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Abstract

The theory of scale relativity extends Einstein’s principle of relativity
to scale transformations of resolutions. It is based on the giving up of
the axiom of differentiability of the space-time continuum. Three conse-
quences arise from this withdrawal.

(i) The geometry of space-time becomes fractal, i.e., explicitly resolution-
dependent : this allows one to describe a non-differentiable physics in
terms of differential equations acting in the scale space. The requirement
that these equations satisfy the principle of scale relativity leads to in-
troduce scale laws having a Galilean form (constant fractal dimension),
then a log-Lorentzian form. In this framework, the Planck length-time
scale becomes a minimal impassable scale, invariant under dilations, and
the cosmic length-scale (related to the cosmological constant) a maximal
one. Recent measurements of the cosmological constant have confirmed
the theoretically predicted value.

Then we attempt to construct a generalized scale relativity which in-
cludes non-linear scale transformations and scale-motion coupling. In this
last framework, one can reinterpret gauge invariance as scale invariance
on the internal resolutions. This approach has allowed us to make theo-
retical predictions concerning coupling constants and elementary particle
masses (electron, Higgs boson, vacuum energy of the Higgs field), which
we update in the present contribution. These predictions are successfully
checked using recently improved experimental values.

(ii) The geodesics of a non-differentiable space-time are fractal and in
infinite number: this leads one to use a fluid-like description and implies
adding new terms in the differential equations of mean motion.

(iii) Time reversibility is broken at the infinitesimal level: this can be
described in terms of a two-valuedness of the velocity vector, for which
we use a complex representation.
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These three effects can be combined to construct a covariant time
derivative operator, which transforms the fundamental equations of clas-
sical dynamics into a generalized Schrödinger equation. This provides
us with a theory of morphogenesis and self-organization, since the solu-
tions of this equation yield probability densities, which are interpreted as
a tendency for the system to make structures. Several new theoretical
predictions can be made by applying this approach to the equations of
motion of test-particles in various gravitational potentials of astrophys-
ical relevance. These predictions are supported by a comparison with
observational data on a wide range of scales, from planetary systems to
cosmological structures.

1 Introduction

The theory of scale relativity [13] is an attempt to study the consequences of
giving up the hypothesis of space-time differentiability. One can show [13] [14]
that a continuous but nondifferentiable space-time is necessarily fractal. Here
the word fractal [11] is taken in a general meaning, as defining a set, object or
space that shows structures at all scales, or on a wide range of scales. More
precisely, one can demonstrate that a continuous but nondifferentiable function
is explicitly resolution-dependent, and that its length L tends to infinity when
the resolution interval tends to zero, i.e. L = L(ε)ε→0 → ∞. This theorem
and other properties of non-differentiable curves have been recently analysed
in detail by Ben Adda and Cresson [4]. It naturally leads to the proposal
that the concept of fractal space-time [19] [24] [13] [6] is the geometric tool
adapted to the research of such a new description based on non-differentiability.
In such a generalized framework including all continuous functions, the usual
differentiable functions remain included, but as very particular and rare cases.

Since a nondifferentiable, fractal space-time is explicitly resolution-dependent,
the same is a priori true of all physical quantities that one can define in its
framework. We thus need to complete the standard laws of physics (which are
essentially laws of motion in classical physics) by laws of scale, intended to de-
scribe the new resolution dependence. We have suggested [12] that the principle
of relativity can be extended to constrain also these new scale laws.

Namely, we generalize Einstein’s formulation of the principle of relativity,
by requiring that the laws of nature be valid in any reference system, whatever

its state. Up to now, this principle has been applied to changes of state of
the coordinate system that concerned the origin, the axes orientation, and the
motion (measured in terms of velocity and acceleration)

In scale relativity, we assume that the space-time resolutions are not only
a characteristic of the measurement apparatus, but acquire a universal status.
They are considered as essential variables, inherent to the physical description.
We define them as characterizing the “state of scale” of the reference system,
in the same way as the velocity characterizes its state of motion. The principle
of scale relativity consists of applying the principle of relativity to such a scale-
state. Then we set a principle of scale-covariance, requiring that the equations
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of physics keep their form under resolution transformations.
In the present paper, we shall review various levels of development of the

theory, then consider some of its consequences in the domains of elementary
particles, cosmology and gravitational structure formation.

