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Abstract

We have suggested to extend the principle of relativity to scale trans-
formations of the reference systems, then to apply this “principle of scale
relativity” to a description of the space-time geometry generalized in terms
of a nondifferentiable (therefore fractal) continuum. In such a framework,
one can derive from first principles the main postulates of quantum me-
chanics. The basic tools of quantum mechanics (complex and spinor wave
functions) are constructed as consequences of the nondifferentiable geom-
etry, and the equations they satisfy (Schrödinger, Klein-Gordon, Pauli
and Dirac equations) are derived as integrals of the equations of space-
time geodesics. Moreover, a new geometric interpretation of the gauge
fields (Abelian and non-Abelian) may be proposed in this theory. In this
approach, the internal resolution variables (which form a “scale space”)
become functions of the space-time coordinates. Their transformations
can then be identified with the usual gauge transformations. The gauge
fields naturally emerge as a manifestation of the fractal geometry, and
the gauge charges as the conservative quantities which are built from the
symmetries of the scale space.

1 Introduction

One of the main open questions of modern physics is that of the foundation
from first principles of quantum physics. The theory of scale relativity provides
us with an extension, both of the foundation of physical theories and of the
principle of relativity. So it is worth asking such a question in its frame of
thought. In scale relativity, one extends the founding stones of physics by
giving up the hypothesis of space-time differentiability. Then one proves that a
nondifferentiable continuum is fractal, i.e., explicitly dependent on the scales of
resolution. This leads one to extend the principle of relativity by applying it,
not only to motion laws, but also to the laws of scale transformation of these
internal resolution variables.
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In the present paper, we summarize the steps by which one recovers, in
this framework, the main postulates of quantum mechanics and of gauge field
theories. A more detailed account can be found in Refs. [9, 17, 22, 23].

2 Derivation of the equations of quantum me-

chanics in scale relativity

2.1 Foundations of scale relativity

The theory of scale relativity is based on the giving up of the hypothesis of
manifold differentiability. In this theory, the coordinate transformations are
continuous but can be nondifferentiable. The giving up of the assumption of
differentiability implies several consequences [1], leading to the following steps
of construction.

(1) It has been proved [1, 2, 3] that a continuous and nondifferentiable curve
is fractal in a general meaning, namely, its length is explicitly scale-dependent,
L = L(ε), and L → ∞ when ε→ 0. This theorem can be readily extended to a
continuous and nondifferentiable manifold.

(2) The fractality of space-time [1, 4, 5, 6] involves the scale dependence
of the reference frames. One therefore adds to the usual variables defining
the coordinate system, new variables ε characterizing its ‘state of scale’. In
particular, the coordinates themselves become functions of these scale variables,
i.e., X = X(ε).

(3) The scale variables ε can never be defined in an absolute way, but only in
a relative way. Namely, only their ratio ρ = ε′/ε does have a physical meaning.
This universal behavior leads to extend to scales the principle of relativity [1,
6, 7].

(4) Though non-differentiability manifests itself at the limit ε → 0, the use
of differential equations is made possible by defining fractal functions f [X(ε), ε]
[1]. While the function f(X, 0) is nondifferentiable, the function f(X, ε) is
differentiable for any ε 6= 0 with respect to both X and ε. We may then use a
double differential calculus, in position space and in scale space [7, 2, 8].

(5) The simplest possible scale differential equation is a first order equation,
∂X/∂ ln ε = β(X), which can be simplified again by Taylor-expanding the un-
known function β, so that it reads ∂X/∂ ln ε = a + bX + · · · . It is solved as
the sum of two terms, a scale-independent, differentiable, ‘classical part’ and a
power-law divergent, scale-dependent, nondifferentiable ‘fractal part’ [9],

X = x+ ζ

(
λ

ε

)−b

, (1)

where x = −a/b. When b is constant, the second term is the standard expression
for the length of a fractal curve of dimension DF = 1 − b [10]. Moreover, the
laws of transformation of this expression under a scale transformation ln(λ/ε) →
ln(λ/ε′) take the mathematical form of the Galileo group of transformation, and
they therefore come, as required, under the principle of relativity [7].

