Chaes, Sofitens & Frucieis Vol 8, No. T, pp. 1043 1050, 1998
W3 1998 Flsevier Science Lid. All rights reserved
Pergamon Printed in Great Britain

0960-077%/98 £19.00 + 0.00

S0960-0779(97)00079-9

Scale relativity and Quantization of the Planetary
System Around the Pulsar PSR B1257+412

L. NOTTALE

DAEC. CNRS et Université Paris VII, Cbservatoire de Paris-Mceudon, F-92195 Meudon Cedex,
France

{ Accepred 14 March 1997 )

Abstract—The theory of scale relativity suggests that, at very large time scales, classical laws should be
replaced by a non-deterministic, quantum-like description. The theory gives up individual, localized
trajectories, but it yields the probability density of families of virtual trajectories, as deduced from a
generalized Schrédinger equation. In this paper, we compare the system of three planets recently discovered
around the pulsar PSR BI1257+ 12 to the predictions of the theory. We expect the planet periods to be
guantized according to the formula 7, = 200G Mgy (.\/n2 +n/2jéy)’, where 2y is a multiple of 144 km/s
{as determined from the Solar System and from palactic and extragalactic data}. The observed periods
confirm the theory with a remarkuably high precision (relative differences of some 107*) and in a highly
significant way (probability 3 x 10-%), allowing us to successfully check second and third order terms. We
finally predict the periods of pessible additional planets in this system, in particular T,=1.958 days. ©
1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

The theory of scale-relativity [1, 2] allows one to refound standard quantum mechanics on first
principles, namely, on thc generalization of Einstein’s principle of relativity to scale trans-
formations of resolutions [1, 3, 4], but it can also be applicd to very large space—time scales,
Giving up the hypothesis of differentiability of the space—time continuum implies that space-
time becomes fractal, i.e. explicitly resolution-dependent [1, 5, 6], not only at small scales, but
also at large scales [1, 7]. Moreover, one can demonstrate that the trajectories of a strongly
chaotic system beyond its horizon of predictability have the same geometrical properties as the
geodesics of a non-differentiable, fractal space—(time). This led us to suggest that, on very large
time scales, chaotic systems must be described by a new, quantum-like theory, since the classical
equations become unusabic for As>» ¢ (where 1/1 18 the Lyapunov exponent).

Our macroscopic theory, though it shares with standard quantum mechanics some of its
mathematical tools (complex wavefunction, generalized Schrodinger equation), differs from it in
an essential way by its context. Its physical interpretation need not make use of the various
aspects of measurement theory, in particular the collapse of wavefunctions. The appearance of
peaks of probability density is simply interpreted as a tendency for the system to make structures.

We have demonstrated in detail elsewhere [1, 2, 5] that the effects of the non-differentiable
and fractal geomeliry of space time can be described in the simplest case in terms of a scale-
covariant, complex time-derivative:
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where ¥"=o/x/dt, and where 2 is a new fundamental parameter which characterizes the new
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scale laws. The whole of classical mechanics can be reformulated in terms of this scale-covariant
derivative, and transformed into quantum-like mechanics. Introducing a wavefunction y which
is nothing but another expression for the action y =& Newton’s equation of dynamics,
mda ¥ /dt= —V¢, can easily be integrated in terms of a generalized Schrodinger-like equation

[1]:
2 . a q)
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Born’s interpretation of p=yn}" as the density of probability to find the particle at a given
position is ensured from the very beginning of the construction: indeed, one can show that the
expectations, which are initially defined on the infinite set of geodesics, can finally be taken using
p as probability density. This is confirmed by the fact that the imaginary part of eqn (2) is the
equation of continuity dp/dt 4+ div(p¥) =0, (where ¥ is the real part of our complex velocity #7).
A more detailed account of the theory of scale relativity and of its implications can be found in
Ref. [1], and in the recent review paper [2].

The theory has already been successfully applied to the Solar System [1, 8], and to the recently
discovered planets around solar-like stars [9]. The three planets around the pulsar PSR B1257 4+ 12
[10] deserve a special study, since they allow checking of the theory on a full system other than
the Solar one, independently of the star mass. We shall see that our predictions are confirmed on
this system with such a precision that second and third order terms can be successfully checked.