2 Galilean scale relativity

2.1 Standard fractal laws

Scaling laws have already been studied at length in several domains of science. A
power-law scale dependence is frequently encountered in a lot of natural systems,
it is described geometrically in terms of fractals, and algebrically in terms of the
renormalization group. As we shall see now, such simple scale-invariant laws
can be identified with a “Galilean” version of scale-relativistic laws.

Indeed, let us consider a non-differentiable coordinate L. Our basic theorem
that links non-differentiability to fractality implies that L is an explicit function
L(ε) of the resolution interval ε. As a first step, one can assume that L(ε)
satisfies the simplest possible scale differential equation one may write, namely,
the first order equation:

d lnL
d ln(λ/ε)

= δ, (1)

where δ is a constant. The solution is a fractal, power-law dependence:

L = L0(λ/ε)
δ, (2)

where δ is the scale dimension, i.e., δ = D −DT , the fractal dimension minus
the topological dimension. The Galilean structure of the group of scale transfor-
mation that corresponds to this law can be verified in a straightforward manner
from the fact that it transforms in a scale transformation ε→ ε′ as

ln
L(ε′)

L0

= ln
L(ε)

L0

+ δ(ε) ln
ε

ε′
; δ(ε′) = δ(ε). (3)

This transformation has exactly the structure of the Galileo group, as confirmed
by the law of composition of dilations ε → ε′ → ε′′, which writes ln ρ′′ =
ln ρ+ ln ρ′, with ρ = ε′/ε, ρ′ = ε′′/ε′ and ρ′′ = ε′′/ε.

2.2 Breaking of the scale symmetry

More generally, one can write a first order equation where the scale variation of
L depends on L only, dL/d ln ε = β(L). The function β(L) is a priori unknown
but, always taking the simplest case, we may consider a perturbative approach
and take its Taylor expansion. We obtain the equation:

dL
d ln ε

= a+ bL+ . . . (4)
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This equation is solved in terms of a standard power law of power δ = −b,
broken at some relative scale λ (which is a constant of integration):

L = L0 [1 + (
λ

ε
)δ]. (5)

Depending on the sign of δ, this solution represents either a small-scale fractal
behavior (in which the scale variable is a resolution), broken at larger scales, or
a large-scale fractal behavior (in which the scale variable ε would now represent
a changing window for a fixed resolution λ), broken at smaller scales.

2.3 Euler-Lagrange scale equations

In the previous approach, we have considered as primary variables the position
L and the resolution ε. However, we are naturally led, in the scale-relativistic
approach, to reverse the definition and the meaning of variables. The scale
dimension δ can be generalized in terms of an essential, fundamental variable,
that would remain constant only in very particular situations (namely, in the
case of scale invariance, that corresponds to “scale-freedom”). It plays for scale
laws the same role as played by time in motion laws. We have proposed to call
“djinn” this varying scale dimension. The new approach amounts to work in a
“space-time-djinn” rather than only in space-time, thus including motion and
scale behaviour in the same 5-dimensional description. The resolution can now
be defined as a derived quantity in terms of the fractal coordinate and of the
djinn:

V̄ = ln(λ/ε) =
d lnL
dδ

. (6)

Our identification of standard fractal behavior as Galilean scale laws can now
be fully proven. We assume that, as in the case of motion laws, scale laws
can be constructed from a Lagrangian approach. A scale Lagrange function
L̄(lnL, V̄ , δ) is introduced, from which a scale-action is constructed:

S̄ =

∫ δ2

δ1

L̄(lnL, V̄ , δ)dδ. (7)

The action principle, applied on this action, yields a scale-Euler-Lagrange
equation that writes:

d

dδ

∂L̄

∂V̄
=

∂L̄

∂ lnL . (8)

