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Abstract

In the framework of the theory of scale relativity, gauge fields can be un-
derstood as manifestations of the fractal geometry of space-time. Indeed, in
this theory one generalizes the space-time description to continuous manifolds
which can be nondifferentiable. The combination of continuity and nondiffer-
entiability for such geometries implies that they become explicitly dependent
on scale variables (resolutions) and show divergences when these variables tend
to zero.

Then one includes the resolutions in the very definition of the state of the
reference system, and one extends the principle of relativity, that was up to
now applied to position, orientation and motion, to the relativity of scales.
New covariant derivatives are defined, that implement the effects of the fractal
and nondifferentiable geometry, and, using them, one writes the equation of
motion under the form of geodesics equations. This allows one to build as a
first step the main quantum tools (complex, spinor and bispinor wave functions)
and to derive the equations they satisfy (Schrödinger, Klein-Gordon, Pauli and
Dirac equations).

The gauge fields can then be constructed in the Weyl way as manifestations
of the dilations of the scale variables induced by space-time displacements.
The theory also allows one to give a geometric meaning to the charges: they
are defined as the conservative quantities that are built from the new scale
symmetries. Moreover, since the Planck length-scale becomes invariant under
dilations in the framework of special scale-relativity, the quantization of charges
is ensured because the possible scale ratios become limited. As a consequence
one theoretically predicts the existence of relations between coupling constants
and mass scales, whose validity is supported by experimental data.

Résumé étendu en français: Peu de temps après la construction par Einstein
de la relativité généralisée, dans laquelle la gravitation est décrite comme man-
ifestation de la géométrie courbe de l’espace-temps, Hermann Weyl en propose
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une extension qui permet de rendre compte de l’électromagnétisme également
de manière géométrique. Alors qu’en théorie d’Einstein l’élément de métrique
(qui s’identifie au temps propre) est fondamentalement invariant, Weyl postule
qu’il peut être “rejaugé” par un facteur d’échelle arbitraire (d’où le nom de
“transformations de jauge”). Autrement dit, un vecteur déplacé sera soumis
non seulement à une rotation mais aussi à une dilatation. Cette proposition
remarquable s’est malheureusement heurtée très vite à un obstacle majeur: s’il
en était ainsi, la longueur des règles et le temps donné par les horloges de-
vraient dépendre de leur histoire, en contradiction avec un grand nombre de
faits d’expérience, comme par exemple l’invariance de l’échelle de Compton de
l’électron (donc de sa masse).

Plus tard Weyl devait reprendre en un sens nouveau les notions d’invariance
de jauge et de transformation de jauge dans le cadre de la théorie quantique,
en tant que transformation des phases des fonctions d’onde, ce qui a per-
mis de fonder la théorie quantique des champs de jauge, qui inclue aujour-
dhui les interactions faible et forte (non-abéliennes) en plus de l’interaction
électromagnétique.

La théorie de la relativité d’échelle est en relation de filiation directe aussi
bien avec la relativité généralisée d’Einstein qu’avec ces deux aspects du travail
de Weyl, tout en s’en écartant sur certains points essentiels, ce qui permet de
résoudre les contradictions apparues alors. On y considère un espace-temps
dont la géométrie reste continue mais n’est plus forcément différentiable, ce qui
implique sa fractalité, au sens où les longueurs et les temps dépendent explicite-
ment de l’échelle d’observation et tendent vers l’infini quand celle-ci tend vers
zéro. Ces variables d’échelles (qui se ramènent, dans le cadre de la descrip-
tion théorique, aux éléments différentiels des coordonnées) sont réinterprétées
comme des variables indépendantes qui caractérisent l’état d’échelle du système
de référence, au même titre où vitesse et accélération caractérisent son état de
mouvement. Elles définissent ainsi un espace des échelles interne et consub-
stantiel à l’espace-temps ordinaire, auquel le principe de relativité est alors
appliqué sous une forme étendue.

En analogie avec les méthodes de la relativité généralisée, les effets de la
non-différentiabilité et de la fractalité de l’espace-temps sont ensuite décrits par
la construction de dérivées covariantes qui permettent d’écrire les équations du
mouvement sous forme d’équations des géodésiques. On génére ainsi d’une part
les équations de la mécanique quantique comme forme prise par les équations
de la dynamique dans un espace-temps non-différentiable, et d’autre part les
champs de jauge comme effets de dilatations et de contractions internes à
l’espace des échelles induits par les déplacements dans l’espace-temps.

Les obstacles rencontrés par la théorie de Weyl sont levés dans ce cadre: les
dilatations s’imposent à partir de la nature de géométrie fractale de l’espace-
temps au lieu d’être postulées sans qu’on puisse leur attribuer une cause physique,
la nature des charges est élucidée, enfin les transformations d’échelle affectent
la structure interne des géodésiques mais pas l’échelle de Compton ni les échelles
atomiques. Enfin une généralisation naturelle aux théories de jauge non-abéliennes
peut être construite en considérant des transformations indépendantes sur les
différentes variables d’échelle.
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1 Introduction

On this occasion of the 50th anniversary of the death of both Albert Einstein and
Hermann Weyl, it is a pleasure to present some recent developments of the appli-
cation of the scale relativity theory to the question of the nature of gauge fields.
Indeed, this theory is in direct line, as well with Einstein’s general relativity as with
the two aspects of Weyl’s work about gauge transformations and gauge invariance,
namely, in his theory of electromagnetism and in quantum mechanics.

In its present state, fundamental physics can be considered as still unsatisfactory.
In particular, despite impressive progress, the foundation of gauge fields theories,
including electromagnetism, remains incomplete, especially when it is compared
with Einstein’s foundation of gravitation theory on the principle of relativity.

Indeed, in the present physical theory, one still does not really understand form
first principles neither the nature of the electric charge and of the electromagnetic
field, nor the fundamental meaning of gauge invariance. As recalled by Landau [1],
in the classical theory the very existence of the charge e and of the electromagnetic
four-potential Aµ are ultimately derived from experimental data. Moreover, the
form of the action that describes the coupling of a particle with an electromagnetic
field can not be chosen only from general considerations, and it is therefore merely
postulated.

Now, once these three points are set (the existence of the charge, that of the
electromagnetic field and the minimal coupling between them), most of the classical
theory of electromagnetism can be constructed. Indeed (see e.g. [1]), the Lorentz
force and the Maxwell equations can subsequently be derived from the action prin-
ciple. But the arbitrary character of the coupling term in the action is another
expression for the fact that the motion equation cannot be derived from the field
equations, so that it has been added by Lorentz in an independent way.

This is to be compared with the status of gravitation in Einstein’s theory [2]. The
‘charge’ for gravitation is the energy-momentum itself, which is fully understood as
the conservative quantities that take their origin in the fundamental symmetries of
space-time (following Noether’s theorem). Then the gravitational field is understood
as the manifestation of a geometric property of space-time, namely, its curvature,
which is itself self-imposed from the principle of general relativity. Finally, there
is no need to add an independent equation of trajectories to the theory, since it
is identified with the equation of geodesics, which is completely determined by the
knowledge of the space-time geometry.

