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The theory of scale relativity, when applied to microphysics, allows one to re-
cover quantum mechanics as a non-classical mechanics on a non-differentiable
spacetime. In this framework, the Schrodinger, Klein-Gordon and Dirac equa-
tions have been derived in terms of integrals of geodesics equations [1, 2, 3,
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Abstract

In standard quantum mechanics, it is not possible to directly extend
the Schrodinger equation to spinors, so the Pauli equation must be derived
from the Dirac equation by taking its non-relativistic limit. Hence, it pre-
dicts the existence of an intrinsic magnetic moment for the electron and
gives its correct value. In the scale relativity framework, the Schrédinger,
Klein-Gordon and Dirac equations have been derived from first principles
as geodesics equations of a non-differentiable and continuous spacetime.
Since such a generalized geometry implies the occurence of new discrete
symmetry breakings, this has led us to write Dirac bi-spinors in the form
of bi-quaternions (complex quaternions). In the present work, we show
that, in scale relativity also, the correct Pauli equation can only be ob-
tained from a non-relativistic limit of the relativistic geodesics equation
(which, after integration, becomes the Dirac equation) and not from the
non-relativistic formalism (that involves symmetry breakings in a fractal
3-space). The same degeneracy procedure, when it is applied to the bi-
quaternionic 4-velocity used to derive the Dirac equation, naturally yields
a Pauli-type quaternionic 3-velocity. It therefore corroborates the rele-
vance of the scale relativity approach for the building from first principles
of the quantum postulates and of the quantum tools. This also rein-
forces the relativistic and fundamentally quantum nature of spin, which
we attribute in scale relativity to the non-differentiability of the quantum
spacetime geometry (and not only of the quantum space). We conclude
by performing numerical simulations of spinor geodesics, that allow one
to gain a physical geometric picture of the nature of spin.
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4]. The complex nature of the wavefunction in the Schrédinger and Klein-
Gordon equations proceeds from the necessity to introduce, because of the non-
differentiability, a discrete symmetry breaking on the (proper) time differential
element. The bi-quaternionic nature of the Dirac bi-spinors arises from fur-
ther symmetry breakings on the spacetime variables, which also proceed from
non-differentiability.

Now, it is well known that the properties of the non-relativistic limit of a
dynamical equation may differ from those obtained when the limiting equation is
based directly on exact Galilean kinematics, see e.g. [5]. This is in particular the
case for the Pauli equation which predicts the existence of an intrinsic magnetic
moment for the electron and gives its correct value only when it is obtained as
the non-relativistic limit of the Dirac equation.

We therefore wish to test if this property is also valid in the framework of
scale relativity. In this theory, the dynamical equations of quantum mechanics
proceed from successive discrete symmetry breakings on the differential elements
(which are a consequence of the non-differentiable geometry) and on the space-
time variables. The Schrédinger equation is obtained from the breaking of the
symmetry dt < —dt [1, 2], the Klein-Gordon one from the symmetry breaking
ds < —ds [2], and the Dirac equation from the symmetry breakings ds < —ds,
dat — —dz# and z# — —a* [3, 4]. Therefore, one could be led to ask whether
the Pauli equation might proceed from the symmetry breakings dt < —dt (for
a non-relativistic motion) and dz* <« —da* (for the appearence of spinors).

After having derived in section 2 the existence of spinors as a geometric
and algebraic consequence of the giving up of the spacetime differentiability
hypothesis, we answer in section 3 to this question and show that, as in stan-
dard quantum mechanics, the Pauli equation cannot be obtained from a non-
relativistic symmetry breaking procedure. We therefore give, in section 4, the
proper way to derive the Pauli equation from the Dirac equation, by applying
to the scale relativity tools the standard method of quantum mechanics. In sec-
tion 5, we propose a new mathematical representation of the scale relativistic
tools needed to build the Dirac equation and spinor, the relevance of which is
based upon the results of its degeneracy towards the Pauli ones. We obtain, as
a consequence, the Pauli scale relativistic ingredients as mere non-relativistic
limits of the Dirac ones. Finally, we present in section 6 the results of numerical
simulations of geodesics of a fractal spacetime which carry an intrinsic angular
momentum and discuss the physical picture of the nature of spin that therefore
emerges in the scale relativity framework. Section 7 is devoted to the discussion
and conclusion.

2 Spinors as a consequence of non-differentiability

In the theory of scale relativity, the motion equations of quantum mechanics are
derived as geodesics equations in a non-differentiable and continous space(time)
(which can subsequently be proved to be fractal).

The non-motion-relativistic Schrodinger equation is obtained from the giving
up of the coordinate differentiability hypothesis in a fractal 3-space, where the
time ¢ is the Galilean invariant time. Non-differentiability implies the breaking
of the symmetry dt < —dt [1, 2]. This breaking leads us to use complex numbers
for a covariant representation of quantum variables, and, in particular, of the
wavefunction [4].

The motion-relativistic Klein-Gordon equation proceeds from the giving up
of the coordinate differentiability in a fractal 4-spacetime with the line element s
as a curvilinear parameter. It implies the breaking of the symmetry ds « —ds
[2]. This breaking has the same consequence as regards the use of complex



numbers for a covariant representation of quantum variables, and, in particular,
of the wavefunction [4].

We have also obtained the motion-relativistic Dirac equation by giving up
the coordinate differentiability in a fractal 4-spacetime with the line element s
as a curvilinear parameter. It proceeds from the breaking of further symmetries
besides ds < —ds, i.e., dat < —dz* and z* — —z# [3, 4]. These successive
symmetry breakings involve algebra doublings that led us to use bi-quaternions
to describe bi-spinors and the Dirac equation [4].

Now, it is well known that on manifolds exhibiting a quaternionic structure,
spinors appear automatically [6]. Because the quaternion algebra is isomorphic
to the rotation group algebra SO(3), itself related to SU(2) by homomorphism,
we can consider the two one-dimensional irreductible representations of SU(2)
over the quaternions. One is the trivial spin-0 representation. The other is the
spin-1/2 representation which acts on a one-component quaternion basis ¢.

Instead of writing this quaternion as a function of its four components: ¢ =
¢o+1i p1+ 7 P2+ k p3, we can write it as a function of its symplectic components.
These are elements of a complex subspace of the quaternionic algebra spanned
by 1 and i and denoted by C(1,4). In the symplectic representation ¢ is written
as ¢ = ¢ + j ¢, the symplectic components being defined as ¢, = ¢g + ¢ ¢1
and ¢g = P2 — 1 ¢3.

The induced action of the generators of the spin-1/2 representation of SU(2)
on the two-component column vector

| Pa
¢_<¢6)’

is given by the 2 x 2 Pauli spin matrices. In other words, the non-trivial one-
dimensional quaternionic irreducible representation of SU(2) induces the ap-
pearance of two-component complex spinorial representations. Therefore, the
apparent structural doubling associated with complex spinors arises automati-
cally in the framework of manifolds carrying a quaternionic structure.

