wave packet in an harmonic oscillator ¯eld. The
quantum force applied on the °uid is directly calculated from the values of the density by ¯nite di®erences.

The density distribution obtained in function of position (space grid from 130 to 160) has been followed on

about 0.4 period before divergence due to the e®ect of computing errors).
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Adding a pressure term yields a similar result (i.e. reproduction of the motion of

the wave packet on about one period before divergence due to the e®ect of computing

errors) which con¯rms the result obtained with the Gauss ¯tting method, namely, a

partial oscillating spreading of the wave packet (Fig. 8).

7. Feasibility of the Proposed Experiment

The proposed experiment is based on a feedback loop involving measurement of the

density ¯eld of a °uid, computing of the macroquantum potential and force in

function of the density measurement results, then simulation of the macroquantum

force though application of a classical ¯eld having the expected form.

A full description of such an experiment is outside the scope of this paper.

However, we give in the present section some elements about its feasability, in the

case of an application to a plasma.

Concerning the second step of the loop (computing), we note that the numerical

simulations presented in this paper are by nature discretized, so that they closely apply

to the type of experiment considered. Finite di®erence formulas allowing to calculate

¯rst and second derivatives with aO½"4� precision are given in Appendix A. Let us give

some elements about the two others steps (detectors and actuators) indicating that

such an experiment should indeed be feasible with today's technology.

7.1. Plasma density measurements

Several classical methods are available to probe the density of a plasma, in particular

its electronic density. Among them nonperturbative methods relying on the

100

110
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7.5
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Time

0
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0.1
Density

Fig. 8. (Color online) Result of the numerical integration of a Eulerþ continuity one-dimensional system

with generalized quantum potential for the oscillating wave packet in an harmonic oscillator ¯eld and

account of pressure (1/4 of period before stop due to computing errors). The quantum force applied on the

°uid is here directly calculated from the values of the density by ¯nite di®erences. The ¯gure gives the
probability density in function of space (grid from 100 to 130) and time (time steps from 1 to 13). A pressure

term has been added (kp ¼ 1, whose e®ect is a slight oscillatory deformation of the wave packet).
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launching of waves of electromagnetic radiation such as interferometry and re°ec-

tometry are suitable in particular for inhomogeneous plasmas and are easy to han-

dle.14 We shall focus here on the re°ectometry technique. Its principle is easy to

describe: An external electromagnetic wave is launched at a given frequency f0 such

that somewhere within the plasma the condition f0 ¼ fp is met, where

2�fp ¼
nðxÞ � e2
me:"0

� �1=2
ð51Þ

is the plasma frequency and nðxÞ the local electronic density.

This equality (51) de¯nes the location x ¼ xc of the cut-o® layer. For an isotropic

(nonmagnetized plasma) the dispersion relation for a (transverse) electromagnetic

wave reads:

!2 ¼ !2
pðxÞ þ 3k2V 2

the þ k2c2: ð52Þ

Neglecting the thermal velocity Vthe (with V 2
the ¼ kBTe=me) one thus obtains k ¼ 0

for ! ¼ !p (or f ¼ fp as above): The plasma acts as a perfect mirror at the cut-o®

layer. The experiment then consists in launching with a suitable generator a wave of

a given frequency. By sweeping the frequency one can obtain the whole density pro¯le.

In a classical re°ectometer the variation of the wave phase is measured along the

wave path toward and back from the cut-o® layer. One thus gets:

��ðfÞ ¼ 2

Z xc

0

kðx; fÞdx; ð53Þ

k being the wave number as given by the dispersion relation (52). This wave number

k ¼ kðxÞ is a function of x since it depends on nðxÞ.
An Abel inversion is necessary to get the xc position (this sets conditions on the

shape of the density pro¯le) as:

xcðf0Þ ¼
c

2�2

Z f0

0

d��ðfÞ=df
ðf 2

0 � f2Þ1=2 df: ð54Þ

Of course this measure supposes that the density pro¯le remains constant during the

measurement time. To reduce this time one often uses a pulse electromagnetic wave

and compute the time of °ight between the emission and the reception of the signal.

In case of a pulse, the time of °ight t0 is given by t0 ¼
R ðdx=vgðxÞÞ, where vgðxÞ is

the group velocity, so that one obtains:

t0ðfÞ ¼ 2

Z xc

0

dx

vgðxÞ
¼ 2

c

Z xc

0

1

1� ðfpðxÞ=fÞ2
 !