Therefore the present state of the foundation of the classical electromagnetic
theory remains far less satisfactory than the theory of gravitation in Einstein’s gen-
eral relativity. This remains a standard field theory, not a geometric theory based
on the principle of relativity. Up to now, the various attempts of foundation of
electromagnetism on a space-time approach (Kaluza-Klein [5], Weyl [3], Dirac [4],
etc...) have failed to yield new results that would have allowed to validate or refute
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them.
More recently, the quantum theory of electromagnetism and of the electron has

added a new and essential stone in our understanding of the nature of charge. In-
deed, in its framework, gauge invariance becomes deeply related to phase invariance
of the wave function. The electric charge conservation is therefore directly related
to the gauge symmetry. Such an understanding has led to important progress: in
particular, the extension of the approach to non-Abelian gauge theories has allowed
to incorporate the weak and strong field into the same scheme.

However, despite this progress, the lack of a fundamental understanding of the
nature of the gauge transformations and of the ‘arbitrary’ gauge functions has up to
now prevented from reaching the final goal of gauge theories: namely, to reach a gen-
uine understanding of the nature of charge, to understand why charge is quantized
and, as a consequence, to be able to theoretically calculate its quantized value.

The theory of scale relativity [6, 7, 8], in which we generalize the geometry of
space-time to continous but nondifferentiable geometries, allows one to reconsider
this problem in its framework.

In the present contribution, we first summarize the principles that underly the
theory of scale relativity (Sec. 3). Then we recall how one can recover standard
self-similar scale laws with constant fractal dimension as the simplest expression of
the principle of scale-relativity. However, even in that case we find a spontaneous
symmetry breaking of the scale dependence toward the large scales at a transition
scale that is identified with the Compton-Einstein-de Broglie scale. In other words,
this means that space-time appears not to be fractal at all scales, but only in the
quantum regime, while we recover the classical space-time toward the large scales.
The generalisation of these scale laws to a Lorentz group of scale transformations (in
which the Planck length becomes invariant under dilations) is subsequently briefly
described. It is in the framework of this special scale-relativity theory that the
electron charge becomes quantized and that its value becomes related to its mass.

Then we briefly review the scale-relativistic approach to the quantum theory,
recalling how one can derive the Klein-Gordon and Dirac equations from its princi-
ples. We also show how the scale-relativity tools can be improved in order to fully
implement the strong covariance / equivalence principle (according to which the
equations of physics can be written under the form of free, inertial-like equations).

In Sec. 4 we develop the classical theory of electrodynamics in the scale-relativity
framework. Classical gauge invariance is recovered. Geometric definitions for the
electromagnetic field and for the electric charge are given. Then the equation of
motion of a charged particle in an electromagnetic field is constructed in terms of a
geodesics equation in a fractal space-time.

In Sec. 5 we combine the various tools of the scale-relativity approach, that have
given rise to the quantum description on one hand and to classical electrodynamics
on the other. The covariant derivative of quantum electrodynamics (QED) is con-
structed in a geometric way. Then we write a doubly covariant free-like geodesics
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equation, which can be finally integrated in terms of the Klein-Gordon and Dirac
equations for a particle in an electromagnetic field. As a consequence of this ap-
proach, the electric charge becomes quantized in the special scale-relativity case, and
a theoretical relation between the mass and the charge of the electron is established.

2 Statement of the problem

Consider an electron in an electromagnetic potential Aµ. This potential is invariant
under a gauge tansformation Aµ → A′

µ = Aµ + ∂µχ(x, y, z, t). Let us consider the
wave function of an electron. It writes:

ψ = ψ0 exp

{
i

~
(px−Et+ σϕ+ eχ)

}
(1)

Its phase contains the usual products of fundamental quantities (space position,
time, angle) and of their conjugate quantities (momentum, energy, angular momen-
tum). They are related through Noether’s theorem. Namely, the conjugate variables
are the conservative quantities that originate from the space-time symmetries. This
means that our knowledge of what are the energy, the momentum and the angu-
lar momentum and of their physical properties is founded on our knowledge of the
nature of space, time and its transformations (translations and rotations).

This is true already in the classical theory, but there is something more in the
quantum theory. In its framework, the conservative quantities are quantized when
the basic variables are limited. Concerning energy-momentum, this means that it is
quantized only in some specific circumstances (e.g., bound states in atoms for which
r > 0 in spherical coordinates). The case of the angular momentum is instructive: its
differences are quantized in an universal way in units of ~ because angles differences
can not exceed 2π.

In comparison, the last term in the phase of Eq. (1) keeps a special status in
today’s standard theory. The gauge function χ(x, y, z, t) remains arbitrary, while it
is clear from a comparison with the other terms that the meaning of charge e and
the reason for its universal quantization can be obtained only by understanding the
physical meaning of χ and why it is universally limited, since it is nothing but the
quantity conjugate to the charge. As we shall see in what follows, the identification
of χ with a resolution scale factor ln % allows one to suggest solutions to these
problems in the special scale-relativity framework [9].

3 The theory of scale relativity: summary

3.1 Principle of scale relativity

The theory of scale relativity [8] studies the consequences of giving up the hypoth-
esis of space-time differentiability. One can show [8, 10, 11] that a continuous but
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nondifferentiable space-time is necessarily fractal. Here the word fractal [12, 13] is
taken in a general meaning, as defining a set, object or space that shows structures
at all scales, or on a wide range of scales. More precisely, one can prove [10] that
a continuous but nondifferentiable function is explicitly resolution-dependent, and
that its length L is strictly increasing and tends to infinity when the resolution in-
terval tends to zero, i.e. L = L(ε)ε→0 → ∞. This theorem naturally leads to the
proposal that the concept of fractal space-time [14, 15, 6, 8, 16] is the geometric tool
adapted to the research of such a new description.

Since a nondifferentiable, fractal space-time is explicitly resolution-dependent,
the same is a priori true of the various physical quantities that one can define in
its framework. We thus need to complete the standard laws of physics (which are
essentially laws of motion in classical physics) by laws of scale, intended to describe
the new resolution dependence. We have suggested [7] that the principle of relativity
can be extended to constrain also these new scale laws.

Namely, we generalize Einstein’s formulation of the principle of relativity, by
requiring that the laws of nature be valid in any reference system, whatever its
state. Up to now, this principle has been applied to changes of state of the coordinate
system that concerned the origin, the axes orientation, and the motion (measured
in terms of velocity and acceleration).

In scale relativity, we assume that the space-time resolutions are not only a
characteristic of the measurement apparatus, but acquire a universal status. They
are considered as essential variables, inherent to the physical description. We define
them as characterizing the “state of scale” of the reference system, in the same way
as the velocity characterizes its state of motion. The principle of scale relativity
consists of applying the principle of relativity to such a scale-state. Then we set a
principle of scale-covariance, requiring that the equations of physics keep their form
under resolution transformations.

3.2 Galilean scale-relativity

Simple fractal scale-invariant laws can be identified with a “Galilean” version of
scale-relativistic laws. Indeed, let us consider a nondifferentiable coordinate L. The
hereabove basic theorem that links nondifferentiability to fractality implies that L
is an explicit function L(ε) of the resolution interval ε. As a first step, one can
assume that L(ε) satisfies the simplest possible scale differential equation one may
write, namely, a first order equation where the scale variation of L depends on L
only. Since the dilatation operator, according to the Gell-Mann-Levy method [10]
reads d/d ln ε, one obtains the equation dL/d ln ε = β(L). The function β(L) is a
priori unknown but, still taking the simplest case, we may consider a perturbative
approach and take its Taylor expansion. We obtain the equation:

dL
d ln ε

= a+ bL + . . . (2)
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This equation is solved in terms of a standard power law of power τ = −b that is
specific of a fractal behavior, broken at some relative scale λ (a constant of integra-
tion)

L = L0

{
1 +

(
λ

ε

)τ}
. (3)

The exponent τ is related to the fractal dimension DF by the relation τ = DF −DT ,
where DT is the topological dimension (1 for a curve, 2 for a surface,etc...). The
scale symmetry breaking at the transition scale λ plays an important role in the
theory, since this scale is subsequently identified with the Einstein-de Broglie scale,
so that it ultimately gives a new interpretation of the mass of the particle under
consideration as a purely geometric quantity.

