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Abstract.  The theory of scale relativity generalizes the application domain
of Einstein's principle of relativity to scale transformations of space-time
resolutions. In this theory, we no longer assume that the space-time
continuum is differentiable, this implying its fractal character. Both classical
and quantum laws may emerge from a unique, more profound, scale law.
The effects of nondifferentiability (complex nature of wave function, new
terms in differential equations of mean motion) are accounted for by a scale-
covariant derivative that transforms the equations of classical mechanics into
the Schrödinger equation. Using an intermediate description in terms of a
"fractal potential", we finally establish the m–1 dependence of the Compton-
de Broglie wavelength. © Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

The theory of scale relativity [1] is a new approach to understanding
quantum mechanics, and more generally physical domains involving scale
laws, such as cosmology [1,2] and chaotic systems [1–4]).

It is based on a generalization of Einstein's principle of relativity to scale
transformations. Namely, we redefine space-time resolutions as
characterizing the state of scale of reference systems, in the same way as
velocity characterizes their state of motion. Then we require that the laws of
physics apply whatever the state of the reference system, of motion
(principle of motion-relativity) and of scale (principle of scale-relativity). The
principle of scale-relativity is mathematically achieved by the principle of
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scale-covariance, requiring that the equations of physics keep their simplest
form under transformations of resolutions [1,5,6].

It is well-known that the geometrical tool that implements Einstein's
general motion-relativity is the concept of Riemannian, curved space-time.
In a similar way, the concept of fractal space-time [1,5,20] also
independently introduced by Ord [21] and El Naschie [22], is the geometric
tool adapted to construct the new theory. We use here the word "fractal" in
its general meaning [7], denoting a set that shows structures at all scales and
is thus explicitly resolution-dependent. More precisely, one can demonstrate
[1,8] that the D T-measure of a continuous, almost everywhere
nondifferentiable set of topological dimension DT is a function of resolution,
L = L(ε), and diverges when resolution tends to zero, L(ε) → ∞ when
ε → 0. In such a framework, resolutions are considered to be inherent to
the description of the new, fractal, space-time. A new physical content may
also be given to the concept of particles in this theory: the various properties
of "particles" can be reduced to the geometric structures of the (fractal)
geodesics of such a space-time [5,1,9].

Three levels of such a theory have been considered. (i) A "Galilean"
version corresponding to standard fractals with constant fractal dimensions,
and where dilations laws are the usual ones [1,8]. This theory provides us
with a new foundation of quantum mechanics from first principles. (ii) A
special scale-relativistic version that implements in a more general way the
principle of scale relativity. It yields new dilation laws of a Lorentzian form,
that imply to re-interpret the Planck length-scale as a lower, impassable
scale, invariant under dilations [6,1]. The predictions of such a theory depart
from that of standard quantum mechanics at large energies [1,6,4,10]. (iii)
The third level, "general scale-relativistic" version of the theory deals with
non-linear scale laws and accounts for the coupling between scale laws and
motion laws [9,10]. It yields a new interpretation of gauge invariance and
allows one to get new mass-charge relations that solve the scale-hierarchy
problem [9,10].

The aim of the present letter is to describe in a precise way the new
scale-relativistic foundation of quantum mechanics. We shall focus here on
three particular points: (i) the emergence of both classical laws and quantum
laws from single, more fundamental scale laws; (ii) the need for a complex
number formalism that takes its origin in a symmetry breaking of the local
time reflection invariance (dt →  –dt ) arising from the giving up of
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differentiability; (iii) the demonstration and meaning of the Compton - de
Broglie formula.

2. FROM SCALE EQUATIONS TO SCALE-COVARIANT
DERIVATIVE

Assume that space is continuous but nondifferentiable, while time remains
classical. This corresponds to the non-relativistic situation (from the
viewpoint of motion laws) to which we restrict ourselves in the present
paper. The case of a full fractal, nondifferentiable space-time  has been
treated elsewhere [9, 10, 11]. Consider a small increment dXi of the
nondifferentiable 3-coordinate along one of the geodesics of the fractal
space. Giving up differentiability has three main consequences.