The simplest possible form for the Lagrange function is the equivalent for scales
of what inertia is for motion, i.e., L̄ ∝ V̄ 2 and ∂L̄/∂ lnL = 0 (no scale “force”).
The Lagrange equation writes in this case:

dV̄

dδ
= 0⇒ V̄ = cst. (9)

The constancy of V̄ = ln(λ/ε) means here that it is independent of the scale-
time δ. Then Eq. (6) can be integrated in terms of the usual power law behavior,
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L = L0(λ/ε)
δ. This reversed viewpoint has several advantages which allow a

full implementation of the principle of scale relativity:
(i) The scale dimension takes its actual status of “scale-time”, and the logarithm
of resolution V̄ its status of “scale-velocity”, V̄ = d lnL/dδ.
(ii) This leaves open the possibility of generalizing our formalism to the case of
four independent space-time resolutions. Indeed, from Lµ, µ = 0, 1, 2, 3 and
δ one can now build a 4-component resolution vector, V̄ µ = ln(λµ/εµ) =
d lnLµ/dδ.
(iii) As we shall see in what follows, scale laws more general than the simplest
self-similar ones can be derived from more generalized scale-Lagrangians.

3 Special and generalized scale-relativity

3.1 Special scale relativity

It is well known that the Galileo group of motion is only a degeneration of
the more general Lorentz group. The same is true for scale laws. Indeed, if
one looks for the general linear scale laws that come under the principle of
scale relativity, one finds that they have the structure of the Lorentz group
[12]. Therefore, in special scale relativity, we have suggested to substitute to
the Galilean law of composition of dilations ln(ε′/λ) = ln ρ+ ln(ε/λ) the more
general log-Lorentzian law:

ln
ε′

λ
=

ln ρ+ ln(ε/λ)

1 + ln ρ ln(ε/λ)/ ln2(λP /λ)
, (10)

while the scale dimension becomes a variable according to the law:

δ(ε) =
1

√

1− ln2(ε/λ)/ ln2(λP /λ)
, (11)

where λ is the fractal / nonfractal transition scale. In the microphysical do-
main, the invariant length-scale is naturally identified with the Planck scale,
λP = (h̄G/c3)1/2, that now becomes impassable and plays the physical role
that was previously devoted to the zero point. The same is true in the cosmo-
logical domain, with an inversion of the scale laws: there appears a maximal,
impassable scale of resolution that plays the physical role of the infinite, that
we have identified with the length-scale IL = Λ−1/2 related to the cosmological
constant Λ. The consequences of this new interpretation of the cosmological
constant have been considered in [13] [14].

3.2 From scale dynamics to general scale relativity

The whole of our previous discussion indicates to us that the scale invariant
behavior corresponds to freedom in the framework of a scale physics. However,
in the same way as there exists forces in nature that imply departure from
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inertial, rectilinear uniform motion, we expect most natural fractal systems
to also present distorsions in their scale behavior respectively to pure scale
invariance. Such distorsions may be, as a first step, attributed to the effect of a
scale “dynamics”, i.e. to “scale-forces”. In this case the Lagrange scale-equation
takes the form of Newton’s equation of dynamics:

F̄ = µ
d2 lnL
dδ2

, (12)

where µ is a “scale-mass”, which measures the way the system resists to the
scale-force.

3.2.1 Constant scale-force

Let us first consider the case of a constant scale-force. We set Ḡ = F̄ /µ =
constant. Equation (12) is easily integrated as:

δ = δ0 +
1

Ḡ
ln

(

λ

ε

)

; ln
L
L0

=
1

2Ḡ
ln2

(

λ

ε

)

. (13)

The scale dimension δ becomes a linear function of resolution, and the (lnL, ln ε)
relation is now parabolic rather than linear as in the standard power-law case.
There are several physical situations that could come under such a “scale-
dynamical” description, where a clear curvature appears in the (lnL, ln ε)plane
(e.g., turbulence, sand piles,...). In these cases it might be interesting to identify
and study the scale-force responsible for the scale distorsion.