One can easily verify that, under a scale transformation ln ε → ln ε′, the vari-
ables ln(L−L0) and τ transform according to a group of scale transformation that
has exactly the same mathematical structure as the Galileo group of motion trans-
formations, which establishes that they come under the principle of scale relativity,
as expected [7, 8].

3.3 Special scale-relativity

We have suggested that, in the fractal asymptotic domain, (i.e. beyond the fractal /
non-fractal transition λ, that is identified in rest frame with the Compton length of
the particle), the Galilean law of composition of dilations ln(ε′/λ) = ln ρ+ ln(ε/λ)
is only a low energy approximation, and should be replaced by the more general
log-Lorentzian law [7]:

ln
ε′

λ
=

ln ρ+ ln(ε/λ)

1 + lnρ ln(ε/λ)/ ln2(λP/λ)
. (4)

In the framework of such a ‘special scale-relativistic’ law, the length-time scale
λP is a minimal scale of space-time resolution which is invariant under dilations and
contractions, and plays the same role for scales as that played by the velocity of
light for motion.

Toward the small scales, this invariant length-scale is naturally identified with the
Planck scale, λP = (~G/c3)1/2, that now becomes impassable and plays the physical
role that was previously devoted to the zero point. Some consequences of this
new interpretation of the Planck length-time-scale have been considered elsewhere
[7, 8, 10], concerning in particular the unification of fundamental fields. We shall
point out here its consequences for the quantization of the electric charge and for
a theoretical prediction of a relation between the electric charge and the electron
mass.
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3.4 Relativistic quantum mechanics: Klein-Gordon equation

One of the main consequences of the scale-relativity / fractal space-time approach
is its ability to build from geometric structures the fundamental rules of quantum
mechanics [8, 10, 17, 18], that were up to now set as mere axioms.

Let us first briefly recall here how one can establish the free Klein-Gordon
equation in the scale-relativity framework [9, 10] (see [8] for the derivation of the
Schrödinger equation).

Note first that the nondifferentiability here means that derivatives dX/ds are
undefined in their usual meaning, while it does not affect the ability to define differ-
entials dX, which is preserved since we have kept the continuity of space-time. Now,
the scale relativity method allows one to construct a new definition of derivatives as
explicitly scale dependent variables, dX(ds)/ds, which are infinite when ds→ 0 but
remain finite for all values of ds 6= 0, therefore preserving the possibility to use the
differential calculus and to write the equations of physics as differential equations.

The space-time is described in terms of a nondifferentiable continuum, which is
therefore fractal [8]. Due to the fractality of space-time, the number of geodesics is
infinite. This leads one to introduce a velocity field along these geodesics instead of
a deterministic velocity and to work in terms of a fluid-like approach.

Due to the breaking of the reflection symmetry (ds ↔ −ds) issued from non-
differentiability, the elementary displacements dXµ become two-valued [8, 17, 18],
so that we are led to define two differentials dXµ

+ and dXµ
−. According to Eq. (3),

the elementary displacements are decomposed in terms of a differentiable ‘classical
part’ and of a non-differentiable ‘fractal part’ [17](here in the standard case of a
fractal dimension DF = 2 for the paths), namely

dXµ
± = dxµ

± + dξµ
±. (5)

We are led to a stochastic description, due to the infinity of geodesics of the fractal
space-time. The nondifferentiable part of the infinitesimal displacement is described
in terms of two fluctuation fields, dξµ

±(s), which have zero expectation, < dξµ
± >= 0,

are mutually independent and such that

< dξµ
± dξ

ν
± >= ∓λ δµνds. (6)

The constant λ identifies with the Compton length of the particle: in other words,
this yields a new definition of the rest mass, which is here generated by the infinite
fractal fluctuations. The “metric” δµν is positive definite: indeed, the fractal fluc-
tuations are of the same nature as uncertainties and ‘errors’, so that the space and
the time fluctuations add quadratically.

One defines a two-valued ‘classical’ derivative, d+/ds and d−/ds. Once applied
to the differentiable part of the coordinate xµ, it yields two classical 4-velocities,

d+

ds
xµ(s) = vµ

+ ;
d−
ds
xµ(s) = vµ

−. (7)
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The two derivatives of Eq.(7) can be combined in terms of a complex derivative
operator

d̂

ds
=

(d+ + d−) − i (d+ − d−)

2ds
, (8)

which, when applied to the position vector, yields a complex 4-velocity

Vµ =
d̂

ds
xµ = V µ − i Uµ =

vµ
+ + vµ

−

2
− i

vµ
+ − vµ

−

2
. (9)

The two (+) and (−) differentials of a function f [x(s)] can now be written:

d±f/ds = (vµ
± ∂µ ∓ 1

2
λ∂µ∂µ)f. (10)

so that the ‘quantum-covariant’ derivative operator finally reads:

d̂

ds
=

(
Vµ +

1

2
i λ ∂µ

)
∂µ. (11)

We use here the expression ‘covariant’ as an extension of Einstein’s definition, i.e. as
a tool that allows one to keep the form of equations in a new and more complicated
situation. But one should remark that the true status of this covariant derivative is
actually an extension of the concept of total derivative. Already in standard physics,
the passage from the free Galileo-Newton’s equation to its Euler form was a case
of conservation of the form of equations in a more complicated situation, namely,
d/dt → ∂/∂t + v.∇. In the fractal and non-differentiable situation considered here,
two new terms appear in the total derivative operator, namely −i U µ∂µ (where −Uµ

is the imaginary part of Vµ) and −i(λ/2)∂µ∂µ. These terms are added because the
differential calculus itself is affected, and they yield the quantum behavior. As
we shall recall in what follows, we are led to introduce another scale covariant
derivative of the type of that of general relativity, that describes the effects of the
fractal geometry, which manifests itself in terms of the gauge fields [9, 10, 19].

Since the velocity is now complex, the same is true of the action S. The wave
function is introduced as being nothing but its reexpression:

ψ = eiS/mcλ ⇒ Vµ = iλ∂µ(lnψ), (12)

Using the quantum-covariant derivative, we finally write the equations of motion
under the form of a covariant, free-like, geodesics equation,

d̂Vµ/ds = 0. (13)

By replacing the covariant derivative operator by its expression we obtain

(
Vµ +

1

2
iλ∂µ

)
∂µVα = 0. (14)
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Arrived at this stage, it is easy to show that this equation amounts to the Klein-
Gordon one. Introducing the wave function and accounting for the identity [8]

∂µ∂
µ lnψ + ∂µ lnψ ∂µ lnψ =

∂µ∂
µψ

ψ
, (15)

it can be integrated in terms of the Klein-Gordon equation for a free particle:

∂ν

(
λ2∂µ∂µψ

ψ

)
= 0 ⇒ λ2 ∂µ∂µψ = ψ. (16)

Note that the whole approach has been recently generalized [22] by working with
the full velocity, including its divergent fractal part (which is of zero mean), instead
of only its classical part, at all levels of the derivation (definition of the covariant
derivative and of the wave function, geodesics equation). This leads to the same
final quantum equations (Schrödinger and Klein-Gordon). This proves that the
wave functions that are solutions of these equations can themselves be fractal and
nondifferentiable, in agreement with the results of Berry [23] and Hall [24].