2. APPLICATION OF SCALE-RELATIVITY TO THE KEPLER PROBLEM

The simplest case to which our formalism can be applied is the Kepler gravitational problem
[1. 6, 11]. The probahility amplitude of a test particle moving in a central gravitational potential
is given in our theory by the stationary equation (valid on very large time scales):

297 Ay + E + G‘M}w =9, (3)

r

This equation can be applied not only to the distribution of planets in 4 planelary system (treated
as test particles of mass m in the field of the central star of mass A7), but also, more generally, to
binary systems (double slars, binary galaxies, elc.), in terms of total mass M=m,+m, and
reduced mass m = ny /(1 +m,).

We can be even more specific about the value of our only free parameter . The equivalence
principle implies that eqn (3) must not depend on the inertial mass of the test particle, so that &
is independent of s, In order to derive its form in the macroscopic, gravitational case considered
here, recall that the scale-covariant derivative has been construcled from two contributions,
fractal fluctuations and breaking of local time reversibility, described in terms of complex nambers
[1, 2]. Il we now include only this last contribution, we can define an incomplete covariant
derivative d/d¢, in terms of which the equation of fractal ‘free’ motion takes the form of Newton’s
equation of dynamics d¥ /dr=i2A¥". In this equation, the effect of the fractal fluctuation is now
expressed in terms of a complex ‘fractal force’

F =imPAY . @)

In the situation considered here, the fluctuation remains of purely gravitational origin, so that
we expect this force to be proportional to the product mM, where M is the total mass acting on
mass m. Then @ oc M, and can be written in terms of a new constant « having the dimension of
a velocity:
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Let us now look for the solutions of eqn (3). It is similar to the Schradinger equation for the
hydrogen atom, up to the substitution h/2m— @, ¢ >GmM, so that the natural unit of length
(which corresponds to the Bohr radius) is:

42* GM
dy = - . (6)
GM 0
Energy must be quantized as E= —0.5m«?/w’, with n=1, 2, 3, ..., and angular momenta as

L.=2mZ/, with £=0, 1, ..., n—1. It is remarkable that, unlike in standard quantum mechanics,
E/mand L./m are ‘quantized’ rather than E and L. The average distance @ to the central star and
the eccentricity e are given, in terms of the quantum numbers » and ¢, by the relations
a, =[n? —¥(#+D]a, and & =1—2(/+1)/n(n—1).

Our first prediction is therefore that circular orbits (/=n-—1) are highly probable for small
values of n, since the next to circular orbit (/ =n—2) is predicted to be very eccentric, and thus
presumably unstable when several planets are present. This prediction is well verified in our own
solar system [1, 8]. In the system around PSR B1257+ 12, the very low observed eccentricities
(ea=0; e5=0.0182; e=0.0264 [10]) confirm this prediction. We shall then only consider circular
orhits in what follows. In this case, the probability distribution is written as:

P (r)ocrte )

The mean distance and the peak distance of this probability distribution are respectively:
a, (mean) = (#* +n/2)ay; a, (peak) =n’a,. (8)
We finally find that velocities in Keplerian gravitational systems must be quantized according to:
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where «. is a multiple or submultiple of some fundamental constant «, (see Tab. | and Refs [9,
12]).

For the time being the constant « is not predicted theoretically and must be determined
from observational data. The observed structures of the Solar System, concerning eccentricities,
angular momenta, distances of planets [I, 6, 11] and mass distribution [8], are found to be in
very good agreement with the predictions of the theory. The inner Solar System yields:

rop = 1443+ 1.2km/s. (10)