3.2.2 Harmonic oscillator

Another interesting case of scale-potential is that of a harmonic oscillator φ =
−(1/2)(lnL/α)2. It is solved as

ln
L
L0

= α

√

ln2

(

λ

ε

)

− 1

α2
. (14)

For ε� λ it gives the standard Galilean case L = L0(λ/ε)
α, but its large-scale

behavior is particularly interesting, since it does not permit the existence of
resolutions larger than a scale λmax = λ e−1/α. Such a behavior could provide
a model of confinement in QCD.

More generally, we shall be led to look for the general non-linear scale laws
that satisfy the principle of scale relativity. Such a generalized framework im-
plies working in a five-dimensional fractal space-time. The development of such
a “general scale-relativity” lies outside the scope of the present paper and will
be considered in forthcoming works.
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3.3 Scale-motion coupling and mass-charge relations

The theory of scale relativity also allows to get new insights about the physical
meaning of gauge invariance [14]. In the scale laws recalled hereabove, only scale
transformations at a given point were considered. But we may also wonder about
what happens to the structures in scale-space of a scale-dependent object such
as an electron or another charged particle, when it is displaced. Consider anyone
of these structures, lying at some (relative) resolution ε (such that ε < λ, where
λ is the Compton length of the particle) for a given position of the particle.
In a displacement, the relativity of scales implies that the resolution at which
this given structure appears in the new position will a priori be different from
the initial one. In other words, ε = ε(x, t) is now a function of the space-time
coordinates, and we expect the occurrence of dilations of resolutions induced by

translations, so that we are led to introduce a covariant derivative:

e
Dε

ε
= e

dε

ε
−Aµdx

µ, (15)

where a four-vector Aµ must be introduced since dxµ is itself a four-vector and
d ln ε a scalar (in the case of a global dilation).

However, if one wants such a “field” Aµ to be physical, it should be defined
whatever the initial scale from which we started. Starting from another scale
ε′ = ρε, we get the same expression as in Eq.15, but with Aµ replaced by A′µ.
Therefore, we obtain the relation:

A′µ = Aµ + e ∂µ ln ρ, (16)

which depends on the relative “state of scale”, V̄ = ln ρ = ln(ε/ε′), that is now
a function of the coordinates.

One may therefore identify Aµ with the electromagnetic potential, and Eq.(16)
with the property of gauge invariance. Now we know that applying a gauge
transformation to the electromagnetic field implies to change also the wave
function of the electron, that becomes:

ψ′ = ψ ei4πα ln ρ (17)

where α is the square of charge in units of h̄c, i.e., a coupling constant. While
in Galilean scale relativity, the scale ratio ρ is unlimited, in the more general
framework of special scale relativity it is limited by the Planck-scale/Compton-
scale ratio. This limitation implies the quantization of charge, following the
general mass-charge relation [14]:

α ln
(mP

m

)

= k/2, (18)

where k is integer. Such a relation between the electron mass and the elec-
troweak coupling 8α/3 (where α−1 = 137.036) is implemented with a relative
precision of 2 × 10−3, becoming 10−4 when accounting for threshhold effects
[14].
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This approach can be generalized, since we can define four different and
independent dilations along the four space-time resolutions instead of only one
global dilation. The above U(1) field is then expected to be embedded into a
larger field, in agreement with the electroweak and grand unification theories,
and the charge e to be one element of a more complicated, “vectorial” charge.
Some hints about such a generalization will be given in what follows.

4 Theoretical predictions of masses and couplings

In the new framework, theoretical predictions of some of the free parameters
of the standard model become possible. We have presented and checked such
predictions in previous works [12] [13] [14]. But in the recent years, there has
been an improvement of several experimental measurements [27], so that it
may now be interesting to check them again with these new values. They are,
respectively for the top quark mass, Higgs boson mass, W and Z boson masses,
strong coupling constant at Z scale, fine structure constant at Z scale, and sin2θ
of weak mixing angle at Z scale in the modified minimal substraction scheme
(where it is defined through the SU(2) charge g and the U(1) charge g′):

mt = 174.3± 5.1 GeV ; mH = 108− 220 GeV
mW = 80.42± 0.04 GeV ; mZ = 91.1872± 0.0021
αS(mZ)−1 = 0.118± 0.002 ; α(mZ)−1 = 128.92± 0.03

