
J. Phys. A: Math. Gen.30 (1997) 3967–3975. Printed in the UK PII: S0305-4470(97)79392-2

Numerical simulation of a quantum particle in a box
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Abstract. It is shown how one can get numerical prediction of quantum mechanical particle
behaviour without using the Schrödinger equation. The main steps of this development are the
non-differentiability hypothesis, the equations of motion entailed by this hypothesis, and the
numerical formulation of a simple one-dimensional problem: the particle in a box.

1. Introduction

Since its development, quantum mechanics has been interpreted in various ways; here we
shall start with the Feynman interpretation of quantum mechanics. Feynman and Hibbs
[1] described the most important paths of typical quantum mechanical particles as ‘quite
irregular on a very fine scale’. Abbot and Wise [2] formulated the same observation in a
more modern language saying the typical quantum mechanical paths are of fractal dimension
two.

More recently Nottale [3, 4], relying on an extension of the relativity principle,
introduced as a new hypothesis that the typical quantum mechanical paths are non-
differentiable. This led to a radically different description of physics, now embedded in a
fractal spacetime. This was the first step of a new theory dubbed scale-relativity, which
is now in development. We shall review the main steps of this development, which was
presented in [3].

In this paper we shall then show how, by means of numerical simulation, one can get
the quantum mechanical behaviour without using the Schrödinger equation. Simply making
the non-differentiability hypothesis, not going further in the scale relativistic description,
will suffice to achieve this.

2. Non-differentiability

We shall first briefly review the main steps entailed by the non-differentiability hypothesis
as described in [4]. We assume a continuous non-differentiable space. Considering the
geodesics of such a space, we get two straightforward results.

First, knowing that a continuous curve of finite length must be nearly everywhere
differentiable (Lebesgue’s theorem), we conclude that a nearly nowhere differentiable
continuous curve must be of infinite length. More precisely: the length of a geodesic
in a non-differentiable space is scale dependent and divergent when the resolution tends to
zero.
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Figure 1. Fractal space. The bold lines show the eight geodesics between A and B. The space
being fractal, this is repeated at all resolutions, so the number of geodesics is infinite.

Second, in a non-differentiable space there are an infinity of geodesics between any two
points. This will not be proved here but figure 1 shows that even in a simple orthogonal
fractal space this statement holds.

We describe the position vector of a particle by a finite, continuous fractal 3-function
x(t, dt) explicitly dependent on the time resolution. On our infinite set of geodesics we
may now write an infinitesimal element of motion:

dXi = dxi + dξi (1)

where dxi = 〈dXi〉, which entails that〈dξi〉 = 0 (i = 1, 2, 3 and represents thex, y, z
directions; dξ should depend on an extra indexν referring to the various geodesics, which
is omitted). The symbol〈 〉 stands for an average over the omitted indexν. dξi is the
difference between the position vector dXi (light dashed line of figure 2) on an actually
considered geodesic (bold dashed line of figure 2) and the mean position vector dxi (bold
line of figure 2) on the set of geodesics.

Non-differentiability entails that

lim
dt→0+

x(t + dt)− x(t)
dt

6= lim
dt→0+

x(t)− x(t − dt)

dt
(2)

for nearly all points on every particular geodesic considered. Following Nelson [5], we then
define mean forward and backward derivatives:
d+
dt
y(t) = lim

dt→0+

〈
y(t + dt)− y(t)

dt

〉
d−
dt
y(t) = lim

dt→0+

〈
y(t)− y(t − dt)

dt

〉
(3)

(the existence of these limits is discussed in [3, p 144]) which we apply to the position
vector, obtaining

d+
dt
x(t) = b+ d−

dt
x(t) = b−. (4)
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Figure 2. Set of geodesics and average.

Putting (1) and (3) together, we get

dx(t) = b+[x(t)] · dt + dξ+(t) = b−[x(t)] · dt + dξ−(t) (5)

which describes the position vector as a stochastic process. Note that at a given point the
information has been doubled: the two processes are to be taken in account. We assume
that (5) is a Wiener process [6], this means that the dξ ’s are supposed to have a mean of
zero (true by construction), to be Gaussian, mutually independent and such that

〈dξ+i (t) · dξ+j (t)〉 = 2Dδij dt

〈dξ−i (t) · dξ−j (t)〉 = −2Dδij dt (6)

whereD is a constant (dimensionally a diffusion coefficient); the− sign for the second
equation is necessary because dt < 0 in that equation. The dt dependence is a consequence
of the fractal dimension two of Feynman, and Abbot and Wise (further explanation can be
found in [3]).