The constant of the outer system can be determined from the fact that the inner system in its
whole achieves its orbital n, =1 (Table 1 [8, 11]). The peak of probability of this orbital must
then correspond to the peak of the mass distribution in the inner system, which is achieved by
the Earth. Since the Earth ranks a; =35 in the inner system, we ¢xpect the outer Solar System to
be governed by a constant s (out) &« (in)/5.24, as actually abserved Tab. 1. Toward the smaller
scales, one finds that the Sun radius also satisfies our law, since it is given by the peak of the
orbital #y=1, ¢x:3=3es, (indeed. the Kepler velocity at the distance from the center given by the
Sun’s radius is 436.8 km/s =3 x 145.6 km/s). Such a result can also be expected from the theory,
since the internal structure equaltion of stars can be quantized according to the same rules [12],
and the solutions matched Lo the exterior solutions. We shall sece below that the PSR B1257 412
system i1s governed by the same constant 3ee.
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Table 1. Data for the planets of the inner and outer Solar System, and for the recently discovered planets around nearby

stars (from Ref, [9]). The semi-major axes are given in AU. In column 6, the rank is given by 144/« for the inner System

and for exoplanets, and by 144/5.24. for the outer Solar System. In the last column we compute «, = #v in the inner

Solar System and for extrasolar planets, and ¢, = 5.24nw in the outer Solar System. (This is due to the fact that the inner

System on the whole achieves the orhital n = 1 of the outer System: since the Earth, which is the mass peak of the inner

System, ranks n = 5, a factor \/(5"+5/2} = 5.24 is applied to the calculation). In the absence of quantization, the values
of #a in column 7 would be uniformly distributed between —0.5 and +0.5

Star/planet Star mass  Period (year) 1/2 Major axis 2 {km/s) 144 /.:* " on eog (km/s)
Sun/Mercury | 0.24085 0.387 47.87 3.01 3 +0.01 143.6
Sun/Venus 1 0.61521 0.723 35.06 4.11 4 +0.11 140.2
Sun/Earth 1 1.00004 1.000 29.81 4.83 5 —0.17 149.0
Sun/Mars 1 1.88089 1.524 24.14 5.96 6 —0(.04 144 8
Sun/Ceres 1 4.61 277 17.92 8.04 8 +0.04 1434
Sun/Cybeles 1 6.35 3.43 16.09 8.95 9 -0.05 144.8
Sun/Jupiter 1 11.86 5.20 13.07 2.10 2 ~0.10 1372
Sun/Saturn 1 2946 9.57 92.63 2.85 3 —-Q.15 151.6
Sun/Uranus 1 &4.01 19.28 6.81 4.03 4 —0.03 143.0
Sun/Neptune 1 164.8 30.14 5.42 5.08 5 ~0.05 142.3
Sun/Pluton 1 248.5 39.88 4.75 5.78 6 —0.22 149.6
51 Peg B 1.10 0.01158 0.053 137 1.08 1 —0.05 137
47 UMa B 1.05 3.020 2.12 209 6.90 7 —0.10 146
70 Vir B 1.12 0.3195 0.485 453 318 3 +0.18 136
HD114762 B 1.0 0.230 0.376 48.65 2.96 3 —0.04 146
Prox Cen B 0.11 0.211 0.170 24.0 6.00 6 +0.00 144
$5Cnc B 0.8 0.04041 0.11 81.6 1.79 2 —0.21 163

7 Boo B 1.2 0.00907 0.046 152 0.95 1 —0.05 152

t And B 1.2 0.0126 0.058 136 1.06 1 +0.06 136

Our theory has heen successfully checked on the planets recently discovered around solar-type
stars [9]. We have found from eight new extra-solar planets (Table 1}):

o =143.94 3.1 km/s. (an

The theory also applies to the velocity quantization effect discovered 20 years ago by Tiflt [13],
and since confirmed by several authors [13 17]. Tifft found that the distribution of the velocity
difference between the two members of binary galaxies shows well-defined and statistically
significant peaks, when studied using high precision redshift measurements. The reported values
are 144, 72, 36, and 24 km/s, quite in agreement with our predicted n~' quantization law (Fig. 1)
and with the value of «, as it is observed in the Solar System and in extra-solar planetary systems.

All these results allow us to predict that the planetary system recently discovered around the
pulsar PSR B1237 + 12 must also be quantized in terms of & = keey, With ey =144.70 1 0.55 kmy/s
{average of the various determinations quoted in Ref. [9]).