In scale relativity, both the complex nature of the wavefunction and the ap-
pearance of spin have a common origin, namely the fundamental two-valuedness
of the derivatives issued from non-differentiability. However, while the origin of
the complex nature of the wavefunction is linked to non-differentiability at the
level of the total derivative, the origin of spin is due to non-differentiability
at the level of partial derivatives with respect to the coordinates. These two
successive doublings are naturally accounted for in terms of algebra doublings
[4].

To illustrate this statement, we consider the total derivative with respect to
the time ¢ of a differentiable function f(¢). It can be written twofold:

Ay L) 2 JO) oy SO = (- dn)
didi=o dt dt—0 dt

. (1)

The two definitions are equivalent in the differentiable case. In the non-differentiable
situation, both definitions fail, since the limits are no longer defined. In the
framework of scale relativity, the physics is related to the behaviour of the
function during the ‘zoom’ operation on the time resolution §t, which is now
considered as an independent variable. We therefore replace f(t) by a fractal
function f(t,dt), explicitly dependent on the time resolution interval, whose
derivative is undefined only at the unobservable limit §t — 0. As a consequence
of the very construction of the derivative, which needs two points to be defined
(instead of one for the position coordinates), there are two definitions of the
derivative of a fractal function instead of one. In the theoretical description
considered here (which may be different from an experimental siuation), the



resolution dt can be identified with the differential element dt [4]. Therefore two
functions f and f’ are introduced as explicit functions of the two variables ¢
and dt

f(t+dt,dt) — f(t,dt)
dt ’ 2)

fjr(ta dt) =

7t dry = LB = 5 t(t —dt,dt) "

We pass from one to the other by the transformation dt < —dt (local differential
time reflection invariance), which is an implicit discrete symmetry of differen-
tiable physics. Namely, the transformation dt <> —dt is nothing but the discrete
version of the continuous scale transformation dt — dt’ which plays the central
role in the scale relativity theory. The non-differentiable geometry of scale rel-
ativity now implies that this symmetry is broken, which corresponds to the
doubling d/dt — (d4/dt,d_/dt). To recover local differential time reversibility
in terms of a new complex process, we combine the two derivatives in terms
of a complex derivative operator. This is, in this framework, the origin of the
complex nature of the wavefunction of quantum mechanics [1, 4].

To go further on in the construction of the theory, we are led to consider
that the velocity fields of the geodesics bundles, which intervene in the definition
of the wavefunction, are functions of the coordinates. Therefore, we need to
also analyse the physical meaning of the partial derivatives 9/0z (we use only
one coordinate variable in order to simplify the writing, but this applies to
all coordinates) in the decomposition d/dt = 90/0t + (dx/dt) §/0x. Strictly
speaking, 0f/0x does not exist in the non-differentiable case. We are therefore
once again led to introduce fractal functions f(z,dx), explicitly dependent on
the coordinate resolution interval, whose derivative is undefined only at the
unobservable limit dz — 0. As for the case of the total derivative, we identify
dx with the differential element dz and consider the two definitions of the partial
derivative of a fractal function, namely

af flx +dz,dx) — f(x,dx)
ox+ dx ’

(4)

of  fla,dx) — f(x —dx,dx)
Or_ dx

: ()

They are transformed one into the other under the reflection dr < —dz,
which is also an implicit discrete symmetry of differentiable physics. The non-
differentiable geometry of scale relativity implies that this symmetry is broken
which corresponds to the new doubling 0/0x — (94 /0x,0_/0x). This finally
leads to a doubling of the wavefunction itself ) — (11, 12) characterizing a Pauli
spinor. We have already mentioned that these two successive doublings can be
naturally accounted for in terms of algebra doublings, i.e., a description tool that
jumps from real numbers R to complex numbers C = R? then to quaternions
H = C2%. Now, as recalled above, spinors appear automatically on manifolds
exhibiting a quaternionic structure. Spinors are therefore natural structures
implied by the geometric and algebraic consequences of non-differentiability.



3 Can the Pauli equation be obtained from sym-
metry breakings in the framework of scale rel-
ativity?

Now, the question is: does the Pauli equation naturally arise from the standard
scale relativistic construction of a non-relativistic motion equation as a geodesics
equation involving two successive doublings in the framework of a fractal 3-
space?

The relevant formalism will be that developed for the derivation of the non-
motion-relativistic equations of quantum mechanics, valid in a fractal 3-space
with the time ¢ as a curvilinear parameter [2].

3.1 Transition from non-differentiability to differentiabil-
ity
When we apply the reasoning of section 2 to the 3-space coordinates, generically
denoted by X, we see that the velocity
dX X —
v X (t+dt) — X(¢t)
dt dt—0 dt

(6)

is undefined. But it can be redefined in a new way as a fractal function V' (¢, dt).
The scale dependence of the velocity suggests that we complete the standard
equations of physics by new differential equations of scale. Writing the simplest
possible equation for the variation of the velocity in terms of the scale variable dt,
as a first order differential equation dV/dIndt = B(V'), then Taylor expanding
it, using the fact that V' < 1 (in motion-relativistic units ¢ = 1), we obtain the
solution as a sum of two terms: a scale-independent, differentiable, ‘classical’
part and a power-law divergent, explicitly scale-dependent, non-differentiable
‘fractal’” part [7],

1-1/Dp
Verwv{qua(é) ], (7)

where Dp is the fractal dimension of the path.

The transition scale 7 yields two distinct behaviours of the velocity depend-
ing on the resolution at which it is considered, since V ~ v when dt > 7 and
V ~ w when dt < 7. In the following case when this description holds for a
quantum particle of mass m, 7 is identified with the de Broglie scale of the sys-
tem (7 = h/FE) and the explicit ‘fractal’ domain with the quantum one. But it
should be emphasized that, in our description, the geometry is actually fractal
at all scales, even though the fractal contribution w becomes dominated by the
classical one v at scales larger than the de Broglie scale: this is an important
point (which may have been unclear in [4]), since it may lead to specific tests
of the theory (e.g., by searching for very faint residual quantum contributions
in the classical domain). The scaled fluctuation a is described by a dimension-
less stochastic variable which is normalized according to (a) = 0 and (a?) = 1.
Recalling that D = 2 plays the role of a critical dimension [1, 2], we shall here
consider only the case of this fractal dimension 2.

The above description applies to any of the fractal geodesics. Now, one of
the geometric consequences of the fractal character of space is that there is an
infinity of fractal geodesics relating any couple of its points [1, 2]. Tt has there-
fore been suggested [8] that the description of a quantum mechanical particle
could be reduced to the geometric properties of the set of fractal geodesics that



corresponds to a given state of this ‘particle’. As a consequence, any measure-
ment is interpreted as a sorting out (or selection) of the geodesics bundle due to
the interaction with the measuring device [1, 8] and/or linked to the information
known about the system.