2.1. Fractal behavior

Strictly, the nondifferentiability of the coordinates means that the velocity
V = dX/dt is no longer defined. However, continuity and nondifferentiability
implies scale-divergence [1,8]. Therefore the basis of our method consists in
replacing the classical velocity by a function that depends explicitly on
resolution, V = V(ε) [1, Chap. 5.3, Fig. 5.6]. Only V(0) is undefined, while
V(ε) is now defined for any non-zero ε. The new scale-dependence of the
velocity forces us to complete the standard equations of physics by
differential equations of scale. The simplest possible equation that one can
write for V is a first order, renormalization-group-like differential equation,
written in terms of the dilatation operator d/dlnε [8], in which the
infinitesimal scale-dependence of V is determined by the "field"V itself,
namely:

dV
dlnε   =  β(V)  , (2.1)

The β−function here is a priori unknown, but we can use the fact that V <
1 (in motion-relativistic units) to expand it in terms of a Taylor expansion.
One obtains:

dV
dlnε   =    a  +  b  V + O(V2)  , (2.2)
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where a and b are "constants" (independent of ε, but possibly dependent on
space-time coordinates). Setting b = –δ and a = v δ, we obtain the solution
of this equation under the form:

V  =  v  +  k ε–δ , (2.3)

where k is an integration "constant" (independent of ε). From dimensional
analysis, we can write it under the form k = ζ  λδ , with ζ = ζ(t)
dimensionless, <ζ2> = 1 and λ a constant length-scale. We get:

V  =  v +  ζ  (λε)
δ
 . (2.4)

We recognize here a typical fractal behavior with fractal dimension
D = DT + δ, where DT is the topological dimension (= 1 here, since our
description concerns displacements along geodesical curves). Namely, at
large scales ε >> λ, the velocity shows a classical (i.e., scale-independent)
behavior, V ≈ v, while at small scales ε << λ, it shows a power-law, scale-
divergent behavior V ≈ ζ  (λ/ε)δ . The transition scale λ (that will be
interpreted in what follows as the Compton scale) thus stands out as a
fractal-nonfractal transition scale (that takes place not in space, but in the
new resolution dimension).

 The resolution ε in the above formula is a space-resolution, ε = δX. We
can relate it to time-resolution by writing (2.4) in the asymptotic domain
ε << λ  under the form:

δX
cδt   ≈  ( λδX)D–1  

. (2.5)

This provides us with a fundamental, well-known formula on fractals:

δXD  =  λ D–1 cδt . (2.6)

By reinserting this result in (2.4), we obtain the following expression (where
we have reinserted the indices) for the elementary displacement in terms of
time-resolution [1,8]:

dXi   =  vi  dt   +  λ1–1/D ζ i (cdt)1/D  , (2.7)

where we have identified the time resolution with the time differential
element (see below).
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As we shall see in what follows, the first term yields classical physics
while the second is one of the source of the quantum behavior. In our
theory, they are both present whatever the scale, but the "classical" term is
dominant at large scale while the "quantum" term is dominant at small
scales (see Figure 1). Then in our approach the quantum and the classical
laws are irreductible to each other, but both find their origin in a single,
more profound, scale-dependent description whose equations take the form
given by Eq. (2.1) in the simplest case. In the special case of fractal
dimension D = 2 (see below), the time transition is easily identified with the
de Broglie time-scale τ ≈ cλ / v2  = h/m v2, by writing (2.7) under the form
dX  = v  dt [1 + ζ  (cλ / v2dt)1/2].  (See Ref. [8] for a more complete
description of the quantum / classical transition in our framework).

ln(δ t )

ln
(δ

X
)

δ t
1 / 2

δ t

c lassical

quantum

Fig. 1. Schematic description of the variation with scale of the two components of the

elementary displacement in a nondifferentiable, fractal space-time (geodesics of fractal

dimension 2, see text) The transition betwen the two regimes is identified with the de

Broglie time scale, τ = h/E.