3. APPLICATION TO THE SYSTEM AROUND PSR B12574-12

The discovery by Wolszczan and Frail [18] and Wolszczan [10] of three planets around the
pulsar PSR B1257+ 12 offers 4 unique opportunity to test our prediction outside our solar
system. Indeed, (i) this system can be expected to be a purely gravitational system, unperturbed
by other forces, so that one can hope to see our predictions verified with high precision; (ii) the
periods are known with high accuracy (one sigma retative uncertainty of respectively 600, 5 and
7 ppm); (iii) arbitals can exist very close to the neutron star thanks to its compactness, so that
the velocity in the ‘fundamental’ orbital could reach several times the ‘unit” 144 km/s.
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Fig. 1. Histogram of velocity differences for the Schneider—Salpeter (1992) sample of 107 isolated binary galaxies with
high precision 21 cm redshifts, from their table 1. The higher probability of the values 72 kim/s and 144 kin/s (and possibly
24 kmys) is clearly apparent and can be shown to be statistically significant [12].

It seems likely that the planets were formed from a ¢ircumpulsar disk created from the remains
of the pulsar’s binary stellar companion [10]. In our theory, the probability density distribution
of matter in the disk must be given locally by eqn (7). The conservation of energy implics that
the final position of the planets formed from this distribution must be given with high precision
by the mean distance formula a,=a,(""+n/2), ie /(a,) z\//(au) (n+1/4), with
ao = GMapsy févt, and o = 144k kmy/s, with # and & integers. Let us compare the data with these
theoretical predictions (Table 2).

(i) Since, from Kepler’s third law, \/’a:M 713 (in Solar System units, respectively AU, Mg
and years) = \//au(n—% 1/4), we expect the T'7 differences between the three planets to be quantized
in terms of integers (up to very small differences). This first prediction is very well verified, since

TV T3

=19 (12)
¢ 1"

that differs from An =2 by only 0.016. This implies that the three planets must rank as n, =#ny—2,
ng, ic=ng+ 1. We have assumed here for simplicity that n-—ng=1, but any other choice would
be equivalent (it would multiply & by an integer).

(ii) We thus obtain the two following equations:

Table 2. Planetary companions ta PSR B1257 412 (observational data from Ref. [10]). In colomn 2, the periods of A
and B are predicted from their ratioc with T¢ = T;. The distances and velocities are calculated for a pulsar mass
.46 M. In columns 6 and 7, & = (¥ +1/2)' %0, and ey = 7 /3.

Planet n Predicted period (day) Observed period (day) Semi-major axis (AU) « (kin/s) @5 ey
A 5 25.26 25.34 0.1916 8230 4316 1439
B 7 66.63 66.54 0.3646 59.66 4322 144.1

C 8 (98.22) 98.22 0.4727 52.39 4320 1440
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T NTE =ng —~Znn+ 31/l +3n +3) (132)
TN TE =1 +imal /I +3m +3]. (135)

Considering period ratios allows us to eliminate the unknown pulsar mass. We find, respectively,
from eqs. (13a, 13b):

ng (A.C) =7.016: 15 (B,C) =6.971. (14)

The quantization is once again confirmed with a remarkable precision, yielding n, =5, #y =7 and
ne=28 (see Fig. 2).

(iii) We can go even further. The precision reached by this system is so good that we can expect
to be able to make the difference between the *mean’ and ‘peak’ formulae {this means to test for
second order terms in the theory). We find:

T /52 4572 5
“A 063666 while ¥ 21~ — (63593 and > ~0.625 (15a)
Ty V8 +8)2 8
Ty 72 +772 7
® . =0.87827 while 72 ) §7866and . —0.875, (15b)

TL 82 +8/2 8

Even though the agreement with the ‘peak’ formula could already be considered as excellent
(relative differences of respectively 0.018 and 0.004), the agreement with our more precise
expectation, the ‘mean’ formula, is more than 10 times better (respectively 0.0011 and —0.0004).