Equation (7) multiplied by d¢ gives the elementary displacement, dX, of the
system as a sum of two terms,

dX = dx + d¢, (8)

d¢ representing the ‘fractal part’ and dx, the ‘classical part’, defined, for D = 2,
as

dx = v dt, 9)

d¢ = a V2D dt, (10)

with 2D = 7v2. Owing to equation (7), we identify 7 as the (non-relativistic)
Einstein transition scale, #/E = h/imv?, and therefore 2D can be identified
with the Compton scale (for ¢ = 1), so that D = h/2m. We note, from equa-
tions (8)-(10), that dz scales as dt, while d¢ scales as dtz. The elementary
displacement on a fractal space is therefore, as expected, the sum of a ‘classi-
cal’, differentiable element, dz, which is leading at large scales, and a ‘fractal’,
diverging fluctuation, d¢, which is leading at small scales.

3.2 Fractal velocity fields and symmetry breaking dt <
—dt

In order to account for the infinite number of geodesics, the velocity should
now be defined as a fractal velocity field. Moreover, as recalled in section 2,
non-differentiability implies a two-valuedness of this velocity field, that we de-
scribe by fractal functions of space coordinates and time, i.e., explicit func-
tions of the resolution interval dt, namely Vi [z(¢, dt), ¢, dt] and V_[x(t, dt),t, dt].
These two velocity fields can be in turn decomposed in terms of a ‘classical
part’, which is differentiable and independent of resolution, and a ‘fractal part’,
Vilz(t,dt), t,dt] = vi|x(t), t] + wi[z(t, dt),t,dt]. Note that there is no reason a
priori for the two classical velocity fields themselves to be equal.

Recall that this two-valuedness of the velocity vector finds its origin in a
breaking of the discrete time differential element reflection invariance symmetry
(dt < —dt), which is itself a mathematical consequence of non-differentiability.
If one reverses the sign of this time differential element, v; becomes v_.

3.3 Symmetry breakings dr <+ —dx and dt < —dt

The three minimal effects of non-differentiability considered above lead to the
construction of a complex wavefunction that is solution of a Schrédinger equa-
tion [1, 4]. But a more general description should also include another conse-
quence of non-differentiability, namely the discrete symmetry breaking of the
reflection dx < —dx on the space differential elements. Let us now consider
this case, which leads to introduce a quaternionic representation of physical
quantities.

In the domain where the fractal fluctuations dominate, the 3-space coordi-
nates X*(t, ey, ;) are fractal functions of the time ¢ and the coordinate and time
resolutions € (k = 1,2,3) and ¢, respectively. This implies that, for a given X*,
a positive elementary displacement dt of the curvilinear parameter ¢ induces a



displacement dX* of X* and a negative elementary displacement —dt yields a
displacement —dX*, the amplitudes of which are not necessarily equal.

We therefore apply to these two elementary displacements the canonical
decomposition of equations (8)-(10)

dX* = dz® + de*, (11)
dx* = vz dt, (12)
¥ = ak V2D at'/?, (13)

with (%) =0, ((a%)?) =1, and

—dX" = da® + de*, (14)
dz* = o* dt, (15)

k
de® = a* V2D dt'/?, (16)

with (a®) =0, ((a*)?) = 1.

In the differentiable case, dX* = —(—dX*), and therefore v¥ = —v*. This
is no longer the case in the non-differentiable case, where the 1’8(;&1 syr%metry
dX* < —dX" is broken.

This new symmetry breaking should now be combined with the previously
studied one, namely the breaking of the symmetry dt < —dt, proceeding from
the twofold definition of the derivative with respect to the curvilinear parameter
t. An elementary displacement dt gives two ‘classical’ derivatives d/dty and
d/dt_, which, applied to X*, yield in turn two ‘classical’ velocities, vi+. The

tk
same process, applied to an elementary displacement —dt, leads us to define
again two classical velocities, denoted by vif. We summarize this result as

tk
dx® dxF
k k
- = — 17
YT ar T dts (7

Contrary to what happens in the differentiable case, the total derivative with
respect to time of a fractal function f [X k(t,dt),t, dt] of integer fractal dimen-
sion contains finite terms up to the higher order [9]. For a fractal dimension
Dr = 2, the total derivative is written as

df  of af dxk 1 0%°f dXidx*

dt ot  0Xk dt ' 20XI9Xk  dt

(18)

We can, at this stage, define several different total derivatives of this fractal
function f with respect to time ¢t. We write them, using a compact straightfor-
ward notation with summation over repeated indices,

df _of k ko Of ik O*f
dEE T ot (”ﬂ; + wﬂg)axk +araiD X (19)
with
w* = a*V2Ddt 3. (20)



Now, when we take the stochastic mean of the total derivative of f, since
(w*) = 0 and since

(deldek ) = +2D §7* at, (21)
we obtain
df (0 . 0
(W5 = (5 + heme =P2) 1 22)

where the + sign in the right-hand side is the same as the t-sign.
By applying these derivatives to the position vector X*, we obtain, as ex-
pected,

(23)

3.4 Covariant derivative operator

In the simplest case, the breaking of the symmetry dX* < —dX?" is isotropic
with respect to the 3-space coordinates (i.e., the signs corresponding to the three
k indices are chosen equal). We are left with four non-degenerate components

’Ui +, which we use to define a quaternionic velocity. In its symplectic form, it
th
reads
k_Log k ook k Lo k bk k .
V= 5( Ty Foio)— 5(1)+Jr - )+ §(v+, +vl )+ §(v+, —v2 )| J.

(24)

The zero-spin case can be easily recovered as a particular case of this expres-
sion. Indeed, it corresponds to a symmetry breaking dt « —dt (which yields,
as recalled hereafter, a complex wavefunction) and no dx < —dx symmetry
breaking. We are left in this case with one doubling only, so that the j-term

in equation (24) disappears and v44 = vy,v—_ = v_. This yields in turn the

complex V¥ expression used for the derivation of the Schrédinger equation [1],
1 i

Vk:§( i+v§)f§(v_’i7v’i). (25)

The quaternionic velocity defined such as in equation (24) corresponds to a
quaternionic derivative operator d/dt similarly defined,

414 4y idd 4 -
dt 2 dt+4+ dt—— 2 \dt++ dt——

(e L4 N, ifd  _d :
o \dty- " dt-y) 2 \dti-  dt-4)]”

and yielding, when applied to the position vector X*, the corresponding velocity
VE. We substitute equation (22) into equation (26) and obtain the quaternionic
operator

d 0 ,

7 atJrV.V iDA . (27)
We recall that the transition from classical (differentiable) mechanics to the
scale relativistic one is implemented by replacing the standard time derivative
d/dt by the operator d/dt [1, 4] (while accounting for the fact, in particular
when using the Leibniz rule, that it is a linear combination of first order and
second order derivatives, see e.g. [10, 11]). This means that d/dt plays the
role of a ‘covariant derivative operator’, i.e., of a tool that preserves the form
invariance of the equations.