(6) In what follows, we simplify again the description by considering only the
case DF = 2, by basing ourselves on Feynman’s result [11], according to which
the typical paths of quantum particles (those which contribute mainly to the
path integral) are nondifferentiable and, in modern words, of fractal dimension
DF = 2. The case DF 6= 2 has also been studied in detail (see [2] and references
therein). Equation (1) reads, after differentiation and reintroduction of the
indices,

dXµ = dxµ + dξµ = vµds+ ζµ
√
λc ds, (2)
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where λc is a length scale which must be introduced for dimensional reasons
and which generalizes the Compton length. The ζµ are dimensionless highly
fluctuating functions. Due to their highly erratic character, we can replace them
by stochastic variables such that < ζµ >= 0, < (ζ0)2 >= −1 and < (ζk)2 >= 1
(k =1 to 3).

(7) Now we can also write the fractal fluctuations in terms of the coordinate
differentials, dξµ = ζµ

√
λµ dxµ. The identification of this expression with that

of Eq. (2) leads to recover the Einstein-de Broglie length and time scales,

λx =
λc

dx/ds
=

~

px
, τ =

λc

dt/ds
=

~

E
. (3)

Let us now assume that the large scale (classical) behavior is given by Rie-
mannian metric potentials gµν(x, y, z, t). The invariant proper time dS along a
geodesic writes, in terms of the complete differential elements dXµ = dxµ +dξµ,

dS2 = gµνdX
µdXν = gµν(dxµ + dξµ)(dxν + dξν). (4)

Now replacing the dξ’s by their expression, we obtain a fractal metric [1, 17].
Let us give its two-dimensional and diagonal expression, neglecting the terms
of zero mean (in order to simplify its writing):

dS2 = g00(x, t)
(
1 + ζ2

0

τ

dt

)
c2dt2 − g11(x, t)

(
1 + ζ2

1

λx

dx

)
dx2. (5)

We therefore obtain generalized fractal metric potentials which are divergent
and explicitly dependent on the coordinate differential elements, in agreement
with Refs. [1, 6]. Another equivalent way to understand this metric consists
in remarking that it is no longer only quadratic in the space-time differental
elements, but that it also contains them in a linear way.

As a consequence, the curvature is also explicitly scale-dependent and diver-
gent when the scale intervals tend to zero. This property ensures the fundamen-
tally non-Riemannian character of a fractal space-time, as well as the possibility
to characterize it in an intrinsic way. Indeed, such a characterization, which is
a necessary condition for defining a space in a genuine way, can be easily made
by measuring the curvature at smaller and smaller scales. While the curvature
vanishes by definition toward the small scales in Gauss-Riemann geometry, a
fractal space can be characterized from the interior by the verification of the
divergence toward small scales of curvature, and therefore of physical quantities
like energy and momentum. Now the expression of this divergence is nothing
but the Heisenberg relations themselves, which acquire in this framework the
status of a fundamental geometric test of the fractality of space-time [1, 5, 6].

2.2 Geodesics of a fractal space-time

The next step in such a geometric approach consists in the identification of wave-
particles with fractal space-time geodesics. Any measurement is interpreted as a
selection of the geodesics bundle linked to the interaction with the measurement
apparatus (that depends on its resolution) and/or to the information known
about it (for example, the which-way-information in a two-slit experiment [2]).

The three main consequences of nondifferentiability are:
(i) The number of fractal geodesics is infinite. We are therefore led to adopt a

generalized statistical fluid-like description where the velocity V µ(s) is replaced
by a scale-dependent velocity field V µ[Xµ(s, ds), s, ds].
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(ii) There is a breaking of the reflexion invariance of the differential element
ds. Indeed, in terms of fractal functions f(s, ds), two derivatives are defined,

X ′
+(s, ds) =

X(s+ ds, ds) −X(s, ds)

ds
, X ′

−(s, ds) =
X(s, ds) −X(s− ds, ds)

ds
,

(6)
which transform one in the other under the reflection (ds ↔ −ds), and which
have a priori no reason to be equal. This leads to a fundamental two-valuedness
of the velocity field.

(iii) The geodesics are themselves fractal, with fractal dimension DF = 2
playing the role of a critical dimension [2, 11].

This means that one defines two divergent fractal velocity fields, V+[x(s, ds), s, ds] =
v+[x(s), s]+w+[x(s, ds), s, ds] and V−[x(s, ds), s, ds] = v−[x(s), s]+w−[x(s, ds), s, ds],
which can be decomposed in terms of classical parts v+ and v−, and of fractal
parts w+ and w−.

More generally, we define two “classical” derivatives d+/ds and d−/ds, which,
when they are applied to xµ, yield the classical parts of the velocity fields,
vµ
+ = d+x

µ/ds and vµ
− = d−x

µ/ds.