ŝ2Z = g′2

g2+g′2 = 0.23117± 0.00016

4.1 Fine structure constant

In [14], we derived a prediction of the fine structure constant (i.e. the elec-
tromagnetic coupling). It was based on the suggestion that the bare (infinite
energy) value of the electroweak coupling (which becomes finite in special scale-
relativity) is 4π2. The fact that 3 among the 4 gauge bosons acquire mass
through the Higgs mechanisms leads to a multiplying factor 8/3, so that one
expects that α−1

∞ = 32π2/3. The difference between the infinite energy and Z
or low energy values was computed using the solutions to the renormalization
group equation for the running coupling. The prediction at the Z value for 1
Higgs doublet was:

α(mZ)−1 =
32π2

3
+

11

6π
ln

(

mP

mZ

)

+ 2nd order term, (19)

where mP is the Planck mass (= 1.2210(9)× 1019GeV/c2). The second order
term is given by Eq. 112 of [14]. Now we can combine this expression with
another prediction of the theory, according to which the electroweak scale and
the inverse coupling α−1

∞ = 4π2 are linked by a mass-charge relation:

ln

(

mP

mZ

)

≈ 4π2. (20)
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Replacing this expression in the first and second order terms we obtain:

α(mZ)−1 =
32π2

3
+

22π

3
+

6

π2
= 128.922 . (21)

Though Eq. 20 is only an approximation for the Z scale (see below), it occurs
in Eq. 19 as a first order correction and in terms of the logarithm of the mass
ratio, so that the final result (Eq. 21) finally gives a good approximation of
our theoretical prediction. It indeed compares very well with the experimental
value, 128.92± 0.03.

4.2 Strong coupling

From the conjecture that the strong coupling value reaches the critical value
1/4π2 at unification scale (i.e. mP /2π in the special scale-relativistic modified
standard model), we obtained a predicted value αS(mZ)−1 = 0.1155± 0.0002
from the solution to the renormalization group equation of the running coupling
[12] [14]. This expectation remains in agreement (within about one σ) with the
recently improved experimental value 0.118± 0.002.

4.3 SU(2) coupling

In ref. [14], we also attempted to apply the mass-charge relation to the SU(2)
coupling α2. We found that the relation

3α2Z CZ = 4 (22)

was precisely achieved at the Z scale. However the factor 3 was not accounted
for in that work. The solution to this problem relies on the generalization
of scale (i.e. gauge) transformations to dilations which are no longer global,
but instead may be different on the resolutions corresponding to the various
coordinates. The group SU(2) corresponds to rotations in a 3-dimensional scale
space. Therefore the phase term in a fermion field will write:

α2 ln(
εx

λ
) + α2 ln(

εy

λ
) + α2 ln(

εz

λ
) < 3α2 ln(

λP

λ
), (23)

since the same coupling applies to the three variables, and since all three reso-
lutions are limited at small scales by the Planck scale. From Eq. (22) we expect
a value α−1

2Z = 29.8169± 0.0002. The present precise experimental value is:

α−1
2Z = α−1

Z × ŝ2Z = 29.802± 0.027, (24)

which lies within 1σ of the theoretical prediction.

4.4 Vacuum expectation value of the Higgs field

As recalled hereabove, there are fundamental arguments for introducing a bare
inverse coupling at infinite energy (i.e., in special scale relativity, at Planck
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length-scale) given by the critical value 4π2. Moreover, our re-interpretation of
gauge invariance as scale-invariance on space-time resolution led us to construct
general relations between couplings and scale ratios. Therefore one expects the
emergence of a new fundamental scale given by:

ln

(

λ

λP

)

= 4π2, (25)

where λP is the Planck length-scale. This relation may provide a solution to the
hierarchy problem, according to which there is a misunderstood factor ≈ 1017

between the electroweak scale and the Planck scale (expected to be the full

unification scale). Indeed the scale λ defined above is e4π2

= 1.397×1017 larger
than the Planck scale. As a first approximation, we can apply this relation
to mass ratios. This leads a mass scale of 87.39 GeV, intermediate between
the Z and W masses. However, mass-scales and length-scales are no longer
directly inverse in the scale-relativity framework. There is a “log-Lorentz” factor
between them (when they are referred to low energies). Namely, by taking as
reference the electron Compton scale, the new mass-scale is more precisely given
by:

ln

(

m

me

)