3.5 Geodesics equation in a fractal space

Now, we go on with a scale-relativistic-like construction of the corresponding
motion equation by generalizing standard classical mechanics using this covari-
ance and a geodesics principle. A quaternionic Lagrange function and the corre-
sponding quaternionic action are obtained from the classical Lagrange function
L(z,v,t) and the classical action S by replacing d/dt by d/dt. The station-
ary action principle applied to this quaternionic action yields generalized Euler-
Lagrange equations. We also define a generalized quaternionic momentum which
satisfies a well-known relation of mechanics [2, 4]

P =-VS, (28)
which can be written as
P =mV, (29)

such that, from equation (28), the quaternionic velocity V appears as the gra-
dient of the quaternionic action

Y =-VS/m. (30)
We now introduce a quaternionic wavefunction ¢ which is nothing but another
expression for the quaternionic action S, namely
7
YV = —VS, (31)
So
where Sy is a constant which is introduced for dimensional reasons. It yields,
for the quaternionic velocity, as derived from equation (30),

y =i YV (32)
m

Using the generalized covariance principle implemented by the covariant deriva-
tive of equation (27), we can now write the equation of motion under the form
of a geodesics equation, i.e., of a free-like motion equation,

dy
—=0. (33)

By substituting, in this equation, the expressions of d/dt and V as given by
equations (27) and (32), we obtain

a , . _ So _ . _

a(ﬁ; 1.V1/1)71E01/) V.V (vL.VY) —iDA (1Y) =0 (34)
The constant Sy has been proved to be given in a general way (without any
assumption), in the Schrédinger case, by the relation Sy = 2mD [12]. Now,

since the Schrodinger equation is the limit of the Pauli equation for a particle
without spin, this relation must remain valid in the Pauli case. It gives

o, _ . _ _ 1 _
5 (w1 V) = 2iD [TV V (7YY + 34 (v~ 1.Vy)| =0 (35)
The definition of the inverse of a quaternion

Yyl =y =1, (36)



implies that 4 and ¥~! commute. But this is not necessarily the case for ¢ and
V=1 nor for =1 and V. However, when we differentiate equation (36) with
respect to the coordinates, we obtain

Y.Vl = -V .y PV ==Vl (37)

Developing equation (35), using equations (37) and the property AV = VA,
we obtain, after some calculations,

% (v~'.Vy) = 2iDV [Ay . '] =0. (38)

Contrary to what happens in the calculations which allowed us to derive the
Schrodinger [1], Klein-Gordon[13] and Dirac [4] equations, equation (38) is not
a gradient and therefore it is not integrable. It remains a third-order equation,
the physical meaning of which is not obvious. It cannot be put under the Pauli
form, even with the addition of an electromagnetic field. Since, in the scale
relativity theory, the meaning of the function 1 is not set as an axiom (as in
standard quantum mechanics) but instead deduced from the developments of
the formalism (concerning in particular its status of wavefunction and the proof
of Born’s postulate [4, 12]), the impossibility to put this equation in the Pauli
form also deprives such a function ¢ (constructed by taking into account the
dx <« —dx symmetry breaking in fractal space instead of full fractal spacetime)
of its physical meaning.

This apparent failure is actually a success of the scale relativity theory.
Indeed, it is in accordance with the results obtained in the framework of standard
quantum mechanics, but it also enlightens it in a new way, by clearly establishing
(in this framework) the double non-differentiable and relativistic origin of spin,
even when it manifests itself in a non-relativistic (low energy) situation.

Since the attempt to extend the Schrédinger equation to spinors failed,
Pauli’s equation must be derived from Dirac’s, in the scale relativity approach
to quantum mechanics also. It therefore yields the right value for the electron
gyromagnetic factor. We shall discuss this point more thoroughly at the end of
section 4.

4 The Pauli equation as a non-relativistic limit
of the Dirac equation in the quaternionic for-
malism

The Dirac equation for a free fermion has been derived, in the framework of
scale relativity, as a mere square root of the free Klein-Gordon equation, written
whith a bi-quaternionic wavefunction thanks to three successive doublings of its
mathematical representation [3, 4]. Its covariant form is the usual

(ihy" 0y — me)y = 0. (39)

A scale relativistic theory of electromagnetism has also been developed [2, 13, 14]
in which the charges are built from the symmetries of the ‘scale space’, according
to Noether’s theorem, and the electromagnetic field is linked to the resolution
dilation of the internal structures of the fractal spacetime . This approach has
allowed us to establish, from the first principles of the theory, the form of the

IThe formalism applied to the Abelian gauge theory of electromagnetism has subsequently
been extended to non-Abelian gauge theories, whose tools have now been given physical
meanings in the framework of scale relativity [15].
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action as it appears in standard electromagnetism and, in particular, the form
of the particle-field coupling term (which is postulated in the standard theory).

We can therefore write the Dirac equation for an electron of mass m and
charge e, in an external electromagnetic field 4,,, as

" (ih0,, — eA,) —me] =0, (40)
with the wavefunction ¢ under the form of a bi-quaternion (complex quaternion)

Y =1o + i1 + jip2 + kips. (41)

This mathematical representation of the wavefunction is equivalent to the spino-
rial one, with the following correspondence of the components

Yo

_|

Y= v | (42)
Y3

We can now derive the Pauli equation, following the standard method of elimi-
nating small components.

We consider a two-component representation, where the four-component
spinor v is decomposed into two two-component spinors ¢ and .

¢<ﬁ). (43)

In the quaternionic representation, this amounts to shifting to a symplectic form
of 1, where

¢ = tho + 11, (44)

and

X = 2 — i, (45)

In the non-relativistic limit, the rest energy, mc?, becomes dominant. Therefore,
the two-component solution is approximately

()-()=n

where ¢’ and Y’ are slowly varying functions of time. Substitution of this non-
relativistic solution into the Dirac equation, equation (40), in the Dirac repre-
sentation, gives

/

m%’i = 7. (i - SA) X+ ey, (47)
/

ih% = 7. (ihv - ZZ’) ¢+ eAox’ — 2me?x. (48)

When the kinetic energy is small compared to the rest energy, x’ is a slowly
varying function of time and

a !
zha—)i < |mey/). (49)

When the electrostatic potential A is weak, the potential energy is small com-
pared to the rest energy.

leAox’| < |me?x/|. (50)

11



With these last two approximations, equation (48) becomes
T (ihV — EZ)) ¢ —2me*y/, (51)
which gives
7. (v - <A