1=2

dx: ð55Þ

The time of °ight can be connected with the phase as follows:

t0ðfÞ ¼
d

df
��ðfÞ: ð56Þ
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Therefore one can write also xcðfÞ ¼ ðc=�ÞR f
0
t0ðf 0Þ=ðf 2 � f 02Þ1=2df 0. By recording

the time of °ight, one thus recovers the density pro¯le. Such measurements are

currently undertaken in plasma experiments with high resolutions adapted to the

here proposed device.

7.2. Application of a force on a plasma

Once the density nðxÞ has been measured with the required resolution, the macro-

quantum force can be computed as F ¼ 2D2rð� ffiffiffi
n

p
=
ffiffiffi
n

p Þ. Then we simulate its

pro¯le by a classical force. The application of a given force pro¯le on a plasma is an

easy task thanks to the fact it is charged and compressible. The plasma can therefore

be sensible to various type of forces: Mostly pressure forces p and electromagnetic

forces ðE;BÞ.
Concerning the use of pressure, one can launch acoustic waves in the plasma.

Since for dilute plasmas it is close to a perfect gas, p is proportional to nT , so that

thermal e®ects could also be used to simulate the macroquantum force.

In the case of electromagnetic forces one can easily modulate the electric ¯eld E

pro¯le and/or the magnetic ¯eld B pro¯le to give them the required macroquantum-

like shape. The induced electromagnetic ¯elds (polarization e®ects) due to the external

applied ¯elds will be taken into account in the calculation of the full applied force.

8. Discussion and Conclusion

These preliminary simulations were intended to yield a ¯rst validation of the concept

of a new kind of quantum-like macroscopic experiments based on the application to a

classical system of a generalized quantum-type force through a retroaction loop.1,2

They have given a positive results, since the expected quantum-type stable structure

(here a nonspreading oscillating wave packet, or, in the case of pressure, an oscil-

latory wave packet with a slightly oscillating width) has been obtained during a

reasonably long time of integration. These results, obtained by two simple integra-

tion methods, are very encouraging since they give the hope that a real laboratory

experiment should be possible to achieve.

In the hydrodynamic case considered in this work, possible shortcomings are to be

considered in a real experiment, such as the e®ects of ¯nite compressibility, of vor-

ticity, of viscosity at small scales, of density detector uncertainties, of the minimal

time interval needed to perform the loop for the calculation, then the uncertainties

linked to application of the quantum force, etc.

We have attempted here to have a ¯rst account of these uncertainties by taking a

pressure term into account, by adding large random °uctuations in the initial con-

ditions, then by adding large °uctuations at each time steps of the simulation, on the

density distribution as well as on the velocity ¯eld. The results obtained were again

encouraging, since, despite the pressure term and the large °uctuations, the overall

coherence of the wave packet and its period were preserved.
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Concerning the question of vorticity, it is too wide to be discussed in detail in the

present paper, which is devoted to the description of a speci¯c experiment restrained

to a potential °uid. It will be the subject of forthcoming works. Let us simply remark

that the application of the quantum potential to a potential °uid is not expected to

introduce vorticity. On the contrary, we hope that it will in some situations increase

the irrotational part of a °uid. The example of the transition from a classical vortex

to a quantum-like vortex15 is enlightening in this regard. Indeed, the classical vortex

is potential in its outer region and rotational in the inner region which rotates like a

solid body, while the quantum vortex (see e.g. Ref. 16) is everywhere potential. We

therefore expect that, in the new experiment, the application of a quantum-type

potential will increase the size of the outer irrotational zone. Moreover, one can

show2 that the Euler and continuity equations of °uids with rotational motion can

also be given the form of a generalized Schr€odinger equation, in which the vorticity

terms appears as an exterior vectorial ¯eld. Namely, in this case this equation is

similar to the electromagnetic Schr€odinger equation.

The nonlinear Schr€odinger-type form is also preserved in the case of the

Navier�Stokes equations of a viscous °uid, since one may combine the D parameter

(that generalizes the Compton length of standard quantum mechanics) and the

viscosity coe±cient in terms of a new complex parameter.2,17

We shall in forthcoming works attempt to take into account these e®ects in more

complete numerical simulations with improved integration schemes, to apply the

same general concept to other types of systems, then to lead a real hydrodynamic

laboratory experiment.