=
ln(λe/λ)

√

1− ln2(λe/λ)/C2
e

. (26)

With the currently accepted value of the gravitational constant (for which the
error is now thought to be 12 times larger than previously given, see [27]), we
obtain for the fundamental constant Ce = ln(λe/λP ) = 51.52797(70). Then the
new theoretically predicted mass scale is

mv = 123.23± 0.09 GeV, (27)

which is closely linked to the vacuum expectation value v of the Higgs field,
since the present experimental value of v/

√
2 = mW /g (where g is the SU(2)

weak charge) is 123.11±0.03 GeV. Now some work remains to be done to really
understand why the new mass-scale should have precisely this interpretation.

Let us finally note that the previously pointed out coincidence of the top
quark mass (174.3±5.1 GeV) and of the vacuum expectation value of the Higgs
field (174.10± 0.05 GeV) remains remarkable.

4.5 Mass of the Higgs boson

The framework of generalized scale-relativity provides one with possibilities to
make theoretical predictions of the value of the Higgs boson mass. The (sum-
marized) argument is as follows.

In today’s electroweak scheme, the Higgs boson is considered to be separated
from the electroweak field. Moreover, a more complete unification is mainly
seeked in terms of attempts of “grand” unifications with the strong field. How-
ever, one may wonder whether, maybe in terms of an effective, intermediate
energy, theory, one could not achieved a more tightly unified purely electroweak
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theory. Recall indeed that in the present standard model, the weak and elec-
tromagnetic fields are mixed, but there remains four free parameters, which can
e.g. be taken to be the Higgs boson mass, the vacuum expectation value of the
Higgs field and the Z and W masses.

The structure of the present electroweak boson content is as follows. There
is an SU(2) gauge field, then involving three fields of null mass (i.e. 2×3 = 6 de-
grees of freedom), a U(1) null mass field (2 d.f.) and a Higgs boson complex dou-
blet (4 d.f.), which makes 12 d.f. in all. Through the Glashow-Salam-Weinberg
mechanism, 3 of the 4 components of the Higgs doublet become longitudinal
components of the weak field which therefore acquires mass (3 × 3 = 9 d.f.),
while the photon remains massless (2 d.f.), so that there remains a Higgs scalar
which is nowadays experimentally searched (1 d.f.).

Now, we have suggested a new interpretation of gauge invariance as being
scale invariance on the internal resolutions, considered as intrinsic to the de-
scription of the particle-fields (at scale smaller than their Compton length in
restframe). As a first step we considered only global dilations, which led us to a
U(1) invariance and to the relations between mass scale and coupling constant
recalled above. But more generally one may consider four independant scale
transformations on the four space-time resolutions, i.e., (ln εx, ln εy, ln εz, ln εt).
This means that the scale space (i.e., here the gauge space) is at least four-
dimensional (but note that this is not the final word on the subject, since this
does not yet include the fifth “djinn” dimension δ). Moreover, the mixing re-
lation between the B (U(1)) and W3 (SU(2)) fields may also be interpreted as
a rotation in the full gauge space. We therefore expect the appearance of a 6
component antisymmetric tensor field (linked to the rotations in this space),
corresponding in the simplest case to a SO(4) group. Such a zero mass field
would yield 12 degrees of freedom by itself alone.

What about the Higgs boson in such a unified framework ? We shall tenta-
tively explore the possibility that it appears as a separated scalar only as a low
energy approximation, while in the new framework it would be one of the com-
ponents of the unified field (in analogy with energy appearing as scalar at low
velocity, while it is ultimately a component of the energy-momentum four-vector
in the relativistic framework).