V= (52

The lower component, Y, is generally refered to as the ‘small’ component of the
wavefunction v, relative to the ‘large’ component, ¢. The small component is
approximately v/c less than the large one in the non-relativistic limit.
Substituting the expression for x’, given by equation (52), into equation (47),
we obtain
oy T (V- £A) 7. (v - £A)
th— = " +eAod. 53
ot o ¢ +eAog (53)
We are therefore left with an equation for the 2-spinor ¢’ alone which, in the
quaternionic formalism, is written as

alo

¢ = (o + ity )™/, (54)
Finally, by using the well-known identities,
(@) T b)=ab +ic(a x b), (55)
(Vx A+ A xV)¢ =curld, (56)
we obtain, B =culd being the magnetic field,
L 09"  [1 /. e—\2 eh _, ,

We recognize here the Pauli equation for the theory of spin in non-relativistic
quantum mechanics, with ¢AV replacing the momentum operator p, implement-
ing the correspondence principle. Note that this correspondence principle for
the momentum can be derived in the framework of scale relativity [1] and needs
no more to be postulated as in standard quantum mechanics. As it is well
known, one of the main results of the Pauli equation (when it is derived from
the Dirac equation) is to yield the correct gyromagnetic factor g = 2 for a free
electron.

We have therefore shown that the scale relativity approach agrees with the
physics of the Pauli bi-spinors for spin-1/2 particles. Since the correct motion
equation for these spinors cannot be obtained from the mere symmetry breakings
dt < —dt and dr < —dzx in a fractal 3-space, this confirms and reinforces the
relativistic nature of spin.

The difference between the two approaches of sections 3 and 4 is that, in the
first one, we consider the time ¢ as a curvilinear parameter on the geodesics of a
fractal 3-space and, in the second one, we consider it as a coordinate of a fractal
4-spacetime. Since we are looking for motion equations, we cannot get rid of the
time dependence and we are left with a non-integrable time-dependent term in
equation (38). In contrast, when dealing with the Dirac equation, we choose, as
a curvilinear parameter, the relativistic line element s, which we need not retain
in the equation for a first approach. We thus obtain an integrable equation of
which the quaternionic square root is the Dirac equation [3, 4]. But here, time
is considered as one of the four coordinates of the underlying fractal spacetime
and remains such in the equations, namely in the Dirac equation, and therefore
also in the Pauli equation.
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5 The Pauli quaternionic velocity as a degener-
acy of the Dirac bi-quaternionic one

For the derivation of the Dirac equation in the framework of scale relativity
that was developed in [3, 4], we have chosen a peculiar expression for V* as a
function of the eight non-degenerate components of the classical velocity, v,
and oY

1

. 1 - 1 1 -
PH = E(vi++vﬁ_)f §(vi+ ot )+ [5(1)5‘__ +ot ) — i(vi_ vi_,_)] el

i %(m1_+ai_)——%(u1_—aﬁ+ﬂ<h-%{%uﬁﬁ_+@¢+)-%aﬂ+.+ai_)}63(5&
Here 7 denotes the imaginary element used to write the complex components

of the bi-quaternions as sums of a real and an imaginary part and e; s, with

i =1,2,3, correspond to the 7, j, k imaginary elements used above to write linear
expressions of the quaternions. We can therefore write any bi-quaternionic
wavefunction, solution of the Dirac equation, as a function of its eight real
components,

= ¢do+ixo+ (d1 +ix1)er + (d2 +ix2)ea + (P35 + ixs)es. (59)

Since 1) is assimilated to a Dirac bi-spinor, it must have the same properties.
In particular, it must be a unit quaternion, i.e., a quaternion with a unit norm,
which is written as

PoHXe+ I+ XTI+ X3+ 3+ x5 =1 (60)

In the motion-relativistic case of the Dirac equation, the bi-quaternionic action
is given by

dS = 0,8 dz" = —mcV, da". (61)
The bi-quaternionic 4-momentum is therefore
P =mcV, = —0,8. (62)
We can then introduce a bi-quaternionic wavefunction, defined as
P10 = Sioaﬂs. (63)

Now, from equation (59), we calculate the components of the bi-quaternionic
4-velocity,

So
Vi = i——t) ORTE (64)

(We correct here a misprint of the equivalent expression in [4] where ¢ was
lacking). We obtain:

S
V= m—oc[*(¢03“X0+X03“¢0+¢13“X1+X13“¢1+¢23“X2+X23“¢2+¢33“X3+X33“¢3)

+ (900" Po —Xx00" X0+ P10" P1 —X10" X1+ P20" 2 — X20" X2+ p30" 3 — x30" x3)i
+[=000" X1 — Xx00" P14+ P10" X0 + X10" G0 + 20" X3+ X 20" 3 — $30" X2 — X 30" P2
+(00" p1—x00" X1—P10" po+X10" X0 —$20" p3+X20" X3+ 330" P2 —x30" x2)ie1
+[= 00" x2 — x00" P2 — $10" X3 — x10" P34+ P20" X0+ X20" Po + $30" x1 + Xx30" $1
+(P00" p2—x00" x2+¢10" P3—x10" X3~ P20" Po+x20" X0—P30" P1+X30" X1 )i]e2
+[—¢00" x3 — X00" 3+ 10" X2+ X10" P2 — P20" X1 — X20" b1+ 30" X0 + X30" Po

+(000" p3—x00" X3— 910" p2+X10" X2+ P20" p1—X20" x1 —$30" Po+Xx30" x0)1]e3].
(65)
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Then, we identify the real term and the imaginary terms of the same kind in
equations (58) and (65) and obtain eight equations giving linear combinations
of the v/, and 0 | as functions of the components ¢; and y; of the wavefunc-
tion and their derivatives. Taking linear combinations of the first two of these
equations, involving v}, and 9" _, we obtain

S
v, = —Ei(¢05“X0+X05“¢0+¢15”X1+X15”¢1+¢25“X2+X25“¢2+¢35“X3+X35“¢3
+000" po —Xx00" X0+ P10" P1 — x10" X1+ P20" P2 — X 20" X2+ $30" 3 — x30" x3)

(66)
and
~ S
= —Ei(¢05”X0+X05“¢0+¢15”X1+X15”¢1+¢25“X2+X25“¢2+¢35“X3+X35“¢3
— 00" po+x00" X0 — 910" 1+ X10" X1 — 20" P2+ x20" x2 — P30" P34+ x30" x3).
(67)

We have seen in equation (51) that the Pauli spinor, ¢, is a function of the
components ¢g, Yo, ¢1 and x; only, the other ‘small’ components vanishing at
the non-relativistic limit. Therefore, at this limit, we see, from equation (67),
that 0{ | does not vanish, since it includes terms which are products of ‘large’
components and their derivatives. However, for the contruction of the 4-velocity
and the covariant derivative we proposed in [3, 4], we denoted with a tilde the
components issued from the breaking of the time-reversal and parity symmetries.
Since the breaking of these symmetries is a mere property of relativistic motion,
tilde terms are not supposed to appear in Pauli’s non-relativistic velocity. We
therefore conclude that the expression we retained in [3, 4] for V* was not the
proper one.