3.5 Dirac equation

More recently, it has been shown [17] that the Dirac equation could also be derived
from the same principles. In the scale relativity approach, the complex nature of the
wave function in quantum mechanics is a direct consequence of the nondifferentiable
geometry of space-time. When one considers only fractal space (which corresponds
to the case of non-relativistic quantum mechanics and Schrödinger equation), it
involves a symmetry breaking of the reflection invariance dt ↔ −dt, and therefore
a two-valuedness of the classical velocity vector.

Going to motion-relativistic quantum mechanics amounts to introduce not only
a fractal space, but a fractal space-time. The invariant parameter becomes in this
case the proper time s instead of the time t. As a consequence the complex nature
of the four-dimensional wave function in the Klein-Gordon equation comes from the
discrete symmetry breaking ds↔ −ds.

Now, the total derivative of a physical quantity also involves partial derivatives
with respect to the space variables, ∂/∂xµ. Once again, from the very definition of
derivatives, the discrete symmetry under the reflection dxµ ↔ −dxµ should also be
broken at a more profound level of description. Therefore, we expect the appearance
of a new two-valuedness of the generalized velocity.

At this level one should also account for parity violation. Finally, the three
discrete symmetry breakings

ds↔ −ds dxµ ↔ −dxµ xµ ↔ −xµ

can be accounted for by the introduction of a bi-quaternionic velocity, which is at
the origin of the bi-spinor nature of the electron wave function. Then one can derive
in this way the Dirac equation [17], namely as an integral of a geodesics equation.
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One can indeed show that, despite their noncommutativity, one recovers Eq. (16)
in terms of biquaternions. Then, when one expands the biquaternionic form of this
Klein-Gordon equation, one finds that it is spontaneously written as the square of
the Dirac equation [20, 17],

1

c

∂ψ

∂t
+ αk ∂ψ

∂xk
− i

mc

~
βψ = 0, (17)

which is therefore demonstrated. The Pauli equation can subsequently be derived
as a non motion-relativistic approximation of this equation [18].

3.6 Covariant tool: complex velocity operator

The next step amounts to mix the two consequences of the nondifferentiable / fractal
geometry in order to reach a construction of quantum electrodynamics from first
principles. In this purpose, we first need to further develop the quantum-covariant
tool of scale-relativity.

As shown by Zastawniak [21] and as can be easily recovered from the definition
(9), the quadratic invariant of special motion-relativity, vµvµ = 1, is naturally gen-

eralized as V†
µ Vµ = 1 where V†

µ is the complex conjugate of Vµ. Concerning the
square of the four-velocity, it is now complex. It has been shown by Pissondes [25]
that it now reads

VµVµ + iλ ∂µVµ = 1, (18)

which is a direct consequence of the identity (15). Now taking the gradient of this
equation, one recovers another form of Eq. (14),

(
Vµ +

1

2
iλ ∂µ

)
∂αVµ = 0. (19)

In the free case the two equations are equivalent, since ∂αVµ − ∂µVα = 0.
Now, the basic definition of the quantum-covariant derivative of a function

f [x(s)] is a linear combination of a first order and of a second order derivative
(a Laplacian):

d̂

ds
f [x(s)] = Vµ∂µf + i

λ

2
∂µ∂µf. (20)

Although Vµ is now complex, the first term keeps the form of the standard derivative
of a composed function, df/ds = uµ∂µf . But the second term implies to be cautious
when using this operator in calculations. In particular, the derivative of a product
will be based on a combination of the Leibniz rules for first order derivatives and
second order derivatives, which is non-linear. Indeed one finds [25]

d̂

ds
(fg) = f

d̂g

ds
+ g

d̂f

ds
+ iλ ∂µf ∂µg. (21)
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In order to keep the form of the first order Leibniz rule (i.e. to implement strong
covariance), Pissondes [25] has defined a ‘symmetric’ product

f ◦ d̂g

ds
= f

d̂g

ds
+ i

λ

2
∂µf ∂µg, (22)

and he has subsequently shown that, using this product, the quantum-covariance
can be fully implemented. In particular, the quantum-covariant form of the Lorentz
equation of electrodynamics, i.e.,

mc
d̂Vα

ds
=
e

c
Fαµ ◦ Vµ, (23)

is equivalent, once expressed in terms of the wave function and integrated, with the
Klein-Gordon equation in the presence of an electromagnetic field [25].

However, one of the disadvantage of using a product is that it depends on its
two terms. In order to proceed further and to reach a full quantum and scale-
covariance, we shall use another equivalent but simpler tool using instead operators.
Let us define a velocity operator

V̂µ = Vµ + i
λ

2
∂µ, (24)

so that the quantum-covariant derivative writes

d̂

ds
= V̂µ ∂µ, (25)

i.e., it now keeps its standard first order form. More generally, one defines the
operator

̂̂
dg

ds
=
d̂g

ds
+ i

λ

2
∂µg ∂µ (26)

which has the advantage to be defined only in terms of g. The covariant derivative
of a product now reads

d̂(fg)

ds
=

̂̂
df

ds
g +

̂̂
dg

ds
f, (27)

i.e., it keeps the form of the first order Leibniz rule.
Using this tool, equations (14) and (19) can be finally written under the compact

form (in the free case)

V̂µ ∂αVµ = V̂µ ∂µVα = 0. (28)
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4 Classical electrodynamics in scale relativity

4.1 Scale-covariant derivative

The theory of scale relativity allows one to get new insights about the nature of
the electromagnetic field, of the electric charge, and about the physical meaning of
gauge invariance [9, 10]. Consider indeed an electron (or any other charged particle).
In scale relativity, we identify the particle with a family of fractal paths, described
as the geodesics of a nondifferentiable space-time. These paths are characterized by
internal structures which are fractal, i.e. explicitly dependent on one (or several)
scale variable(s) that we have named ‘resolution’ (by extension of the concept of
resolution of a measurement apparatus).

Now consider anyone of these structures, lying at some (relative) resolution ε
smaller that the Compton length of the particle (i.e. such that ε < λ ) for a given
relative position of the particle. In a displacement of the particle, the relativity of
scales implies that the resolution at which this given structure appears in the new
position will a priori be different from the initial one. Indeed, if the whole internal
fractal structure of the electron was rigidly fixed, this would mean an absolute
character of the scale space and a description of the fractal set of geodesics in terms
of fractal rigid objects. Such a description would be clearly physically irrelevant.

Therefore we expect the occurrence of dilations of resolutions induced by trans-
lations. In other words, the scale variation includes a purely geometric increase
which reads

δ

(
ln
λ

ε

)
=

1

q
Aµ dx

µ. (29)

In this expression, the elementary dilation is written as δ ln(ε/λ) = δε/ε: this is
justified by the Gell-Mann-Levy method, from which the dilation operator is found
to take the form D̃ = ε ∂/∂ε = ∂/∂ ln ε. Since the elementary displacement in
space-time δxµ is a four-vector and since δε/ε is a scalar, one must introduce a
four-index quantity Aµ from the application of Einstein’s rule about the summation
over up and down indices. The constant q measures the amplitude of the scale-
motion coupling. It can be subsequently identified with the active electric charge
that intervenes in the potential. This form ensures that the dimensionality of Aµ be
CL−1, where C is the electric charge unit (e.g., ϕ = q/r for a Coulomb potential).