06+ .
'4;,21 T i4 rﬁ74
0.5 c C /_‘473 -
8 :/ 1472
G-lal.l
0.4 - BT T aes -
=) B -] 265
< - [ 4 -
5 7 / 364
o m I 1 1"
g 0.3 364 .36 |
e 0.
g 6
o / T ] 182
«© C j
0.2 A L ¥ Jie
5 L 4
ol 1 t90
190 192
0.1 ‘ x 50 .
a
2
o 4 | ] | ] ] } ]
o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7

a (predicted, AU)

Fig. 2. Comparison between theoretical prediction and observations for the three planets around the pulsar PSR

BI257 4 12, assuming a pulsar mass of 1.46 M. The agreement is far better than the resolution of the diagram (and

independent of the choice of the pulsar mass): the four points (the star and the three planets) are aligned with differences

smaller than the thickness of the line. We have included three inscts enlarged by a factor of =50 to show the small
residual differences.
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Actually, the PSR B1257+ 12 pulsar planetary system tests our formula even up to the third
order. Let us express our theoretical expectation as an expansion in terms of (I/n). It is written
as a,fag=n’(by+byfn+byfn’ + by’ + ..}, with by =1, by=1/2 and ,=0 for j=3. To third order,
the relative correction is b, (1/n} —1/n). The difference 1/n] —1/n; remains 10 times larger
than the observed residuals in eqn (14), so that we get 5;=0.0+0.1. Finally, we need to go to
order four to find corrections of the order of the residuals.

{iv) All these results are completely independent of the (unknown) pulsar mass. We shall now
see that this mass can be inferred from our theory. Let us first show that our last prediction, i.e.
2y = 144k km/s, is well verified by any standard value of the neutron star mass. The pulsar mass
is given by:

a’ T,

M= —_——,
271'(; (nZ + ﬂ/2) 32

(16)

Assuming a standard neutron star mass of 1.4+0.1M,, we get a confirmation of ocur last
quantization law:

£ (i)

k =296+0.07 (17)

:m =
within 0.04 of the quantized value k=3. We can now compute the pulsar mass. From
ey =144.74+ 0.6 km/s, and taking &k =3 strictly, we obtain:

Mpsp = 1.48 £0.02 M ;zrox. (18)

Let us conclude this section by an estimate of the probability of getting such an observed
configuration by chance. The observed ratios (Tx/T)'”? and (Ty/T)'? fall within +7.3x 107*
and + 3.9 x 10~* of two of the predicted quantized ratios. The number of possible configurations
isC im =n, (1, — ) (#, —2) /6, where n,, is the maximal reasonable value for the quantum number
n. Taking »,, =10 yields a probability P=C3; x (1.46 x l0~*) x (7.8 x 107*) =14 x 107, Also
accounting for the fact that & falls within 0.1 of an integer using standard neutron star masses,
we find a highly significant total probability P=3 x 1072, Even with the choice n,, = 20, one would
still get the significant result P=3x 107,

4. CONCLUSION

The theory is falsifiable, since it allows us to make predictions about possible additional plancts
in this system. The period of A could already have been predicted after the discovery [18] of only
B and C. Indeed, the periods published in that reference were Ty =66.6 days and Tc=98.2 days,
from which T;=25.3 days is predicted. The agreement with observation is remarkable, since the
third planet has been found at a period T, =25.34 days [10]. Such a prediction could possibly be
reproduced then in a totally blind way. The periods predicted for =1 to 10 from their ratio with
the observed period of planet C are as follows (in days).

1 2 3 4 5 6 7 8 9 10
0.322 1.958 5.960 13.38 2526 4266 6663  98.22 138.5 188.5

A more complete discussion of the implications of these results will be presented elsewhere
[12]. Let us simply finally remark that the universality of the quantization, especially of the
numerical value of the constant «,, leads us to conclude that the source of the fundamental
structuring chaos cannot be the fluctuations due to the environment of each particular system
considered. We interpret this universality by the fact that the underlying geometry of space—time
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is fractal, not only in the microscopic domain, but also at large space—time scales, and plays the
role of a structuring field.
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