But we could have chosen any other expression for this bi-quaternionic ve-
locity provided it fulfils the requirements that, at the non-relativistic limit,
we recover a quaternionic velocity for the Pauli spinor, a complex one for the
Schrédinger equation and that, at the classical limit, every term vanishes except
the real one. We therefore propose here a more symmetrical expression than
that retained in [3, 4],

1 1 1 1
PH = E(vi++vﬁ_)f §(vi+ ot )+ [§(vi_ +ot ) — i(vi_ vﬁ_k)} el

1, - T, 5 1,. - 1, -
+ §(vi++vﬁ_)—§(1}i+—v’i_)} es + [§(vi_+v‘i+)—§(vi_—vﬁ+)] es.
(68)

Note that the development of the theory is independent of this choice, since the
covariant derivative keeps the same form whatever the mathematical expression
of V* is.

As previously, we identify the real term and the imaginary terms of the
same kind in equations (65) and (68) and get eight equations giving linear
combinations of the v/, and ¥/, as functions of the components ¢; and x;
of the Dirac wavefunction and their derivatives. Taking linear combinations of
these equations, we obtain

S
v = —Ei(¢05“X0+X05“¢0+¢15”X1+X15”¢1+¢25“X2+X25“¢2+¢35“X3+X35“¢3
+¢00" po—x00" X0+ $10" p1 —x10" X1+ $20" P2 — x20" X2+ $30" p3—x30" X3),

(69)
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S
v _ = *FOC(¢03“X0+X03“¢0+¢13“X1+X13%51+¢23”X2+X23“¢2+¢33“X3+X33“¢3
— 0" po+x00" X0 — 10" P14+ X10" X1 — P20" P2+ x20" X2 — P30" p3+x30" X3),

(70)
S
v _ = *m—oc(¢03”X1+X03”¢1*¢13“X0*X13“¢0*¢23”X3*X23”¢3+¢33”X2+X33”¢2
+¢00" p1—x00" X1 — 010" po+X10" x0— $20" 3+ X20" X3+ 30" P2 — x30" X2),
(71)

S
vt = —m—oc(¢03”X1+X03”¢1—¢15“X0—X15“¢0—¢23”X3—X23”¢3+¢33”X2+X35”¢2

— 00" P14 X00" X1+ 910" o — Xx10" X0+ P20 p3— X 20" X3 — 30" o+ X 30" X 2),
(72)

~ S
Ui+r:'—;§ﬂ¢05“X2+X05“¢2+¢13”X3+X15“¢3—¢25“X0—X25“¢0—¢33“X1—X35“¢1
+ 0" pa—x00" X2+ P10 3 —x 10" X3 — P20" o+ x20" X0 — P30" P14+ Xx30" X1),

(73)
- S
ot = *FOC(¢03“X2+X03“¢2+¢13“X3+X13“¢3*¢23“X0*X23“¢0*¢33“X1*Xsa“fm
— 00" P2+ X00" x2— $10" 3+ x10" X3+ 20" Po — x20" X0+ P30" p1 —X30" X1),
(74)
- S
o _ = *m—oc(¢03“X3+X03“¢3*¢13“X2*X13“¢2+¢23“X1+X23“¢1*¢33“X0*X33“¢0
+ 00" p3—x00" X3 — p10" P2+ x10" X2+ 20" 1 — x20" x1 — $30" o+ Xx30" X0)
(75)
and
5 S
o, = *m—oc(¢03”X3+X03”¢3*¢13“X2*X13“¢2+¢23”X1+X23”¢1*¢33”X0*X33”¢0
— 00" P3+x00" x3+$10" P2 — X10" X2 — 20" P14+ X 20" X1+ 30" o — x39" X0)-
(76)

We can now get rid of all the ‘small’ components and their derivatives, which
are all the terms with an index 2 or 3, since these components do not appear
in the final Pauli equation (indeed, this equation is the Dirac equation written
with the ‘large’ terms alone). We see, from equations (69)-(76), that all the
tilde components of the velocity vanish and that the only non-zero ones are the
four v44, v4—, v_y and v__.

We have stated, in section 4, that the Pauli spinor, ¢’, is obtained from the
Dirac bi-spinor, 1, as written in equation (59), by the correspondence

¢ = (tho + exthy) €™ = [gg + ixo + (¢1 + ixa)er] €™ (7T)

This implies that we obtain the quaternionic velocity corresponding to the non-
relativistic limit, first, by neglecting the small components in the expression of
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the bi-quaternionic velocity of equation (65), which gives

S .
= m_oc[*(¢03“X0+X03“¢0+¢13“X1+X13“¢1)+(¢03”¢0*X03“X0+¢13“¢1*X13“X1>Z

+[—=000" X1 —Xx00" p1+¢10" x0+Xx10" Po+(00" d1—X00" X1 —P10" Po+Xx10" x0)i]e1],
(78)

P

then, by replacing in this expression ¢ s and x s by their primed counterparts
as given by equation (77) and the simplectic decomposition

¢' = [¢p + ixo + (61 +ix))en]. (79)

For that, we have to distinguish the component V° of the 4-velocity (which,
at the non-relativistic limit, must be the light velocity ¢) from its three spatial
components which exhibit a different behaviour.

From equations (77) and (79), we can write

—q 2
$o,1,X0,1 = Po.15 X016 t/h, (80)

We therefore obtain, for the partial derivatives with respect to time of the
components of 1,

80¢0,1 = 80¢/0,1€7im02t/h - 17202 ¢6,1€7im02t/h, (81)
and analogous expressions for 9%y 1.

We have seen, in section 4, that ¢’ (and therefore its components) is a slowly
varying function of time. The partial derivatives with respect to time on the
right hand side of equation (81) thus approximately vanish and this equation
becomes

imc? ime?
60¢0,1 = _ ; ¢6716 imc t/h’ (82)

and analogous equations for 9% ;.

Substituting the expressions for ¢o 1, x0,1,9°¢0.1 and 8%y 1 into equation (78),
we obtain, after some calculations and using the property that, in the standard
quantum domain, Sy = A,

VO = eI (g ixg)” + (91 +ixt)? (83)

which we can write, owing to the fact that the norm of the spinor ¢ must be
normalized to the unity,

V0 — ¢ [(¢66_im02t/h)2 n (w,le_imczt/h)Q] . (1/18 n 1/1%) _ C|¢|2 —c (84)

Now, we consider the three spatial components, V¥ k = 1,2,3, of the Dirac
velocity reduced to its ‘large’ terms as in the non-relativistic limit. In this case,

O o1 = OF gy e Hn (85)

and analogous equations for y s.