2.2. Infinity of geodesics

Because of nondifferentiability (and of the subsequent fractal character of
space), there will be an infinity of fractal geodesics that relate any couple of
points in the fractal space [5,1]. This implies jumping to a statistical
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description. We can decompose dXi in terms of a mean, <dXi > = dxi =
vi dt, and a fluctuation respective to the mean, dξi  (such that <dξi > = 0 by
definition):

dXi   =  dxi  +  dξi    . (2.8)

We recover the form of Eq.(2.7), and we can identify the fluctuation dξi

with the "fractal" term λ1–1/D ζ i dt1/D .

2.3. Two-valuedness of time derivative and velocity vector:

The nondifferentiable nature of space-time implies an even more dramatic
consequence, namely, a breaking of differential time reflection invariance.
Consider indeed the usual definition of the derivative of a given function
with respect to time:

    
df
dt   =  limdt→0   

f(t +dt) – f(t)
dt    =  limdt→0  

f(t) – f(t –dt)
dt   . (2.9)

The two definitions are equivalent in the differentiable case. One passes from
one to the other by the transformation dt → –dt (time reflection invariance
at the infinitesimal level). In the nondifferentiable situation considered here,
both definitions fail, since the limits are no longer defined. The scale-
relativistic method solves this problem in the following way.

We attribute to the differential element dt the new meaning of a variable,
identified with a time-resolution, dt = δt  ("substitution principle"). The
passage to the limit dt → 0 is actually devoid of physical meaning (an
infinite energy would be needed to really perform a measurement at zero
time resolution interval). The physics is now in the behavior of the function
during the "zoom" operation on δt. The two functions  f'+ and f'– are now
defined as explicit functions of t  and of dt:

 f'+(t, dt)  =   
f(t +dt) – f(t)

dt      ;     f'–(t, dt)  =   
f(t) – f(t –dt)

dt   . (2.10)

When applied to the space variable, we get for each geodesic two velocities
that are fractal functions of resolution, v+(t, dt) and v–(t, dt). In order to go
back to the classical macroscopic domain, we smooth out each geodesic
with balls of radius larger than τ (the fractal / non fractal transition), then we
take the average on the whole set of geodesics. We get two mean velocities
v+(t)  = <v+(t, dt>>τ)> and  v-(t) = <v–(t, dt>>τ)>, but after this double
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averaging process, there is no reason for these two velocities to be equal,
contrarily to what happens in the classical, differentiable case [12,13].

In summary, while the concept of velocity was classically a single
concept, we must introduce, if space-time is nondifferentiable, two velocities
instead of one even when going back to the classical domain. Such a two-
valuedness of the velocity vector is a new, specific consequence of
nondifferentiability that has no standard counterpart (in the sense of
differential physics), since it finds its origin in a breaking of the symmetry (dt
→ –dt ). Such a symmetry was considered self-evident up to now in physics
(since the differential element dt  disappears when passing to the limit), so
that it has not been analysed on the same footing as the other well-known
symmetry. Note that it is actually different from the time reflection
symmetry T, even though infinitesimal irreversibility implies global
irreversibility.

 Now, at the level of our description, we have no way to favor v+ rather
than v-. Both choices are equally qualified for the description of the laws of
nature. The only solution to this problem is to consider both the forward (dt
> 0) and backward (dt < 0) processes together. The number of degrees of
freedom is doubled with respect to the classical, differentiable description (6
velocity components instead of 3).

A simple and natural way to account for this doubling of the needed
information consists in complex numbers and the complex product [1,8]. As
we shall recall hereafter, this is the origin of the complex nature of the wave
function in quantum mechanics, since the probability amplitude is defined in
terms of the complex action that is naturally introduced in such a theory.
But one can demonstrate that the complex calculus is nothing but a
particular choice of representation, that achieves the simplest description.
Namely, using a different product would introduce additional terms in the
Schrödinger equation, as we shall demonstrate in a forthcoming work. Note
also that the new complex process, as a whole, recovers the fundamental
property of microscopic reversibility.
 We are then led to write:

dX±
i   =  dx±

i  +  dξ±
i  , (2.11)

respectively for the forward process (+) and backward process (–). From
our above discussion, the fluctuations dξ± writes:
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< 
dξi