Such an attempt is supported by the form of the electroweak Lagrangian
(we adopt Aitchison’s [3] notations). Its Higgs scalar boson part writes:

LH =
1

2
∂µσ∂

µσ − 1

2
m2

Hσ
2 − 1

8
λ2σ4. (28)

The vacuum expectation value v of the Higgs field is computed from the square
(mass term) and quartic term, so that the Higgs mass is related to v and λ as:

mH =
√

2 v λ. (29)

A prediction of the constant λ would therefore lead to a prediction of the Higgs
mass. Now, a non-Abelian field writes in terms of its potential :

Fαµν = ∂µWαν − ∂νWαµ − g cαβγW
βµW γν , (30)
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where g is the (now unique) charge and cαβγ the structure coefficients of the Lie
algebra associated to the gauge group. Its Lagrangian writes:

LW = −1

4
F µνFµν . (31)

It therefore includes W 4 terms coming from the W 2 terms in the field. Now our
ansatz consists of identifying some of theseW 4 terms, of coefficient − 1

4
g2 (cαβγ)2,

with the Higgs boson σ4 term of coefficient − 1

2
λ2. This allows a determination

of the constant λ:

λ2 =
g2(Σc2)

2
, (32)

where the sum is on the terms that contribute to the final effective Higgs boson.
Provided the global charge is identical to the SU(2) charge, and since the W
mass is given by mW = gv/

√
2, one finally obtains a Higgs boson mass :

mH =
√

2(Σc2)mW . (33)

For a large class of groups (like e.g. SO(4)), the c’s take the values 0, ±1, so
that we expect mH =

√
2kmW with k integer. In particular, the case k = 1,

yields a theoretical prediction:

mH =
√

2mW = 113.73± 0.06 GeV, (34)

which is in agreement with current constraints. Although this calculation is
still incomplete and although the self-consistency of this model remains to be
established, we hope that at least some of its ingredients could reveal to be
useful in more complete attempts [Lehner and Nottale, in preparation].

4.6 Cosmological constant and gravitational coupling

In [14], we were able to make a theoretical prediction of the value of the cos-
mological constant. Recall that, in the special scale-relativistic framework, new
dilation laws having a log-Lorentz form have been introduced [12], that lead
to re-interpret the length-scale of the cosmological constant IL = Λ−1/2 and
the Planck length-scale λP as impassable, respectively maximal and minimal
length-scales, invariant under dilations of resolutions.

Their ratio defines a fundamental pure number, IK = IL/λP . From an
analysis of the vacuum energy density problem, the logarithm of this ratio
has been found to have the numerical value CU = ln IK = 139.83 ± 0.01,
i.e. IK = 5.3 × 1060 [13] [14]. This value corresponds to a reduced cosmo-
logical constant ΩΛ = 0.36h−2, where h = H0/100 km/s.Mpc. Now the Hub-
ble constant has been recently determined with an improved precision to be
H0 = 70 ± 10 km/s.Mpc. Therefore we predicted a reduced cosmological con-
stant ΩΛ = 0.70±0.25. Recent measurements using the Hubble diagram of SNe
I [8] [29] [30] and the angular power spectrum of the cosmic microwave radiation
[5] point precisely toward the same value, 0.7± 0.2.
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5 Gravitational structuration

5.1 Generalized Schrodinger equation

One can demonstrate [13] [14] [16] that Newton’s fundamental equation of dy-
namics can be integrated in the form of a Schrödinger-like equation under the
three following hypotheses:

(i) The test-particles can follow an infinity of potential trajectories: this
leads one to use a fluid-like description, v = v(x(t), t).

(ii) The geometry of each trajectory is fractal (of dimension 2). Each ele-
mentary displacement is then described in terms of the sum, dX = dx+ dξ, of
a mean, classical displacement dx = v dt and of a fractal fluctuation dξ whose
behavior satisfies the principle of scale relativity (in its simplest “Galilean” ver-
sion). It is such that < dξ >= 0 and < dξ2 >= 2Ddt. The existence of
this fluctuation implies introducing new second order terms in the differential
equations of motion.