Suppressing the ‘small’ terms (those with the indices 2 and 3) into the ex-
pressions of v%, s given by equations (69)-(72), substituting into them the
expressions for @o 1, X0,1, 0 ¢o,1 and dFxo1 given by equations (80) and (85)
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and finally combining the results obtained for v£_ s such as to reproduce the
expression of V¥, we get

1 1 1 1
Vk:—(vi++vff)f§(vi+fvff)+ —(vi7+vf+)—§(vﬁf—v’i+) er.

2 2
(86)

We have therefore obtained the velocity corresponding to the non-relativistic
case from the mere degeneracy of the bi-quaternionic relativistic one, in the
simplectic form of a real quaternion. This degeneracy yields the non-relativistic
velocity as a 3-vector naturally derived from the 4-velocity of the relativistic
case. The quaternionic velocity of equation (86) has therefore all the properties
needed to implement the scale relativistic procedure described in section 3. The
failure of this procedure (namely, in the framework of a fractal space, that
leads to non-relativistic quantum mechanics) to give the correct Pauli equation
(while a full fractal spacetime description, that leads to relativistic quantum
mechanics, is successful) reinforces the fundamentally relativistic nature of spin
as it appears in standard quantum mechanics. This corroborates the relevance
of scale relativity for the building from first principles of the quantum postulates
and of the quantum mechanical tools and results.

6 Spin as internal angular momentum of geodesics
in a fractal space

6.1 Geometric models of the spin

The geometric description of quantum physics brought by the scale-relativity /
fractal-spacetime approach allows one to give a physical picture of what the spin
is. Recall that the spin has been considered, since its discovery, as a physical
quantity of pure quantum origin having no classical counterpart. Indeed, assum-
ing an extension of the electron of the order of its classical radius r. = o~ !\,
where o« = 1/137.036... is the fine structure constant and A\, = i/mc is its Comp-
ton length, an angular momentum #,/2 would involve a velocity of rotation of
its surface of order a~'¢, which is clearly excluded by special relativity.

The scale relativity theory allows one to suggest a new solution to this fun-
damental problem. This solution remains non-classical (owing to the fact that
an everywhere non-differentiable spacetime is non-classical, as proved by the
quantum-mechanical-type behaviour of its geodesics), but it is however a geo-
metric solution.

As recalled in this paper, in the scale relativistic framework, both the com-
plex nature of the wavefunction and the existence of spin have a common origin,
namely the fundamental two-valuedness of the derivative (in its generalized def-
inition) coming from non-differentiability. These two successive doublings are
naturally accounted for in terms of algebra doublings (see the appendix of [4]),
i.e., of a description tool that jumps from real numbers IR to complex numbers
€ = IR?, then to quaternions IH = €?. However, while the origin of the complex
nature of the wavefunction is linked to the total derivative (and therefore to
proper time) through the doubling d/ds — (d/ds,d_/ds), the origin of spin
is linked to the partial derivative with respect to the coordinates through the
doubling 9/9z# — (04 /0zH,d_ /dx"), which finally leads to the two-valuedness
of the wavefunction itself ¥ — (11, 12), characterizing a (Pauli) spinor.

A model for the emergence of a spin-like internal angular momentum (that
was, however, not yet quantized in units of A/2) in fractal spiral curves of
fractal dimension 2 has been proposed in the 1980s [8, 1]. Note that this kind
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of fractal spiral curve has recently known a renewal of interest under the name
‘hyperhelices’ [16, 17]. Let us briefly recall here the argument (see figure 1).
The angular momentum L, = mr2p should classically vanish for » — 0. But
in the fractal spiral model, when a scale factor ¢~! is applied to the radius
r, the number of turns and therefore the rotation velocity is multiplied by a
factor p = ¢PF, so that the angular momentum becomes multiplied by a factor
px g 2 = ¢gPr=2. It therefore remains defined at the infinitely small limit
g¢~' — 0 in the special case Dr = 2. In other words, ¢) — oo when r — 0 in
such a way that the product r2¢ = 0% x co remains finite when D = 2 (while
it is vanishing for Dp < 2 and divergent for Dp > 2).

4

Figure 1: First four iterations on one period of an early model of infinitely spiral fractal
curve (‘hyperhelices’), from [8]. Its generator is made of nine segments of length 1/3 and its
fractal dimension is Dg = 2. The spin of such a curve, whose fundamental period is a de
Broglie wavelength Ay = 2wh/mu, is in that case o = 0.42 h.

This model of spin therefore uses in an essential way the scale dependence
of fractal geometry, that allows one to deal in a new manner with vanishing and
infinite quantities (in particular, by showing that a general description of fractal
geodesics actually leads to define non-differentiable wavefunctions which are still
solutions of the standard equations of quantum mechanics [12]). While in the
standard differentiable approach the encounter of a zero or infinite quantity
usually leads one to stop a calculation, the explicitly scale-dependent tools of
the scale relativity theory allow one to go beyond such an obstacle and to prove
the existence of finite and measurable quantities of the (0 x co0) type.

Note that the second-order terms in the quantum covariant total derivative
(which are, in this framework, the basis of the Heisenberg relations) have exactly
the same nature, namely d¢?/dt is a differential element of first order in the
differentiable theory, so that it should classically vanish. But in the fractal
dimension 2 case, d¢?/dt = (d¢/dt)? x dt = (2D/dt) x dt = 2D is now finite
since the fractal velocity d¢/dt is now formally infinite (at the limit d¢ — 0).

This result solves the problem of the apparent impossibility to define a spin
in a geometric way both for an extended object and for a point-like object and
provides another proof of the critical character of the value Drp = 2 for the
fractal dimension of quantum particle paths [18].

It is also remarkable that the existence of spiral structures at all scales is
also one of the elements of description of spinors in the framework of Ord’s
reformulation of the Feynman relativistic chessboard model in terms of spiral
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paths [19].

6.2 Numerical simulations of exact solutions

We can now go beyond these fractal models of the spin and give a geometric
physical picture of its nature based on explicit solutions of the Pauli or Dirac
equation, since the fractal velocity fields of the non-differentiable spacetime
geodesics can be derived from these solutions. It is remarkable that this now
exact geometric description (whose spin is quantized in units of %/2) supports
the main features of the previous rough fractal models.