±

dt   
dξj

±

dt  >  =  ± δij
  c2 ( 

λ
cdt )

2–2/D
, (2.12)

This relation is invariant under translations and rotations in space
between Cartesian coordinate systems. In the special, “Galilean” scale-
relativistic case that we consider here, the scale-invariant is the fractal
dimension itself. Indeed, as first demonstrated by Feynman [14], then
confirmed using a fractal description by Abbott and Wise [15] and other
authors (see [1] and Refs. therein), the fractal dimension of typical quantum
mechanical paths is D = 2. We shall reduce our discussion in what follows to
this particular case. See [4,10] for a discussion of the case D ≠ 2 and [6,1]
for D variable). When D = 2, Eq. (2.12) becomes:

<dξi
±  dξ

j
±> = ± λ δij

  cdt   . (2.13)

We can now jump to the second step of the fractal-space description, by
constructing the covariant derivative that describes the combined effects of
the new displacement laws and scale laws. We define mean forward (+) and
backward (–) derivatives, which, once applied to xi, yield the above forward
and backward mean velocities

 d+xi(t)
dt   =  vi

+  ;   d–xi(t)
dt   = vi– (2.14)

The averaging is here taken on the family of geodesics. As a consequence
the Born statistical interpretation of quantum mechanics will be ensured
from the very beginning of our construction, since the "particle" can be
identified with one random geodesic among their infinite set (more
generally, with the subset of the geodesics that share the geometric
properties that correspond to a given measurement result). The forward and
backward derivatives of Eq.(2.14) can be combined in terms of a complex
derivative operator [1],

 
d
dt  =  

(d+ + d−) − i (d+ − d−)
2dt   , (2.15)

which, when applied to the position vector, yields a complex velocity

   V i     =    
d
dt  x

i    =   Vi − i  Ui  =    
vi

+ + vi–
2    −  i    

vi
+ − vi–

2    . (2.16)
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Consider a function f(X,t), and expand its total differential to second order.
We get

d  f
dt   =   

∂f
∂t   + ∇∇∇∇ f . dX

dt    +  
1
2
  Σ ij  

∂2f
∂xi∂xj

  
dXi dXj 

dt    . (2.17)

We may now compute the forward and backward derivatives of f. In this
averaging procedure, the mean value of dXi/dt  amounts to d±xi/dt = v±i ,
while <dXi dXj> reduces to <dξ±i  dξ±j>, so that the last term of Eq. (2.17)
amounts to a Laplacian thanks to Eq. (2.13). We obtain

d±f /dt  =  (∂/∂t  + v± .∇∇∇∇   ±   1
2
 λc  ∆  ) f    . (2.18)

By combining them we get our final expression for the complex scale-
covariant derivative [1]:

d
dt   =      

∂
∂t    +   V     . ∇∇∇∇         − i   1

2
 λc  ∆     . (2.19)

 We now apply the principle of scale covariance, and postulate that the
passage from classical (differentiable) mechanics to the new nondifferentiable
mechanics that is considered here can be implemented by a unique
prescription:  Replace the standard time derivative d/dt  by the new
complex operator d/dt. As a consequence, we are now able to write the
equation of the geodesics of the fractal space under its covariant form:

d 2
dt2  xi  =  0  . (2.20)

As we shall recall hereafter (and as already demonstrated in Refs. [1,8,4]),
this equation amounts to the free particle Schrödinger equation.