Provided such an actual experiment succeeds, it could lead to many new appli-

cations in several domains: didactic ones (teaching of quantum mechanics), labora-

tory physics (macroscopic models of quantum systems, simulations of atomic and

molecular systems, study of the quantum to classical transition, laboratory astro-

physics,17,18 models of biological-like systems,19,20 applications to atmosphere and

ocean problems ��� climate, freakwaves,15 etc.), new technology (development of new

devices having some macroscopic quantum-like properties and behavior), self-orga-

nization (plasma con¯nement, control of turbulence, etc.).

Acknowledgments

The authors gratefully acknowledge very fruitful discussions with Dr. L. Di Menza.

Appendix A. Finite Di®erence Formulae

Let us give in this Appendix some ¯nite di®erence formulas for derivatives and apply

them to the calculation of the quantum potential

Q ¼ �2D2 �
ffiffiffiffi
P

pffiffiffiffi
P

p ; ðA:1Þ
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and of the quantum force

FQ ¼ �rQ: ðA:2Þ
We set

K ¼ lnP ; H ¼ r lnP : ðA:3Þ
The expressions for the quantum potential and the quantum force become:

Q ¼ �D2 �K þ 1

2
ðrKÞ2


 �
¼ �D2 r �H þ 1

2
H2


 �
; ðA:4Þ

FQ ¼ D2 �H þ ðH � rÞHf g: ðA:5Þ

A.1. One dimension

A.1.1. Formulas in one dimension valid up to order O½"4�

f 0
0 ¼

f�2 � 8f�1 þ 8f1 � f2
12"

¼ f 0½0� � 1

30
fð5Þ½0�"4; ðA:6Þ

f 00
0 ¼ �f�2 þ 16f�1 � 30f0 þ 16f1 � f2

12"2
¼ f 00½0� � 1

90
fð6Þ½0�"4; ðA:7Þ

f
ð3Þ
0 ¼ f�3 � 8f�2 þ 13f�1 � 13f1 þ 8f2 � f3

8"3
¼ fð3Þ½0� � 7

120
fð7Þ½0�"4; ðA:8Þ

where we have set fj ¼ fðxþ j�xÞ.

A.1.2. Quantum potential in one dimension

Q ¼ �D2 K00 þ 1

2
K02


 �
¼ �D2 H0 þ 1

2
H2


 �
: ðA:9Þ

A.1.3. Calculation of the quantum potential up to order O½�x4�

Q0 ¼ �D2 �K�2 þ 16K�1 � 30K0 þ 16K1 �K2

12�x2




� 1

2

K�2 � 8K�1 þ 8K1 �K2

12�x

� �
2
�
; ðA:10Þ

in function of K ¼ lnP and

Q0 ¼ �D2 H�2 � 8H�1 þ 8H1 �H2

12�x
þ 1

2
H 2

0


 �
; ðA:11Þ

in function of H ¼ r lnP .
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A.1.4. Quantum force in one dimension

F0 ¼ D2ðKð3Þ þK0K00Þ ¼ D2ðH00 þHH0Þ: ðA:12Þ
A.1.5. Calculation of the quantum force up to order O½�x4�

F0 ¼ D2 K�3 � 8K�2 þ 13K�1 � 13K1 þ 8K2 �K3

8�x3




þ �K�2 þ 16K�1 � 30K0 þ 16K1 �K2

12�x2

� �

� K�2 � 8K�1 þ 8K1 �K2

12�x

� ��
; ðA:13Þ

in function of K ¼ lnP , and

F0 ¼ D2 �H�2 þ 16H�1 � 30H0 þ 16H1 �H2

12�x2




þH0

H�2 � 8H�1 þ 8H1 �H2

12�x

�
; ðA:14Þ

in function of H ¼ r lnP .