In analogy with Einstein’s construction of general relativity, we substract the new
geometric effect from the total effect, in order to recover a purely inertial regime (see
e.g. [1]). This can be expressed in terms of a scale-covariant derivative. Namely, we
set η = q ln(λ/ε), and we define

Dµη = ∂µη −Aµ. (30)
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4.2 Gauge invariance

Let us go on with the dilation ‘field’ Aµ. If one wants such a field to be physical,
it must be defined whatever the initial scale from which we started. Moreover, the
principle of scale relativity also means that, a scale being always relative to another
reference scale (that defines the state of scale of the reference system) the scale can
change for two equivalent reasons (which are in the end undistinguishable): either
because of a scale change while the scale of reference is kept fixed, or because of
a change of the reference scale itself. This is the same situation as in the case of
motion laws: namely, it is equivalent to move an object 2 with respect to an object
1 (that serves as reference) or to make the reverse motion of object 1 relatively to
object 2.

Therefore, starting from another relative scale ε′ = % ε (we consider Galilean
scale-relativity for the moment), where the scale ratio % may be any function of
coordinates, i.e. % = %(x, y, z, t), we get

q
δε′

ε′
= −A′

µ δx
µ, (31)

so that
A′

µ = Aµ + q ∂µ ln %(x, y, z, t). (32)

Therefore the four-vector Aµ depends on the relative “state of scale” of the reference
system, given by the “scale velocity”, ln % = ln(ε′/ε).

We have suggested [9, 10] to identify Aµ with an electromagnetic four-potential
and Eq. (32) with the gauge invariance relation for the electromagnetic field, that
writes in the standard way

A′
µ = Aµ + q ∂µχ(x, y, z, t). (33)

The gauge function χ in this relation is usually considered as devoid of physical
meaning. This is no longer the case here, since it is now identified with a scale ratio
χ = ln % between internal structures of the electron geodesics (at scales smaller than
its Compton length). Our interpretation of the nature of the gauge function is com-
patible with its inobservability. Indeed, such a scale ratio is impossible to measure
explicitly, since it would mean to make two measurements of two different relative
scales smaller than the electron Compton length. But the very first measurement
with resolution ε would change the state of the electron. Namely, just after the
measurement, its de Broglie length would become of order λdB ≈ ε (see e.g. [8]), so
that the second scale ε′ would not be measured on the same electron. Therefore the
ratio % between the scales ε′ and ε is destined to remain a virtual quantity. How-
ever, even whether it can not be directly measured, it has indirect consequences, so
that the knowledge of its nature finally plays an important role: it allows one to
demonstrate the quantization of the electron charge and to relate its value to that
of its mass [9, 10, 19], as recalled in what follows.

14



4.3 Definition of the electric charge

The fundamental new feature of scale relativity with respect to the standard view is
the fractal nature of space-time, i.e., its explicit dependence on the relative resolution
scale, which is characterized by ln % = ln(λ/ε) in the simplified case of a global
dilation. In other words, the space of positions and instants must be completed by
a space of scales.

Consider the action S for the electron. In the framework of a space-time theory
based on a relativity principle, as it is the case here, it should be given directly by
the length invariant s, i.e., dS = −mcds. This relation ensures that the stationary
action principle δ

∫
dS = 0 becomes identical with a geodesics (Fermat) principle

δ
∫
ds = 0. Now the fractality of the geodesical curves to which the electron is

identified means that, while S is an invariant with respect to space-time changes of
the coordinate system, it is however a function of the scale variable, S = S(η), at
scales smaller than λ.

Therefore we expect the action to be an explicit function of η = q ln %, so that
its differential reads

dS =
∂S

∂η
dη =

∂S

∂η
(Dη +Aµdx

µ), (34)

and we obtain

∂µS = DµS +
∂S

∂η
Aµ. (35)

What is the meaning of the derivative −∂S/∂η ? Noether’s theorem tells us that
universal conservative quantities must emerge from the symmetries of the underlying
space variables. Moreover, when considering the action as a function of coordinates
at the upper limit of integration in the action integral, one finds that the conservative
quantities are given by pk = −∂kS. Now, space-time is completed in the scale-
relativity framework by a scale space. Therefore, from the uniformity of the new
scale variable ln %, a new conservative quantity can be constructed, so that the
derivative of the action with respect to scale transformations actually provides us
with a definition for the ‘passive’ electric charge [9], namely,

e

c
= −∂S

∂η
= − ∂S

q ∂ lnρ
. (36)

In other words, the electric charge is defined in the new approach as the conservative
quantity that arises from the uniformity of the scale space. The above choice is
motivated by the expected symmetry of the ‘active’ and ‘passive’ charges in the
final potential energy, and by the fact that the action has the dimensionality of an
angular momentum [ML2T−1], while the squared charge dimensionality is [ML3T−2].

Finally, the known form of the particle-field coupling term in the action,

Spf =

∫
−e
c
Aµdx

µ. (37)
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is now demonstrated, while it was merely postulated in the standard theory. This is
an essential result since the Lorentz force can be deduced from the combination of
this coupling term and of the free particle term, while the Maxwell equations derive
from its combination with the field term [1]. The derivation of this action coupling
term therefore allows one to reach a more profound foundation of electromagnetism.

4.4 Derivation of Lorentz force from geodesics equation

4.4.1 Generalized invariant proper time

The field term of the action is naturally given by the square of the electromagnetic
tensor, since it is the only scalar that satisfies its expected properties (see [1]).
Therefore, the total action reads

S = Sp + Spf + Sf = −
∫
mc ds−

∫
e

c
Aµdx

µ − 1

16πc

∫
FµνF

µνdΩ. (38)

Let us consider the two first terms of this action. In the new framework, they
have both acquired a (geo)metric meaning. Indeed, as in any relativity theory, the
action is now equivalent to the space-time invariant, dS = −mcds, and the least
action principle is therefore equivalent to a geodesics principle. The total elementary
“length” (i.e., its proper time in four dimensions) of a fractal curve writes

dstot = (gµνdx
µdxν)1/2 +

e

mc2
Aµdx

µ. (39)

The new meaning of this expression in the scale-relativity / fractal space-time de-
scription is as follows. The length of a fractal path can increase because its extremity
has changed as a consequence of the motion of the particle (this is expressed by the
first term, which is common to fractal and non-fractal paths), but also because of
internal dilations (this is expressed by the second term). Finally the full length
increase becomes distributed on the two terms: in the extreme cases, one can have
a purely internal length increase that will have no counterpart in terms of space
displacement and will therefore be equivalent to a potential energy, or one can also
consider an unfolding of the fractal path, in which this potential energy becomes
manifested in terms of motion.

We shall therefore postulate that the real paths are given by an optimization of
the full invariant proper length, i.e. by the generalized fractal geodesics equation,

δ

∫
dstot = 0. (40)

4.4.2 Covariant derivative of a vector

Although we have recovered here the standard variational principle of classical elec-
tromagnetism, we shall nevertheless develop it again hereafter, since the new ge-
ometric interpretation will allow us to give a new meaning to the electromagnetic
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field. Namely, we shall see that it can be identified with a fractal space-time con-
nection that defines the covariant derivative of a vector. This amounts to follow,
in this new context, Einstein’s initial derivation of the motion equation in his rel-
ativistic theory of gravitation [2]. Indeed, in this derivation the definition of the
covariant derivative and of the Christoffel symbols (subsequently identified with the
gravitational field) directly proceeds from the geodesics-least action principle.