The last step in our construction consists in writing the “field” equations,
i.e., the equations that relate the geometry of space-time to its matter-energy
content. At the very simplified level of description that is considered here,
there is only one geometrical free parameter left in the expression of the
scale-covariant derivative, namely the length-scale λ. We shall demonstrate
below that λ must be the Compton length of the particle considered, i.e., λ
= h /mc.
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3. SCALE-RELATIVITY AND SCHRODINGER EQUATION:
LAGRANGIAN APPROACH

Let us finally recall the main steps by which one may pass from classical
mechanics to quantum mechanics using our scale-covariance [1,10-14]. We
assume that any mechanical system can be characterized by a Lagrange
function L(x, VVVV, t), from which an action S is defined:

S  =  
 ⌡
⌠

t1

t2

 L(x, VVVV, t) dt . (3.1)

Our Lagrange function and action are a priori  complex since VVVV  is
complex, and are obtained from the classical Lagrange function L(x, dx/dt,
t) and classical action S precisely by applying the above prescription d/dt →
d/dt. The principle of stationary action, δ S = 0, applied to this new action
with both ends of the above integral fixed, leads to generalized Euler-
Lagrange equations [1]:

d
dt  

∂L
∂Vi

   =   
∂L
∂xi

    . (3.2)

Other fundamental results of classical mechanics are also generalized in the
same way. In particular, assuming homogeneity of space in the mean leads
to defining a generalized complex momentum given by

P  =   
∂L
∂V

     . (3.3)

If one now considers the action as a functional of the upper limit of
integration in Eq. (3.1), the variation of the action yields another expression
for the complex momentum, as well as a generalized complex energy:

PPPP  =  ∇∇∇∇    S   ;     E  =  –∂ S / ∂t  . (3.4)

We now specialize and consider Newtonian mechanics. The Lagrange
function of a closed system, L = 1

2m vvvv2−Φ, is generalized as  L(x, VVVV , t) =
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1
2 mVVVV2 − Φ. The Euler-Lagrange equation keeps the form of Newton's
fundamental equation of dynamics

m   
d
dt  VVVV    =  −∇∇∇∇  Φ   , (3.5)

but is now written in terms of complex variables and operator. In the free
particle case (Φ = 0), we recover the geodesics equation (2.20), d 2xi /dt2 =
0. The complex momentum PPPP now reads:

PPPP        = m VVVV            , (3.6)

so that the complex velocity VVVV is the gradient of the complex action, VVVV    ====
∇∇∇∇S/m.

We may now define the wave function ψ  as another expression for the
complex action S,

ψ  =  eiS/mλc . (3.7)

It is related to the complex velocity as follows:

VVVV  =  −i  λ c ∇∇∇∇ (lnψ)  . (3.8)

From this equation and (3.4), we get a demonstration of the correspondence
principle for momentum and energy:

PPPP ψ   =  – i m λ c ∇∇∇∇ ψ     ;     E ψ  =  i  m λ c  ∂ψ/∂t  . (3.9)

Indeed we shall demonstrate at the end of this paper that mλc must be a
constant (= h). Note that (3.9) are now exact equations rather than a
"correspondence". We have now at our disposal all the mathematical tools
needed to write the complex Newton equation in terms of the new quantity
ψ.  It takes the form

  i  m λ c   
d
dt  (∇∇∇∇ lnψ )  = ∇∇∇∇ Φ  . (3.10)

Replacing d/dt by its expression (Eq. 2.19) yields after some standard
calculations [1]:
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    m  
d
dt  VVVV   =   − m λ c∇∇∇∇    { i   

∂
∂t  lnψ  +  

λc
2

  
∆ψ
ψ    }  =    −∇∇∇∇ Φ  . (3.11)

Integrating this equation yields the Schrödinger equation (since λ = h/mc,
see Sec. 4):

1
2  (λc)2 ∆ψ  +  i  (λc)  

∂
∂t ψ    −  

Φ
m ψ  =  0   . (3.12)

It is remarkable that, in our approach, we have obtained the Schrödinger
equation without explicitly introducing a probability density, nor writing
Kolmogorov equations, but as a mere expression of our complex
Newtonian dynamics. The Born axiom, i.e. the fact that  ρ  = ψ ψ† yields
the density of probability to find the particle at a given position (more
generally in a given state) is a direct consequence of our basic principle that
the various (wave + corpuscle) properties of what we call "particle" can be
reduced to the geometric properties of the infinite set of geodesics of the
fractal space-time. This have been recently corroborated by numerical
simulations of our basic mechanism made by Hermann [18], who recovered
solutions to the Schrödinger equation without using it. Writing the
imaginary part of Eq. (3.12) in terms of the real part V of the complex
velocity V (V is identified in the classical limit with the classical velocity),
one gets the equation of continuity:

∂ρ/∂t + div(ρV) = 0, (3.13)

which confirms the identification of ρ  with the probability density.
Moreover, a "measurement", in such a frame of thought, is nothing but a

sorting out of the geodesics. Namely, after the measurement there remains
only the sub-set of the initial set of geodesics that share the geometric
property given by the measurement. Von Neuman's axiom (wave function
reduction), according to which, just after the measurement, the particle is in
the state given by the measurement result, is therefore also automatically
verified.

In this regard, our theory differs in an essential point from Nelson’s
stochastic mechanics [12,13], in which the complex Schrödinger equation is
a pasting of a real Newton equation and of Fokker-Planck equations for a
Brownian diffusion process. This is an important remark, since it has been
recently demonstrated [19] that Nelson's stochastic mechanics is in
contradiction with quantum mechanics concerning multitime correlations.
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The source of the disagreement being precisely the Fokker-Planck equation
and the wave function reduction, our theory does not come under such a
problem.

4. FRACTAL POTENTIAL AND ENERGY EQUATION

In order to obtain the expression for the only remaining unknown quantity,
λ, (and then demonstrate that this must be the Compton length of the
particle) let us reexpress the effect of the fractal fluctuation in terms of an
effective “force”. We shall separate the two effects of nondifferentiability,
namely, doubling of time derivative expressed in terms of complex
numbers, and fractalization, expressed by the occurence of nonclassical
second order terms in the total time derivative, then treat them in a different
way. Once complex numbers introduced (V → V), we write the time
derivative as an "incomplete" covariant derivative (which is nothing but the
standard total derivative, but acting on complex quantities):

d
dt  =  

∂
∂t   +  V. ∇∇∇∇            . (4.1)

The equation of a free particle still takes the form of Newton’s equation of
dynamics, but including now a right-hand member:

  
d
dt  V  =  i   λc

2
   ∆ V . (4.2)

This right-hand member can be identified with a complex "fractal force"
over m , so that:

F  =   i  mcλ
2

    ∆ V  . (4.3)

In our scale-relativistic, fractal-space-time approach, this "force" is assumed
to come from the very structure of space-time, so that we can require that it
must be universal, independent of the mass of the particle. Then mλc must
be a universal constant:

mλc   =  h  . (4.4)
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This result provides us with a new definition of h, and implies that λ must
be the Compton length of the particle:

λc  =  
h

mc   . (4.5)

Once the Compton length obtained, it is easy to get the de Broglie length,
that arises from it through a Lorentz transform (see Ref. [8] for more
detail). This result solves one of the most profound questions asked in the
quantum realm, i.e., why is the Compton-de Broglie wavelength inversely
proportional to mass-energy-momentum.

The force (4.3) derives from a complex "fractal potential":

ϕ  = –i  
h

2  div V  =  – 
h2

2m
  ∆ lnψ (4.6)

The introduction of this potential now allows us to derive the Schrödinger
equation in a very fast way, by the Hamilton-Jacobi approach. Such a
derivation explains the standard quantum mechanical "derivation" via the
correspondence principle, since we stress once again that we no longer use a
correspondence but instead strict equalities. We simply write the expression
for the total energy, including the fractal potential plus a possible external
potential Φ:

E  =  
P2

2m  + ϕ  + Φ  , (4.7)

then we replace E, P and ϕ  by their expressions (3.9) and (4.6). This yields

i  h 
∂
∂t  lnψ   =   

(−i h∇∇∇∇ lnψ)2

2m   – 
h2

2m
  ∆ lnψ  + Φ , (4.8)

which is nothing but the standard Schrödinger equation:

 
h2

2m
  ∆ ψ  + i  h 

∂
∂t  ψ  – Φ ψ  =  0. (4.9)

More detail on the Hamilton-Jacobi approach and new results concerning
the Dirac equation in scale relativity can be found in Ref. [17].