A.2. Two dimensions

A.2.1. Formulas in two dimensions valid up to order O½"4� ( for �x ¼ �y ¼ "Þ

@f0;0
@x

¼ f�2;0 � 8f�1;0 þ 8f1;0 � f2;0
12"

¼ fð1;0Þ½0; 0� � 1

30
fð5;0Þ½0; 0�"4; ðA:15Þ

@f0;0
@y

¼ f0;�2 � 8f0;�1 þ 8f0;1 � f0;2
12"

¼ fð0;1Þ½0; 0� � 1

30
fð0;5Þ½0; 0�"4; ðA:16Þ

@2f0;0
@x2

¼ �f�2;0 þ 16f�1;0 � 30f0;0 þ 16f1;0 � f2;0
12"2

¼ fð2;0Þ½0; 0� � 1

90
fð6;0Þ½0; 0�"4; ðA:17Þ

@2f0;0
@y2

¼ �f0;�2 þ 16f0;�1 � 30f0;0 þ 16f0;1 � f0;2
12"2

¼ fð0;2Þ½0; 0� � 1

90
fð0;6Þ½0; 0�"4; ðA:18Þ

@2f0;0
@x@y

¼ 10ðf1;1 � f�1;1 � f1;�1 þ f�1;�1Þ
24"2

þ f2;�1 þ f�2;1 þ f�1;2 þ f1;�2 � ðf2;1 þ f�2;�1 þ f1;2 þ f�1;�2Þ
24"2

¼ fð1;1Þ½0; 0� � 1

180
6fð1;5Þ½0; 0� þ 5fð3;3Þ½0; 0� þ 6fð5;1Þ½0; 0�� 	

"4; ðA:19Þ
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@3f0;0
@x3

¼ f�3;0 � 8f�2;0 þ 13f�1;0 � 13f1;0 þ 8f2;0 � f3;0
8"3

¼ fð3;0Þ½0; 0� � 7

120
fð7;0Þ½0; 0�"4; ðA:20Þ

@3f0;0
@y3

¼ f0;�3 � 8f0;�2 þ 13f0;�1 � 13f0;1 þ 8f0;2 � f0;3
8"3

¼ fð0;3Þ½0; 0� � 7

120
fð0;7Þ½0; 0�"4; ðA:21Þ

@3f0;0
@x2@y

¼ ðf2;�2 � 8f2;�1 þ 8f2;1 � f2;2Þ þ 16ðf1;�2 � 8f1;�1 þ 8f1;1 � f1;2Þ
144"3

� 30ðf0;�2 � 8f0;�1 þ 8f0;1 � f0;2Þ
144"3

þ 16ðf�1;�2 � 8f�1;�1 þ 8f�1;1 � f�1;2Þ � ðf�2;�2 � 8f�2;�1 þ 8f�2;1 � f�2;2Þ
144"3

¼ fð2;1Þ½0;0� � 1

90
3fð2;5Þ½0;0� þ fð6;1Þ½0;0�� 	

"4: ðA:22Þ

@3f0;0
@x@y2

¼ ðf�2;2 � 8f�1;2 þ 8f1;2 � f2;2Þ þ 16ðf�2;1 � 8f�1;1 þ 8f1;1 � f2;1Þ
144"3

� 30ðf�2;0 � 8f�1;0 þ 8f1;0 � f2;0Þ
144"3

þ 16ðf�2;�1 � 8f�1;�1 þ 8f1;�1 � f2;�1Þ � ðf�2;�2 � 8f�1;�2 þ 8f1;�2 � f2;�2Þ
144"3

¼ fð1;2Þ½0;0� � 1

90
3fð5;2Þ½0;0� þ fð1;6Þ½0;0�� 	

"4; ðA:23Þ

where fi;j ¼ fðxþ i�x; yþ j�yÞ.

A.2.2. Quantum potential in two dimensions

Q ¼ �D2 @2K

@x2
þ @2K

@y2
þ 1

2

@K

@x

� �
2

þ @K

@y

� �
2

� �
 �
; ðA:24Þ

Q ¼ �D2 @Hx

@x
þ @Hy

@y
þ 1

2
ðH 2

x þH 2
yÞ


 �
; ðA:25Þ
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A.2.3. Calculation of the quantum potential up to order O½"4�

Q0;0 ¼ �D2
�K�2;0 þ 16K�1;0 � 30K0;0 þ 16K1;0 �K2;0

12�x2




þ �K0;�2 þ 16K0;�1 � 30K0;0 þ 16K0;1 �K0;2

12�y2

þ 1

2

K�2;0 � 8K�1;0 þ 8K1;0 �K2;0

12�x

� �
2

þ 1

2

K0;�2 � 8K0;�1 þ 8K0;1 �K0;2

12�y

� �
2
�
; ðA:26Þ

in function of K ¼ lnP , and

Q0;0 ¼ �D2
ðHxÞ�2;0 � 8ðHxÞ�1;0 þ 8ðHxÞ1;0 � ðHxÞ2;0

12�x




þ ðHyÞ0;�2 � 8ðHyÞ0;�1 þ 8ðHyÞ0;1 � ðHyÞ0;2
12�y

þ 1

2
ðHxÞ20;0 þ

1

2
ðHyÞ20;0

�
; ðA:27Þ

in function of H ¼ r lnP .