In order to exhibit this picture, we shall perform numerical simulations of
the stochastic differential equations that have been set at the origin of the
description. Recall that we have decomposed the elementary displacements in
a fractal spacetime in terms of a classical (differentiable) part and of a fractal
(non-differentiable) part,

dXiyr =vipdt +dégy, (87)

where the geometric fractal fluctuation is replaced by a stochastic variable such
that (d¢?)/cdt = A. and (d€) = 0. Then the velocity fields vy, after they
have been recombined as a unique biquaternionic velocity field, are solution of
a bi-spinorial geodesics equation dV/ds = 0 which can be integrated in terms
of the Dirac equation, whose non-relativistic limit is finally the Pauli equa-
tion. Therefore, solving the Pauli equation for a given physical problem yields
a quaternionic wavefunction

Y = ¢o +ixo + (¢1 +ix1)er, (88)

from which the velocity fields can be derived, for example,

S
vh, = — 2% (0 80 + X0 8" Po + b1 8" x1 + x1 9"
me
+d0 0" o — x0 0" x0 + ¢1 0" P1 — x1 0" X1)- (89)

Then one can finally plot various realizations of the geodesics by performing
numerical integrations of the stochastic differential equation

dX++ = U++ dt + T]\/ )\CCdt, (90)

in which the explicit form of v; 4, given by equation (89), is inserted (7 is a
normalized stochastic variable such that (n?) =1 and () = 0).

A general form of a spinor wavefunction has been given by Cohen-Tannoudji
et al [20], namely for a spin 1/2 particle,

) = cos(0/2) e™"/2 |4) +sin(0/2) e'?/? |-). (91)

A simplified case has been studied by Dezael [21], who has considered the spinor

i i
= Ap exp (;L(po-T> — Eot + 00¢)) + Ay exp <ﬁ(p1 T — Byt + 01¢)> :
(92)
From this expression, the biquaternionic velocity given by mV ~ ﬁw)*lﬁ/;
—
is derived, which must be such that o, = — ¢, in the non-relativistic

approximation considered here. This is only possible provided pg = p7, and
oo = o1 [21]. The bi-quaternionic velocity becomes

Ve (- 2m) (93)

m rsinf
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Figure 2: Numerical simulation of a typical spinorial geodesics in a fractal space. This is one
realization among infinite possible realizations of the solutions of the stochastic differential
equation (90). The plotted curve corresponds to the following values of the parameters:
D = h/2 = 0.05, dt = 0.01, 0 = 1/2, v = 1. We have chosen a large value for the spin,
o = 5h, in order to render the spiral shape fully apparent. Note that a ‘same’ given curve
may be plotted at infinite possible resolution values dt, and that there are infinite such fractal
geodesics.

where @} is the unitary vector associated to the rotation by ¢ around pg. Dezael
finally obtains

1 (]
— ~ = (2 — 94
Uit m (p0+rsin9u¢)’ (94)

i.e., in Cartesian coordinates,

p— _00__ Y
T = = 22y

y = %IQiyZ (95)

z =

<[5

These equations clearly describe a class of spiral motions such that mr%ﬁ = 0y,
where r can take any value, so that » — 0 implies qﬁ — 00, in agreement with
the early spiral models [8].

Then we finally carry over this expression for the classical velocity field into
the stochastic differential equation (90) and integrate it numerically. A typical
example of the spiral fractal paths obtained in this process is shown in figure 2.

20



7 Discussion and conclusion

One would require a genuine fundamental physical theory, not only to be able
to derive from physical principles the correct equations of physics, but also that
some physical mechanism would always prevent an equation to be written when
it is unphysical. Such a requirement is clearly impossible when the physical
foundation of a physical theory remains axiomatic. This is the case of standard
quantum mechanics, where no physical principle prevents a prior: from writing
a Pauli equation with the wrong magnetic moment. It is the experiment which
proves such an equation to be wrong, and also the experiment which proves the
Dirac equation and its non-relativistic limit to be correct.

The attempts of the scale relativity theory to found quantum mechanical
laws on first principles allow one to come back on this question. We have shown
in this paper that it was indeed impossible to directly write a non-relativistic
equation for spin-1/2 particles, and that it could therefore only be derived as a
non-relativistic limit of the relativistic equation.

In the framework considered here, the non-relativistic case corresponds to
considering only a fractal three-dimensional space, without yet introducing frac-
tality for the time variable (which is identified in this case of Galilean approx-
imation with an invariant proper time), while the relativistic case is identified
with working in a full four-dimensional spacetime. The reason for this identifi-
cation is simply that the main transition from the (small scale) fractal to (large
scale) non-fractal and classical regimes occurs around the Einstein-de Broglie
scale [8, 1], i.e. A/p for space and A/E for time. It is therefore the very ex-
istence of mass, through the relation m? = E? — p%(for ¢ = 1), which leads
to a fundamental disymmetry between space and time as concerns the scale
space. When going from large scales to small scales, one first encounters the
space transition (as exemplified e.g. by the fact that atomic physics is mainly
non-relativistic), then at scales smaller than the Compton scale ii/m (which is
the Einstein scale in rest frame) the time transition to full fractal spacetime and
relativistic quantum mechanics.

Now, in the scale relativity theory, the inclusion of spin in the description
comes from the account of the differential parity (mirror) discrete symmetry
breaking of the transformation dx — —dx which is a direct consequence of the
non-differentiable geometry. It is a generalisation of the equivalent (proper)
time symmetry breaking of the transformation ds — —ds, that gives birth to
the complex nature of the wavefunction [1, 4].

Accounting for all these effects in fractal spacetime has led to the construc-
tion of bi-spinors (described as complex quaternions) and to the derivation of
the Dirac equation [4]. Taking its non-relativistic limit (which we have explicitly
done in the present paper) yields Pauli spinors and the Pauli equation with the
correct magnetic moment including the relativistic factor 2. Now the question
addressed in this paper was whether the account of both the space and time
discrete symmetry breakings on the differential elements was possible in a frac-
tal space (without including fractality on time). The answer is clearly no, since
the integration of the basic geodesics equation in terms of a Schrodinger form
has revealed to be impossible in that case (which also means the impossibility
to define a function 1 having all the properties of a wavefunction).

Following the requirement of coherence of fundamental theories recalled at
the beginning of this conclusion, we interpret this apparently negative result as
a success of the theory, and as a direct proof of the fundamentally relativistic
nature of the spin, which remains true and relevant even in a non-relativistic
situation.

In section 6, we have given an example of numerical integration of a typical
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fractal geodesics (among infinite possible geodesics whose set builts the wave-
function) in the spinorial case, which is characterized by multiscale fractal spiral
patterns. This allows one to have a physical geometric picture of what spin is.
Such a picture may help understanding more thoroughly the various features
of EPR spin experiments (which, as already remarked in [4], is accounted for
in its essence in the scale relativity framework since it alows one to derive the
standard properties of Dirac bi-spinors). This will be developed in a forthcom-
ing work, including a scale-relativistic analysis of density matrices, which are
at the heart of some of the subtleties of the EPR experiment. We may also
contemplate the possibility of using such a spin representation to achieve fu-
ture experimental tests of the fractal approach. Indeed, even though the true
spin nature of elementary particles is probably not reproducible since it involves
the full infinities of the non-differentiable geometry (without any lower limit),
one could consider an experimental (artificial) construction of spiral trajectories
which would be fractal on a large enough range of internal scales so that some
of the properties of a quantum spin could be recovered as an approximation.
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