5. CONCLUSION
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The aim of the present paper was to specify the concept of a “fractal space-
time” and its geodesics, then its mathematical description. The only
presently existing “space-time theories” are Einstein‘s special relativity
theory, implying an absolute Minkowski space-time, then Einstein's
generalized relativity theory, implying a relative Riemannian space-time. The
basic idea in our construction consists in keeping the concepts of general
relativity (space-time, geodesics, invariants, covariant derivative, "field"
equations, ...), but not its mathematical tools, since they are founded on
differentiability. Clearly the development of a fractal space-time theory is far
from having reached the same level of elaboration. However, at the simple
level of the theory that we have considered here, that of non-relativistic
quantum mechanics, we can already identify the various elements of the
description that are specific of such an approach.These elements are:
(i) A description of the laws that govern the elementary space-time
displacements, including in particular the quantities that remain invariant in
transformations of coordinates. In general relativity, the most important is
the metric ds2 = gµν dxµ dxν, that contains the gravitational potentials gµν. In
the case of a fractal space-time, an enlarged group of transformations must
be considered, that includes resolution transformations. In the restricted,
"galilean", scale-relativity theory only considered here, the scale invariants
are dδ (i.e., the fractal dimension is constant) and Σi(dξ

i)2. But we recall that
a more general, special scale-relativistic invariant (that takes a Lorentzian
form) may be constructed [6,1], then generalized to non-linear scale
transformations (see [9,10] for first hints).
(ii) A description of the effects of elementary displacements on other
physical quantities. The power of the space-time / relativity approach is that
all these effects can be calculated using a unique mathematical tool, the
covariant derivative. This covariant derivative depends on the geometry of
space-time. In Einstein's general relativity, it does not affect scalars, but only
vectors and then tensors. It writes DµAν  = ∂µAν + Γνµρ A

ρ: the geometry is
described by the Christoffel symbols Γν

µρ , (the “gravitational field”). In
scale relativity, its effects concern yet scalars. The partial scale covariant
derivative writes [9,10,16], dk = ∂k - 1

2
 i λc (Vk / V2) ∆ . We easily recover

our scale-covariant total derivative (2.19) from the relation d/dt = ∂/dt + Vk

dk. Note that one must be careful in working with these operators,
concerning for example the Leibniz rule, since they combine first and
second order derivatives. See [17] for a development of this new calculus.
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(iii) Equations of motion and equations of the "field", i.e., the equations that
constrain the geometries that are physically acceptable, relating them to
their material-energetic content (in general relativity, Einstein’s equations).
Covariance implies that the equations of geodesics take the simplest possible
form, that of free motion, D2xµ/ds2 = 0, i.e., the covariant acceleration
vanishes, or, in other words, the velocity in the "free fall" frame remains
constant (inertial laws). In general relativity it is developed as d2xµ/ds2 + Γµ

νρ

(dxν/ds) (dxρ/ds) = 0, which generalizes Newton’s equation, d2xi/dt2 = Fi/m.
In scale relativity, we have seen that the scale-covariant free motion
equation, d 2xi/dt2 = 0 (Eq. 2.20) becomes, when developed, the
Schrödinger equation [1] (and, in the motion-relativistic case, the Klein-
Gordon  [9,10,11,17] and Dirac equations [17]). Concerning the "field"
equation, it is still in a very rough and simplified form, since its role is played
at this level of the theory by the Compton relation λ = h / mc. Even in such
a simplified case, it already owns the expected property of relating geometry
(as given by λ , identified with the fractal / non fractal transition on the new
resolution axis) and matter (as given by the inertial mass m ).

To conclude, we hope to have shown that the quantum behavior can be
understood in this theory as manifestations of the nondifferentiable
geometry of the micro-space-time, in the same way as gravitation is
understood as the manifestations of the curvature of the large scale space-
time in Einstein's general relativity.
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