The only real assumptions are the Gaussian character of the process, but this is not
essential to obtain our results (this will be shown in section 3), and the mutual independence
(i.e. the presence of theδij Kronecker symbol). The last could perhaps be relaxed, but this
is beyond the scope of this paper.

3. Equation of motion

Starting from a generic functionf (x, t), we expand it in right and left Taylor series to
second order and we then replace the dxi ’s with the sum dXi = dxi + dξi . Averaging over
the set of geodesics, we obtain ([7 p 1081]):

d+f
dt
=
(
∂

∂t
+ b+ · ∇ +D1

)
f

d−f
dt
=
(
∂

∂t
+ b− · ∇ −D1

)
f. (7)

The development of (7) shows that the Gaussian hypothesis for the dξi ’s is not essential,
in fact the Laplacian operator is a consequence of the fractal dimension two alone. Let us
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now define two new mean velocities:

V = 1
2(b+ + b−) U = 1

2(b+ − b−). (8)

We can combine them in a single complex velocity:

V = V − iU . (9)

By the same way we define two new derivatives:

dV
dt
= 1

2

d+ + d−
dt

dU
dt
= 1

2

d+ − d−
dt

(10)

which we also combine into a single complex derivative:

d̄

dt
= dV

dt
− i

dU
dt
=
(
∂

∂t
− iD1+ V · ∇

)
. (11)

Here, Nottale makes the fundamental hypothesis that ‘the passage from classical mechanics
to the new non-differentiable mechanics can be implemented by a unique prescription:
Replace the standard time derivative with the new complex derivative’. ([3, p 148].)

4. Solution of the equation of motion

Nottale at this point shows the equivalence of non-differentiable mechanics and quantum
mechanics (QM) by developing the mathematical formalism, starting with Newton’s
equation and finally obtaining the Schrödinger equation.

We shall show here that, from this low-level description we have now reached, it is
possible to simulate some simple QM problems.

Let us start with our complex Newton equation:

−∇U = md̄
dt
V . (12)

SinceU , being a potential, is a real quantity, we separate (12) into real and imaginary parts:

m

(
∂

∂t
V −D1U + (V · ∇)V − (U · ∇)U

)
= −∇U

m

(
∂

∂t
U +D1V + (V · ∇)U + (U · ∇)V

)
= 0. (13)

We shall restrict ourselves here to the simplest solution of this system: a one-dimensional
problem with infinite limit conditions and without force (thusU = constant), i.e. a particle
in a box. The average classical velocity of such a particle is expected to be zero; and
V , being the sum of the forward and backward velocity, is expected to be this classical
velocity. So our system reduces to the one-dimensional one:

−D1U − (U · ∇)U = 0
∂

∂t
U = 0. (14)

The second equation indicates thatU is a function ofx alone, so we finally obtain

∂

∂x

(
∂

∂x
D · U(x)+ 1

2
U2(x)

)
= 0. (15)

This can be solved,

U(x) =
√

2k1tg

(−√2k1x

2D + k2

)
(16)
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where the limit conditions will determine the integration constantsk1 andk2.
U being a difference of velocities, we interpret it as a kind of acceleration [3]. We can

thus reasonably suppose thatU → +∞ on the left border (that isx → 0) andU → −∞
on the right border (that is, conventionallyx → a, if our ‘box’ is of sizea).

The limit conditions yield

U(x) = 2Dnπ
a

tg
(
−nπx

a
+ π

2

)
. (17)

Here we remember that (using (5), (8) andV = 0)

dx(t) = U(x(t)) · dt + dξ+(t) = −U(x(t)) · dt + dξ−(t). (18)

We can choose one of these equations (describing respectively the behaviour of the particle
‘towards’ and ‘away from’ a point) to simulate the trajectory of our particle.

Furthermore, it has been shown by Pissondes [8], that when there are no external forces
applied on the particle the energy expression becomes

T = m

2
V2− imD∇V . (19)

This is precisely the expression differentiated in (15) multiplied bym. So, in our case we
have

T = k1m = 2n2π2D2

a2
(20)

which is exactly the quantum energy(E = n2π2h̄2/2ma2) (after the substitutionD →
h̄/2m). This replacement is precisely the condition necessary to obtain the Schrödinger
equation from (11) (this is shown in [3]).