The variation of the invariant proper time reads

δstot =

∫ (
dxµdδx

µ

ds
+

e

mc2
Aµdδx

µ +
e

mc2
δAνdx

ν

)
= 0. (41)

After integration by parts and vanishing of the integrated terms (because the integral
is varied for fixed values of the coordinates at its borns) it becomes

∫ (
duµδx

µ +
e

mc2
dAµδx

µ − e

mc2
δAνdx

ν
)

= 0. (42)

Finally, since δAν = (∂Aν/∂x
µ)δxµ and dAµ = (∂Aµ/∂x

ν)dxν , we obtain

∫ {
duµ

ds
− e

mc2

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
uν

}
δxµds = 0. (43)

All the terms additional to the inertial ones now have a geometric origin. This leads
us to define the covariant differential of the velocity as

Duα = duα − e

mc2
Fαµdx

µ, (44)

in terms of a ‘connection’

Fαµ =
∂Aµ

∂xα
− ∂Aα

∂xµ
, (45)

which can be identified with the electromagnetic field. We are now able to define
the covariant partial derivative of a resolution-dependent vector as

DµBα = ∂µBα +
e

mc2
Fµα. (46)

In analogy with the construction of Einstein’s covariant derivative in general rela-
tivity (see e.g. [1]), it amounts to subtract from the total variation of the vector
the new variation of geometric origin, in order to let only its inertial part. While
the geometric variation of a vector is a consequence of curvature in motion general
relativity, and manifests itself in terms of gravitation, it is a consequence of fractal-
ity in scale relativity, and it manifests itself in terms of electromagnetism, i.e., of an
Abelian gauge field (and more generally in terms of non-Abelian gauge fields, see
[26]).
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4.4.3 Geodesics equation from covariance principle

Finally, applying a generalized strong covariance principle (that extends the co-
variance principle of general relativity), the Lorentz equation of electrodynamics is
established in terms of a geodesics equation that keeps in terms of the covariant
derivative the form of the Galilean equation of free motion, namely

Duα

ds
= uµDµuα =

duα

ds
− e

mc2
Fαµu

µ = 0. (47)

Its meaning is that a charged particle is actually locally in free fall in a space-time
which is subjected to dilations and contractions at small scales (as a consequence
of the presence of other charges). These local dilations and contractions of the
internal structures of the geodesics that describe a ‘particle’ manifest themselves at
the macroscopic scales in terms of accelerations, which have been interpreted up to
now as the effect of a force. In the new approach this force or field can be understood
as a mere manifestation of the expansion and contraction properties of the fractal
geometry.

It should be remarked that, in the new scale-relativistic description, the electro-
magnetic field is no longer separated from its source (the electron). The potential
Aµ becomes a property of the ‘electron’ geometry itself, since it is identified with
the ability of its ‘internal’ fractal structures to contract and dilate. Therefore the
full four-momentum expression of the electron has now two terms,

P µ = mcuµ +
e

c
Aµ, (48)

which are, as we have previously seen, respective manifestations of its motion and
scale properties. The new interpretation of the motion of an ‘electron’ submitted
to an ‘electromagnetic field’ is that its state of motion changes because there is a
transfer of energy-momentum toward (or from) its internal fractal structures. One
of the specificity of electromagnetism with respect to gravitation is easily accounted
for by this view. Indeed, while gravitation is always attractive, electromagnetism
can be attractive, repulsive or neutral (when acting on a uncharged particle). In the
present interpretation, since electromagnetism is not directly related to the geometry
but instead to its variations (expansion, contraction and staticity), one recovers its
attractive, repulsive and neutral character.

4.4.4 Geodesics equation from energy equation

Before concluding this section, let us give another equivalent derivation of the
Lorentz equation. Let us start from the energy equation,

ds2 = dxµdxµ ⇒ uµuµ = 1, (49)

and take its partial derivative,

∂α(uµuµ) = 0 ⇒ uµ∂αuµ = 0. (50)
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As we shall see, this is nothing but the electrodynamics equation, under a form that
is remarkable since there is no explicit presence of the field in it. In the free case it is
indistinguishable from the free motion equation, since ∂αuµ−∂µuα = 0. In presence
of an electromagnetic field this commutation relation becomes wrong. Indeed, since
mcuµ + (e/c)Aµ = −∂µS is a gradient, we have

∂αuµ − ∂µuα =
e

mc2
(∂µAα − ∂αAµ) , (51)

so that

uµ∂αuµ = uµ
(
∂µuα − e

mc2
Fαµ

)
=
duα

ds
− e

mc2
Fαµuµ = 0. (52)

Therefore the free-form equation uµ∂αuµ = 0 is valid in both cases, without and
with the presence of an electromagnetic field [25]. However, in the standard theory
of electromagnetism in which the charges, the potential and their coupling are given
from experiment without being derived from first principles, this is a mere result of
the identification of the electromagnetic four-potential with an energy-momentum
difference. In the scale-relativity framework, the nature of charges, of the field
and the expression for their coupling are derived from a geometric description of
space-time, so that this result acquires its full geometric and covariant meaning.

Finally, the variational principle applied on the two last terms of the full action
including the field action, after generalization to the current of several charges, yields
Maxwell’s equations,

∂µF
µν = −4π

c
jν . (53)

In conclusion of this section, the progress here respectively to the standard clas-
sical electromagnetic theory is that, instead of being independently constructed, the
Lorentz force and the Maxwell equations are derived in the scale relativity theory as
being both manifestations of the fractal geometry of space-time. Moreover, a new
physical meaning has been given to the electric charge and to gauge transformations
in this framework.

4.5 Link with Weyl-Dirac theory

Before generalizing the approach to quantum electrodynamics, let us notice that it
shares some features with the Weyl-Dirac theory of electromagnetism [3, 4], but with
new and essential differences. Namely, the Weyl theory considers scale transforma-
tions of the line element, ds → ds′ = ρ ds, but without specifying any fundamental
cause for this dilation. The variation of ds should therefore exist at all scales, in con-
tradiction with the observed invariance of the Compton wavelength of the electron
(then of its mass).

In the scale relativity proposal, the change of the line element comes from the
fractal geometry of space-time, and it is therefore a consequence of the dilation
of resolution. Moreover, the explicit effects of the dependence on resolutions is
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observable only below the fractal-nonfractal transition, which is identified in rest
frame with the Compton scale of the particle. This solves the problem encountered
in the Weyl theory and ensures the invariance of the observed electron mass in this
theory.

Moreover, as we shall recall in the following, the interpretation of the gauge
function as the logarithm of a scale ratio in the scale space allows one to obtain a
fundamental new result. Indeed, in the framework of special scale relativity, scale
ratios are limited because of the new status of the Planck length as a minimal scale,
invariant under dilations. As a consequence the charge of the electron is quantized
and its quantized value can be related to the ratio of its mass over the Planck mass.

5 Quantum electrodynamics

5.1 Introduction

The problem posed by the foundation of quantum electrodynamics in the theory of
scale relativity is far more difficult. Indeed, both the quantum properties and the
electromagnetic properties are expected to be generated by the nondifferentiable and
fractal geometry of space-time in this framework. One should therefore combine the
quantum-covariant derivative (that describes the induced effects of fractality and
non-differentiability on motion) and the scale-covariant derivative (that describes the
scale-motion coupling, i.e., the nonlinear effects of coordinate-dependent resolutions)
in terms of one unique covariant tool.