2.3 The Schrödinger equation as a geodesics equation in

a fractal space

Let us first consider the non-relativistic case (three-dimensional fractal space,
without fractal time), in which the invariant ds is identified with the time differ-
ential dt. One describes the elementary displacements dXk, k = 1, 2, 3, on the
geodesics of a nondifferentiable fractal space-time in terms of the sum of two
terms (omitting the indices for simplicity) dX± = d±x + dξ±, where dx repre-
sents the “classical (differentiable) part” and dξ the “fractal (nondifferentiable)
part”, defined as

d±x = v± dt, dξ± = η
√

2D dt1/2, (7)

where η is a stochastic dimensionless variable such that < η >= 0 and < η2 >=
1, and D is a parameter that generalizes, up to the fundamental constant c/2,
the Compton scale (D = ~/2m in the case of standard quantum mechanics).
The two time derivatives are then combined in terms of a complex derivative
[1],

d̂

dt
=

1

2

(
d+

dt
+
d−
dt

)
− i

2

(
d+

dt
− d−
dt

)
. (8)

Applying this operator to the position vector yields a complex velocity

V =
d̂

dt
x(t) = V − iU =

v+ + v−
2

− i
v+ − v−

2
. (9)

Then one writes a geodesics equation, d̂V/dt = 0, which can be integrated under
the form of a generalized Schrödinger equation [1, 2, 9, 13, 14]. However, in such
a derivation, only the classical part of the velocity is taken into account when
defining the wave function. We have recently generalized the proof to the whole
velocity field, including its divergent (nondifferentiable) part [20, 17].

Let us indeed now consider the full complex velocity field, including its
differentiable and nondifferentiable parts,

Ṽ = V + W =

(
v+ + v−

2
− i

v+ − v−
2

)
+

(
w+ + w−

2
− i

w+ − w−

2

)
. (10)

From it we can build a full complex action,

dS̃ =
1

2
m(V + W)2 dt, (11)
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then one defines a full wavefunction ψ̃ from this full action S̃ as

ψ̃ = eiS̃/2mD. (12)

It is linked to the full complex velocity by the relation

Ṽ = V + W = ∇S̃/m = −2iD∇ ln ψ̃. (13)

Under the standard point of view, the complex fluctuation W is infinite and
therefore ∇ ln ψ̃ is undefined, so that equation (13) would be meaningless. In
the scale relativity approach, on the contrary, this equation keeps a mathemat-
ical and physical meaning, in terms of fractal functions, which are explicitly
dependent on the scale interval dt and divergent when dt→ 0.

The fractal parts of the velocities may be written under the form:

w+ = η+

√
2D
dt
, w− = η−

√
2D
dt
, (14)

where η+ and η− are stochastic variables such that < η+ >=< η− >= 0 and
< η2

+ >=< η2
− >= 1. The(+) and (−) derivatives read

d±f

dt
=
∂f

∂t
+ (v± + w±)∇f + D η2

± ∆f + ..., (15)

where the next terms are infinitesimals. Let us define the following complex
stochastic variables:

η̃ =
η+ + η−

2
− i

η+ − η−
2

, 1 + ζ̃ =
η2
+ + η2

−

2
+ i

η2
+ − η2

−

2
, (16)

which are such that < η̃ >= 0 and < ζ̃ >= 0. We can now combine the two
derivatives in terms of a generalized complex covariant derivative,

d̂

dt
=

∂

∂t
+ (V + W).∇− iD(1 + ζ̃)∆, (17)

plus infinitesimal terms that vanish when dt → 0. We therefore recover the
mean covariant derivative introduced in previous works [1, 2, 9], namely d̂/dt =
∂/∂t+V .∇− iD∆, plus two additional stochastic terms of zero mean. The first
of these terms is W .∇, which is infinite at the limit dt → 0. The second is
−iD ζ̃∆, in which ζ̃ remains finite, so that it can be neglected as was done in
Ref. [20], since their ratio is an infinitesimal of order dt1/2.

Using this covariant derivative, we can finally write a full equation of motion
for a free “particle” in terms of a geodesics equation, namely, that keeps the form
of the free Galilean inertial motion equation [20], d̂ Ṽ/dt = 0. In the presence
of a potential φ, it can be easily generalized in terms of a covariant equation
which keeps the form of Newton’s fundamental equation of dynamics,

d̂

dt
Ṽ = −∇φ

m
. (18)

After expansion of this equation and replacement of the velocity field by its
expression in terms of the wave function, we obtain [20, 17]

(
∂

∂t
+ (−2iD∇ ln ψ̃).∇− iD∆

)
(−2iD∇ ln ψ̃) = −∇φ

m
. (19)

We are in the same conditions (but now using fractal functions) as in previous
calculations involving a differentiable wave function [1, 9], so that this equation
can finally be integrated in terms of a generalized Schrödinger equation,

D2∆ψ̃ + iD ∂ψ̃

∂t
− φ

2m
ψ̃ = 0. (20)
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This generalized Schrödinger equation now allows fractal solutions, which come,
in our framework, as a direct manifestation of the nondifferentiability of space.
Such a result agrees with Berry’s [18] and Hall’s [19] findings obtained in the
framework of standard quantum mechanics. The research of such a behavior in
laboratory experiments is an interesting new challenge for quantum physics.