A.2.4. Quantum force in two dimensions

Fx ¼ D2 @3K

@x3
þ @3K

@x@y2
þ @K

@x

@2K

@x2
þ @K

@y

@2K

@x@y


 �
; ðA:28Þ

Fy ¼ D2 @3K

@x2@y
þ @3K

@y3
þ @K

@x

@2K

@x@y
þ @K

@y

@2K

@y2


 �
; ðA:29Þ

Fx ¼ D2 @2Hx

@x2
þ @2Hx

@y2
þHx

@Hx

@x
þHy

@Hx

@y


 �
; ðA:30Þ

Fy ¼ D2
@2Hy

@x2
þ @2Hy

@y2
þHx

@Hy

@x
þHy

@Hy

@y


 �
: ðA:31Þ
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A.2.5. Calculation of the quantum force up to order O½"4�

ðF0;0Þx ¼ D2
K�3;0 � 8K�2;0 þ 13K�1;0 � 13K1;0 þ 8K2;0 �K3;0

8�x3




þ

þ ðK�2;2 � 8K�1;2 þ 8K1;2 �K2;2Þ
144�x�y2

16ðK�2;1 � 8K�1;1 þ 8K1;1 �K2;1Þ
144�x�y2

� 30ðK�2;0 � 8K�1;0 þ 8K1;0 �K2;0Þ
144�x�y2

�

þ 16ðK�2;�1 � 8K�1;�1 þ 8K1;�1 �K2;�1Þ
144�x�y2

ðK�2;�2 � 8K�1;�2 þ 8K1;�2 �K2;�2Þ
144�x�y2

þ K�2;0 � 8K�1;0 þ 8K1;0 �K2;0

12�x

� �K�2;0 þ 16K�1;0 � 30K0;0 þ 16K1;0 �K2;0

12�x2

þ K0;�2 � 8K0;�1 þ 8K0;1 �K0;2

12�y

� 10ðK1;1 �K�1;1 �K1;�1 þK�1;�1Þ
24�x�y

�

þ ðK2;�1 þK�2;1 þK�1;2 þK1;�2Þ
24�x�y

� ðK2;1 þK�2;�1 þK1;2 þK�1;�2Þ
24�x�y

��
ðA:32Þ

ðF0;0Þy ¼ D2
ðK2;�2 � 8K2;�1 þ 8K2;1 �K2;2Þ

144�x2�y




þ 16ðK1;�2 � 8K1;�1 þ 8K1;1 �K1;2Þ
144�x2�y

� 30ðK0;�2 � 8K0;�1 þ 8K0;1 �K0;2Þ
144�x2�y
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�

þ 16ðK�1;�2 � 8K�1;�1 þ 8K�1;1 �K�1;2Þ
144�x2�y

ðK�2;�2 � 8K�2;�1 þ 8K�2;1 �K�2;2Þ
144�x2�y

þ K0;�3 � 8K0;�2 þ 13K0;�1 � 13K0;1 þ 8K0;2 �K0;3

8�y3

þ K�2;0 � 8K�1;0 þ 8K1;0 �K2;0

12�x

� 10ðK1;1 �K�1;1 �K1;�1 þK�1;�1Þ
24�x�y

�

þ K2;�1 þK�2;1 þK�1;2 þK1;�2

24�x�y

þ ðK2;1 þK�2;�1 þK1;2 þK�1;�2Þ
24�x�y

�

þ K0;�2 � 8K0;�1 þ 8K0;1 �K0;2

12�y

� �K0;�2 þ 16K0;�1 � 30K0;0 þ 16K0;1 �K0;2

12�y2

�
; ðA:33Þ

in function of K ¼ lnP .

The generalization to three dimensions is straighforward.
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