As in the classical case, our aim here is to succeed writing the Klein-Gordon
and Dirac equations including an electromagnetic field in terms of a free geodesics
equation that keeps the inertial Galileo form, DV/ds = 0, where both quantum and
field behaviors are generated by the covariant derivative.

5.2 QED-covariant derivative

Let us recall how one can recover the standard QED quantum derivative in the
scale-relativity approach. We consider again the generalized action introduced in
Sec. 4, which depends on motion and on scale variables. In the scale-relativistic
quantum description, the four-velocity is now complex, so that the action writes,
S = S(xµ,Vµ, ln %). This action gives the fundamental meaning of the wave function.
Namely, it is defined as

ψ = eiS/~. (54)

Since the action is a complex number (and becomes a complex quaternion in the
generalized case that leads to the demonstration of the Dirac equation [17]), this
expression contains a phase and a modulus (that becomes in the end a square-root
of probability density).
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The decomposition of the action performed in the framework of the classical
theory still holds and now becomes (for an electron of charge e)

dS = −i~ d lnψ = −mcVµdx
µ − e

c
Aµdx

µ. (55)

Equation (55) allows one to define a generalized complex energy-momentum,

Pµ = mcVµ +
e

c
Aµ. (56)

This leads to a new expression for the relation between the complex velocity and
the wave function,

Vµ = iλ ∂µ(lnψ) − e

mc2
Aµ, (57)

where λ = ~/mc is the Compton length of the electron.
This relation is a covariant generalization of the free particle identity Vµ =

iλ ∂µ(lnψ). It leads to introduce a scale-covariant derivative

Vµ = iλDµ(lnψ), (58)

in which we recognize the standard QED-covariant derivative operator when it is
acting on the wave function ψ, namely,

−i~Dµ = −i~∂µ +
e

c
Aµ, (59)

since we can write Eq. (57) under the form mcVµψ = [i~∂µ − (e/c)Aµ] ψ.
This provides one with an understanding from first principles of the nature and

origin of the QED covariant derivative, while it was merely set as a rule devoid of
geometric meaning in standard quantum field theory.

This covariant derivative is directly related to the one introduced in the classical
framework. Indeed, the classical covariant derivative was written Dµ = ∂µ+(1/q)Aµ

acting on %, while ψ = ψ0 exp[(i/~)(eq/c) ln %]. We therefore recover the expres-
sion (59) acting on ψ.

5.3 Electromagnetic KG equation from a geodesics equation

We are now able to combine the quantum-covariant and the scale-covariant deriva-
tives in terms of a common tool. Recall that the quantum-covariance has been fully
implemented by the use of a covariant complex velocity operator V̂µ = Vµ+i(λ/2)∂µ

(Sec. 3.6). Indeed, the quantum-covariant derivative operator reads in its term

d̂/ds = V̂µ ∂µ.
Then the classical electromagnetic field has been constructed thanks to a scale-

covariant derivative Dµ that manifests the expansion-contraction properties of the
fractal space-time, such that the equation of motion reads Duα/ds = uµDµuα = 0.

21



One can therefore combine both tools and define a scale and quantum covariant
derivative,

D̃

ds
= V̂µ Dµ, (60)

in terms of which we can finally write an inertial-like, strongly covariant geodesics
equation,

D̃

ds
Vα = 0. (61)

We shall now prove that this extremely simple, free-form equation gives, after
integration, the Klein-Gordon equation in the presence of an electromagnetic field.
In other words, this means that it contains all the quantum terms and all the field
terms, which are both generated through the double scale-covariance (that manifests
the non-differentiability and the fractality).

As a first step, let us show that it allows one to obtain a quantum-covariant
form of the Lorentz equation of dynamics. By successively developping the covariant
derivatives, it becomes

D̃

ds
Vα = V̂µ DµVα = V̂µ

(
∂µVα +

e

mc2
Fµα

)
= 0, (62)

and since V̂µ ∂µVα = d̂Vα/ds, we obtain

mc
d̂

ds
Vα =

e

c
V̂µ Fαµ. (63)

This equation has exactly the form of the classical Lorentz equation of dynamics,
although this is a quantum equation whose integral is the Klein-Gordon equation
with electromagnetic field. It is equivalent to that written by Pissondes in the scale-
relativity framework by using a symmetric product [25]. But in this previous work
there was no justification of the existence of an electromagnetic field, which was
included by using the standard QED covariant derivative. The additional point
here is that the theory generates both the field and the quantum behavior.

Let us go on from Eq. (62) and now develop the complex velocity operator. We
obtain (

Vµ + i
λ

2
∂µ

) (
∂µVα +

e

mc2
Fµα

)
= 0. (64)

While ∂µVα − ∂αVµ = 0 in the free case, it no longer commutes in the presence of
an electromagnetic field. As in the classical situation it becomes

∂µVα − ∂αVµ = − e

mc2
Fµα. (65)

We therefore obtain a form of the equation in which the indices are exchanged with
respect to the free case, namely,

(
Vµ + i

λ

2
∂µ

)
∂αVµ = V̂µ ∂αVµ = 0. (66)
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We now replace Vµ by its covariant form and we get
(
iλ ∂µ(lnψ) − e

mc2
Aµ + i

λ

2
∂µ

)
∂α

(
iλ ∂µ(lnψ) − e

mc2
Aµ

)
= 0. (67)

After integration, one finds that this equation becomes the Klein-Gordon equation
for a particle in an electromagnetic field,

(
i~∂µ − e

c
Aµ

)(
i~∂µ − e

c
Aµ

)
ψ = m2c2ψ. (68)

The expression (66) of the motion equation can also be obtained by differentiating
the energy equation [25],

∂α(VµVµ + iλ∂µVµ) = 0 ⇒ V̂µ ∂αVµ = 0. (69)

This equation is valid without and with electromagnetic field, in the same way as
its classical equivalent, uµ∂αuµ = 0.

The Dirac equation in an electromagnetic field can subsequently be derived by
the same method that has yielded the free Dirac equation from the Klein-Gordon
one, i.e., by the use of biquaternions, that describe the new two-valuedness which
is a consequence of the symmetry breaking under the reflection dxµ ↔ −dxµ, itself
issued from nondifferentiability.

5.4 Nature of the electric charge (quantum theory)

In a gauge transformation A′
µ = Aµ + e ∂µχ the wave function of an electron of

charge e becomes

ψ′ = ψ exp

{
i

~
× e

c
× eχ

}
. (70)

We have reinterpreted in the previous sections the gauge transformation as a
scale transformation of resolution, ε → ε′, yielding an identification of the gauge
function with a scale ratio, χ = ln % = ln(ε/ε′), which is a function of space-time
coordinates. In such an interpretation, the specific property that characterizes a
charged particle is the explicit scale-dependence on resolution of its action, then of
its wave function. The net result is that the electron wave function reads

ψ′ = ψ exp

{
i
e2

~c
ln %

}
. (71)

Since, by definition (in the system of units where the permittivity of vacuum is 1),

e2 = 4πα~c, (72)

where α is the fine structure constant, Eq. (71) becomes [9]

ψ′ = ψ × ei4πα ln %. (73)
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This result supports the solution given in Sec. 4 to the problem of the nature of the
electric charge in the classical theory. Indeed, considering now the wave function of
the electron as an explicitly resolution-dependent function, we can write the scale
differential equation of which it is solution as

−i~ ∂ψ

∂
(

e
c ln %

) = eψ. (74)

We recognize in D̃ = −i(~c/e)∂/∂ ln % a dilatation operator. Equation (74) can then
be read as an eigenvalue equation issued from an extension of the correspondence
principle (but here, demonstrated),

D̃ψ = eψ. (75)

This is the quantum expression of the above classical suggestion, according to which
the electric charge is understood as the conservative quantity that comes from the
new scale symmetry, namely, from the uniformity of the resolution variable ln(ε/λ).