2.4 Derivation of Von Neumann’s and Born’s postulates

We have identified the “particle” with the various geometric properties of fractal
space-time geodesics. In such an interpretation, a measurement (and more
generally any knowledge about the system) amounts to a selection of the sub-
sample of the geodesics family in which are kept only the geodesics having the
geometric properties corresponding to the measurement result. Therefore, just
after the measurement, the system is in the state given by the measurement
result, which is precisely the von Neumann postulate of quantum mechanics.

The Born postulate can now also be inferred from the scale-relativity con-
struction [9, 17]. Indeed, the probability for the “particle” to be found at a
given position must be proportional to the density of the geodesics fluid. The
velocity and the density of this fluid are expected to be solutions of a Euler +
continuity system of four equations, for four unknowns, (ρ, Vx, Vy, Vz).

Now, by separating the real and imaginary parts of the Schrödinger equation,
setting ψ =

√
P × eiθ and using a mixed representation (P, V ), one obtains

precisely such a standard system of fluid dynamics equations, namely,

(
∂

∂t
+ V · ∇

)
V = −∇

(
φ− 2D2 ∆

√
P√
P

)
,

∂P

∂t
+ div(PV ) = 0. (21)

This allows one to univoquely identify P = |ψ|2 with the probability density
of the geodesics and therefore with the probability of presence of the ‘particle’.
Moreover,

Q = −2D2 ∆
√
P√
P

(22)

can be interpreted as the new potential which is expected to emerge from the
fractal geometry [15], in analogy with the identification of the gravitational field
as a manifestation of the curved geometry in general relativity. This result is
supported by numerical simulations, in which the probability density is obtained
directly from the distribution of geodesics without writing the Schrödinger equa-
tion [16].

2.5 Dirac and Pauli equations

All these results can be generalized to relativistic quantum mechanics, that
corresponds in the scale relativity framework to a full fractal space-time. This
yields, as a first step, the Klein-Gordon equation [12, 2].

Then the account of a new two-valuedness of the velocity allows one to sug-
gest a geometric origin for the spin and to obtain the Dirac equation [9]. Indeed,
the total derivative of a physical quantity also involves partial derivatives with
respect to the space variables, ∂/∂xµ. From the very definition of derivatives,
the discrete symmetry under the reflection dxµ ↔ −dxµ is also broken. Since,
at this level of description, one should also account for parity, as in the standard
quantum theory, we have been led to introduce a bi-quaternionic velocity field
[9].

The successive steps that lead to the Dirac equation naturally generalize
the Schrödinger case. One introduces a biquaternionic generalization of the
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covariant derivative that keeps the same form as in the complex case, namely,

d̂

ds
= Vν∂ν + i

λ

2
∂ν∂ν , (23)

where λ = 2D/c. The biquaternionic velocity field is related to the biquater-
nionic, i.e. bispinorial, wave function, as

Vµ = i
S0

m
ψ−1∂µψ. (24)

The covariance principle allows us to write the equation of motion under the
form of a geodesics differential equation,

d̂ Vµ

ds
= 0. (25)

After some calculations, this equation can be integrated and factorized, and one
finally derives the Dirac equation [9],

1

c

∂ψ

∂t
= −αk ∂ψ

∂xk
− i

mc

~
βψ. (26)

Finally it is easy to recover the Pauli equation and Pauli spinors as non-
relativistic approximation of the Dirac equation and Dirac bispinors [21, 22].

3 Gauge theories in scale relativity

3.1 General scale transformations and gauge fields

Let us now briefly recall the main steps of the application of scale relativity to
the foundation of gauge theories, in the Abelian [12, 2] and non-Abelian [23]
cases.

This application is based on a general description of the internal fractal struc-
tures of the “particle” (identified with nondifferentiable space-time geodesics)
in terms of scale variables ηαβ(x, y, z, t) whose true nature is tensorial and may
now be function of the coordinates. This resolution tensor (similar to a covari-
ance error matrix) generalizes the single resolution variable ε. This means that
we are now in the framework of a general scale relativity.