5. Numerical simulation

The stochastic process we have to consider now explicitly becomes

dx(t) = 2Dnπ
a

tg
(
−nπx

a
+ π

2

)
· dt + dξ+(t) (21)

where dξ+(t) is a random variable of a Gaussian distribution and is of width
√

2D dt . We
simplify all expressions by taking 2D · dt = 1, so our process can finally be written as

dx(t) = nπ

a
tg
(
−nπx

a
+ π

2

)
+N(0, 1) (22)

whereN(0, 1) stands for the normalized random variable.
We cannot expect a numerical simulation of this process to give us directly the trajectory

of a particle, since we know of the huge ratio between quantum timescales and classical
timescales. In fact we would have to memorize about 108 positions. However, we shall
show a piece of such a trajectory in figure 7 later. The output of this simulation will thus
be a profile of the density of the presence of the particle in the box,r(x). To construct it
we divide our box into 600 pieces and count the number of timesteps the particle is in each
specific box.

On our schemes, thex position in the box is drawn horizontally, and the number
of occurrences vertically. So a point of our curves has to be understood as(x, y) ⇔
(box numberx, amount of steps for which the particle was in boxx). The results are
always normalized. The continuous curves give the result of our simulation. The dashed
curves are the result of conventional quantum mechanics, with the same normalization as
the numerical result(rQM(x) = sin2(nπx/a)) [9].
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Figure 3. Result with(n = 9).

Figure 4. Result with(n = 3).

Figures 3 and 4 show a first attempt of modelization withn = 9 (108 steps) andn = 3
(5× 108 steps), respectively. As we can see in figure 5 which is a magnification of the
right peak of figure 4, the individual peak shows an excellent agreement with the theoretical
sin(x)2 profile normalized for that peak (dashed curve) [9]. The problem of exchange
between the different peaks seems less satisfactory.

There are two possibilities to improve on our result: first, by using more steps in time,
which is not machine-time friendly; second, by using the arbitrary initial conditions to our
advantage. In fact, when we start the simulation we have to put our particle in a specific
point of the box. What we propose here is to restart our problem after, say, 105 steps in
time with a new starting position. This leads to a better ‘thermalization’ of the system
and increases convergence [10]. In fact this is equivalent to the simultaneous simulation of
multiple particles with different initial positions (which could be treated vectorially).
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Figure 5. Magnification of the right peak of figure 4.

Figure 6. Corrected simulation with(n = 3).

Figure 6 shows the result of such a ‘pseudo-multitrajectory’ simulation, withn = 3
and 108 steps. If we compare with figure 4, we see the dramatic increase of convergence.
The fit between the quantum mechanical result and our simulation (data of figure 6) is now
excellent:

σ =
√∑600

i=1(rQM(i)− r(i))2
600

= 0.041

ρ =
∑600

i=1(rQM(i)− 〈rQM〉)(r(i)− 〈r〉)∑600
i=1(rQM(i)− 〈rQM〉)2

∑600
i=1(r(i)− 〈r〉)2

= 0.9983 (23)

whereσ is the standard deviation andρ is the correlation coefficient between the quantum
mechanical result and our result (〈 〉 stands for the average).
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Figure 7. Trajectory of a particle around a density node.

Figure 7 shows a fractal trajectory produced by our simulation around a node (horizontal
line), for 4000 steps in time (horizontally). In this examplen = 3 anda = 600 (node at
x = a/3= 200).

Some comments should be considered when speaking about ‘quantum trajectories’. The
concept of quantum trajectory is not incompatible with the traditional view of QM: the fact
that we obtained our results illustrates this. One should also remember that the trajectories
mentioned are continuous. The quantum ‘jumps’ between two peaks occur continuously as
shown in figure 7, which in fact is an illustration of such a ‘jump’ from the central peak to
the left peak of figure 6.

6. Conclusion

We have shown that a quantitative correct prediction of the behaviour of a quantum particle
in a box can be obtained without writing explicitly the Schrödinger equation nor using
any conventional quantum axiom. In fact, it has been shown that the assumption of non-
differentiability of space alone is suffice to obtain this result (being in the domain of non-
relativistic QM—the relativistic extension will require a non-differentiable time as well).

A more detailed discussion about this equivalence of non-differentiability and the
Schr̈odinger equation can be found in [3, 11], were it is in fact shown that equation (12) is
equivalent to Schr̈odinger’s equation, which can be seen as a ‘prime integral’ of (12).

An extension to other problems such as the harmonic potential has shown (in
preparation) that this method remains valid. Furthermore, a detailed study of the influence
of the fractal dimension and of the time resolution is expected to yield results about the
understanding of the classical–quantum transition [10] (as related to the fractal dimension
transition of the trajectories from one to two).
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