5.5 Charge quantization and mass-coupling relations

While the results of the scale relativity theory described in the previous sections
mainly deal with a new interpretation of the nature of the electromagnetic field, of
the electric charge and of gauge invariance, we now arrive at one of the main conse-
quences of this approach. As we shall see, it allows one to establish the universality
of the quantization of charges (for any gauge field) and to theoretically predict the
existence of fundamental relations between mass scales and coupling constants.

In the previous section, we have recalled our suggestion [9, 10, 19] of understand-
ing the nature of the electric charge as being the eigenvalue of the dilation operator
corresponding to resolution transformations (internal to the geodesics identified with
the ‘particle’). We have written the wave function of a charged particle under the
form of Eq. (74).

Let us now consider in more detail the nature of the scale factor ln% in this
expression. This factor describes the ratio of two relative resolution scales ε and ε ′

that correspond to structures of the fractal geodesical paths that we identify with
the electron. However the electron is not structured at all scales, but only at scales
smaller than its Compton length λ = ~/mec. We can therefore take this upper limit
as one of the two scales and write

ψ′ = exp

{
i 4πα ln

(
λ

ε

)}
ψ. (76)

In the case of Galilean scale-relativity, such a relation leads to no new result, since
ε can go to zero, so that ln(λ/ε) is unlimited. But in the framework of special scale-
relativity, scale laws take a log-Lorentzian form below the scale λ (see Sec. 3.3). The
Planck length λP becomes a minimal, unreachable scale, invariant under dilations,
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so that ln(λ/ε) becomes limited by C = ln(λ/λP). This implies a quantization of
the charge which amounts to the relation 4πα C = 2kπ, i.e. [9]

α C =
1

2
k, (77)

where k is integer. Since C = ln(λ/λP) and is equal to ln(mP/me) for the electron
(where mP is the Planck mass), Eq. (77) amounts to a general relation between mass
scales and coupling constants.

In order to explicitly apply such a relation to the electron, we must account for
the fact that we now know from the electroweak theory that the electric charge is
only a residual of a more general, high energy electroweak coupling. This coupling
can be defined from the U(1) and SU(2) couplings as (see e.g. [8] and references
therein)

α−1
0 =

3

8
α−1

2 +
5

8
α−1

1 . (78)

It is such that α0 = α1 = α2 at unification scale and it is related to the fine structure
constant at Z scale by the relation α = 3α0/8. This means that, because the weak
gauge bosons acquire mass through the Higgs mechanism, the interaction becomes
transported at low energy only by the residual null mass photon. As a consequence
the amplitude of the electromagnetic force abruptly falls by a factor 3/8 at the WZ
scale. Therefore we have suggested that α0 instead of α must be used in Eq. (77)
for relating the electron mass to its charge.

Finally, disregarding as a first step threshold effects (that occur at the Compton
scale), we get a mass-charge relation for the electron that reads [9, 10]

ln
mP

me
=

3

8
α(me)

−1, (79)

where α(m) is the electromagnetic coupling running in terms of a mass scale m.
The existence of such a relation between the mass and the charge of the elec-
tron is supported by the experimental data. Indeed, using the known experimen-
tal values, the two members of this equation agree to 0.2%. Namely, one finds
Ce = ln(mP/me) = 51.528 ± 0.001 while (3/8)α−1 = 51.388, where α = 1/137.036
is the fine structure constant, i.e. the low energy electromagnetic coupling. The
agreement is made even better if one accounts for the fact that the measured fine
structure constant (at Bohr scale) differs from the limit of its asymptotic behavior
(that includes radiative corrections). One finds that the asymptotic inverse run-
ning coupling at the scale where the asymptotic running mass reaches the observed
mass me is α−1

0 {r(m = me)} = 51.521, which lies within 10−4 of the value of Ce.
We shall in future work study the possible origin of the small remaining difference,
which may, e.g., be a weak interaction contribution.
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6 Conclusion and future prospect

In this contribution, we have attempted to reach an understanding in terms of a
geometric space-time description and from first principles (among which the main
one is the principle of relativity), of the nature of gauge transformations, fields and
charges.

Let us indeed recall the fundamental difference between the situation of trans-
formations in the standard gauge theories and transformations whose geometric
meaning is known such as , e.g., rotations in space or Lorentz transformations.

We now know from the very beginning what Lorentz transformations are, namely,
space-time rotations of the coordinates, i.e., in the case of an infinitesimal transfor-
mation, (i) dx′α = (1 + ωα

β ) dxβ. Then, once this basic definition is given, one can
consider the effect of these transformations on various physical quantities ψ. This
involves the consideration of representations of the Lorentz group adapted to the
nature of the physical object under consideration, i.e., (ii) ψ ′ = (1 + 1

2
ωαβσαβ)ψ

(see e.g. [29]).
In the case of the standard theory of gauge transformations, there was up to

now no equivalent of the basic defining transformation (i), and the gauge group
was directly defined through its action on the various physical objects (ii), without
any knowledge of the underlying cause of the changes to which these objects were
subjected.

It is precisely an equivalent of the defining transformation (i) that we propose
in the scale-relativity framework. Namely, we have given a new geometric meaning
to the gauge transformations themselves. We now interpret them as scale transfor-
mations in the scale space. These transformations apply to the fractal structures
which characterize the geodesics of a fractal space-time (identified with a particle)
at scales smaller than the Compton length of this particle. This last point allows
one to solve the problem encountered by the Weyl theory with the invariance of the
Compton length of the electron and therefore of its mass.

Then the gauge fields are understood as the manifestation of a general scale
relativistic effect, i.e., as the geometric effects of dilations and contractions of the
internal fractal structures in scale space that are induced by the displacements in
space-time. In other words, they correspond to terms of coupling between motion
and scale. Finally the charges are identified with the conservative quantities that
find their origin in the symmetries of the new scale variables.

In the present contribution, we have considered only the Abelian case of electro-
magnetic fields. Recall however that this construction has been recently generalized
to non-Abelian fields [26] and to a proposal of incorporation of the Higgs field in the
global unified field (with scale symmetry breakings in order to obtain the correct
low energy theory) that has allowed us to give a theoretical prediction of its mass
mH =

√
2mW ≈ 114 GeV (plus possible radiative corrections) [27, 28].

On the basis of the first stones recalled here, a huge work of construction re-
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mains to be done, which will be described in future publications, namely: (i) the
second quantization of fields in the scale-relativity framework; (ii) the identification
of the full group of transformation in the non-Abelian case and its decomposition
in sub-groups, and the associated identification of the various charges with their
geometric meaning; (iii) the possible generalization with these definitions of the
mass-coupling relations and their application to prospective theoretical predictions
of particle masses; (iv) the development of the new approach to the Higgs boson field
and to the symmetry breaking mechanism of the electroweak theory; (iv) the connec-
tion of the scale-relativity description with the renormalization group approach, in
particular with regard to the variation of the running couplings and particle masses
in function of the scale.
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