We assume for simplicity of the writing that the two tensorial indices can be
gathered under one common index. We therefore write the scale variables under
the simplified form ηα1α2

= ηα, α = 0 to n(n+ 1)/2, where n is the number of
space-time dimensions (n = 3 for fractal space, 4 for fractal space-time and 5
in the special scale relativity case [7]).

Let us consider infinitesimal scale transformations. The transformation law
on the ηα can be written in a linear way as

η′α = ηα + δηα = (δαβ + δθαβ) ηβ , (27)

where δαβ is the Kronecker symbol. Let us now assume that the ηα’s are func-
tions of the standard space-time coordinates. This leads us to define a new
scale-covariant derivative by writing the total variation of the resolution vari-
ables as the sum of the inertial variation, described by the covariant derivative,
and of the new geometric contribution, namely,

dηα = Dηα − ηβδθαβ = Dηα − ηβWµ
αβ dxµ. (28)

This covariant derivative is similar to that of general relativity, i.e., it amounts
to substract the new geometric part in order to keep only the inertial part (for
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which the motion equation will therefore take a geodesical, freelike form). This
is different from the case of the previous quantum-covariant derivative, which
includes the effects of nondifferentiability by adding new terms in the total
derivative.

In this new situation we are led to introduce “gauge field potentials” Wµ
αβ

that enter naturally in the geometrical framework of Eq. (28). These potentials
are linked to the scale transformations as follows:

δθαβ = Wµ
αβ dxµ. (29)

One should keep in mind, when using this expression, that these potentials find
their origin in a covariant derivative process and are therefore not gradients.

3.2 General charges

After having written the transformation law of the basic variables (the ηα’s), we
now need to describe how various physical quantities transform under these ηα

transformations. These new transformation laws are expected to depend on the
nature of the objects to transform (e.g., vectors, tensors, spinors, etc.), which
implies to jump to group representations.

We anticipate the existence of charges (which are fully constructed herebe-
low) by generalizing to multiplets the relation (Eq. 24) between the velocity
field and the wave function. In this case the multivalued velocity becomes a
biquaternionic matrix,

Vµ
jk = iλ ψ−1

j ∂µψk. (30)

The biquaternionic (therefore noncommutative) nature of the wave function,
which is equivalent to Dirac bispinors, plays here an essential role. Indeed, the
general structure of Yang-Mills theories and the correct construction of non-
Abelian charges can be obtained thanks to this result [23].

The action also becomes a tensorial biquaternionic quantity,

dSjk = dSjk(xµ,Vµ
jk, ηα), (31)

and, in the absence of a field, it is linked to the generalized velocity (and there-
fore to the spinor multiplet) by the relation

∂µSjk = −mc Vµ
jk = −i~ ψ−1

j ∂µψk. (32)

Now, in the presence of a field (i.e., when the second-order effects of the
fractal geometry appearing in the right hand side of Eq. (28) are included),
using the complete expression for ∂µηα,

∂µηα = Dµηα −Wµ
αβ η

β , (33)

we obtain a non-Abelian relation,

∂µSjk = DµSjk − ηβ ∂Sjk

∂ηα
Wµ

αβ . (34)

We are finally led to define a general group of scale transformations whose
generators are

Tαβ = ηβ∂α (35)

(where we use the compact notation ∂α = ∂/∂ηα), yielding the generalized
charges,

g̃

c
tαβ
jk = ηβ ∂Sjk

∂ηα
. (36)
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This unified group is submitted to a unitarity condition, since, when it is applied
to the wave functions, ψψ† must be conserved. Knowing that the α, β represent
two indices each, this is a large group that contains the standard model U(1)×
SU(2) × SU(3) as a subset [23].

As we have shown in more detail in Ref. [23], the various ingredients of Yang-
Mills theories (gauge covariant derivative, gauge invariance, charges, potentials,
fields, etc...) may subsequently be recovered in such a framework, but they now
have a first principle and geometric scale-relativistic foundation.

4 Conclusion

In this contribution, we have recalled the main steps that lead to a new foun-
dation of quantum mechanics and of gauge fields on the principle of relativity
itself, once it is generalized to scale transformations of the reference system.

For this purpose, two covariant derivatives have been constructed, which
account for the nondifferentiable and fractal geometry of space-time, and which
allow to write the equations of motion as geodesics equations. After change of
variable, these equations finally take the form of the quantum mechanical and
quantum field equations.
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