(iii) The motion is assumed to be locally irreversible, i.e., the (dt ↔ −dt)
reflection invariance is broken, leading to a two-valuedness of the velocity vector
that we represent in terms of a complex velocity, V = (v++v−)/2−i(v+−v−)/2.

These three effects can be combined to construct a complex time-derivative
operator which writes

d́

dt
=

∂

∂t
+ V · ∇ − iD4 (35)

where the mean velocity V = d́ x/dt is now complex and D is a parameter
characterizing the fractal behavior of trajectories (namely, it defines the fractal-
nonfractal transition in scale space).

Since the mean velocity is complex, the same is true of the Lagrange function,
then of the generalized action S. Setting ψ = eiS/2mD, Newton’s equation
of dynamics becomes md́ V/dt = −∇φ, and can be integrated in terms of a
generalized Schrödinger equation [13]:

D2 4 ψ + iD ∂

∂t
ψ =

φ

2m
ψ. (36)

This equation becomes, for a Kepler potential and in the time-independent case:

2D2 4 ψ +

(

E

m
+
GM

r

)

ψ = 0. (37)

Since the imaginary part of this equation is the equation of continuity, ρ = ψψ†

can be interpreted as giving the probability density of the particle position.
Even though it takes this Schrödinger-like form, this equation is still in

essence an equation of gravitation, so that it must keep the fundamental prop-
erties it owns in Newton’s and Einstein’s theories. Namely, it must agree with
the equivalence principle [15] [9] [1], i.e., it must be independent of the mass of
the test-particle and GM must provide the natural length-unit of the system
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under consideration. As a consequence, the parameter D takes the form:

D =
GM

2w
, (38)

where w is a fundamental constant that has the dimension of a velocity.
Actually, the ratio

αg =
w

c
. (39)

stands out as a macroscopic gravitational coupling constant [1] [2] [22]. This
can be seen from the fact that w is the average velocity in the fundamental
orbit, in the same manner as v0 = α c (where α is the fine structure constant,
i.e., the electromagnetic coupling) gives the mean velocity of an electron in a
Bohr orbital. Moreover, contrarily to what happens in the classical theory,
the equation of motion (Eq. 36) can be shown to be gauge invariant. If the
potential φ is replaced by φ+GMm∂χ(t)/c∂t, where the factor GMm ensures
a correct dimensionality, then Eq. (36) remains invariant provided ψ is replaced
by ψ e−iαgχ, with αg related to D by:

αg × 2mD =
GMm

c
, (40)

which is the previously established relation for αg = w/c.
As an example, let us briefly show how such an approach can be applied to

formation of planetary systems. We assume that the probability density solution
of Eq.37 describes the distribution of planetesimals in a protoplanetary nebula.
Then they form a planet by accretion as in the standard models of planetary
formation. But the new point here is that only some particular orbitals are
allowed, so that the semi-major axes of the orbits of the resulting planets are
quantized according to the law:

an =
GMn2

w2
, (41)

where n is an integer. In an equivalent way, using Kepler’s third law that
relates the semimajor axis a to the orbital period P , (a/GM)3 = (P/2πGM)2,
the average velocity of the planet, v = 2πa/P = (GM/a)1/2, is expected to have
a distribution peaked at vn = w/n. Therefore, we predict that the values of ñ
defined, in Solar System units (AU, year, M� and Earth velocity) as:

ñ = w (a/M)1/2 = w (P/M)1/3 =
w

v
(42)

be clustered around integer numbers.

5.2 Comparison with observational data

We have shown [13], that this approach accounts for several structures observed
in the Solar System, including planet distances, eccentricities, and mass distribu-
tion [21], obliquities and inclinations of planets and satellites [17]), giant planet
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Figure 1: Observed distribution of ñ = 4.83 (P/M)1/3 = 144/v, where v is the average
planet velocity in km/s, and where the orbital period P and the star mass M are taken
in Solar System units (AU and M�), for the recently discovered exoplanet candidates
(black dots) and for the planets of our inner Solar System (white dots). The grey zone
stands for the theoretically predicted low probability density of planets and the white
zones for high probability. The error bars are typically of the order of 0.03 ñ. The
probability to obtain such a non uniform distribution by chance is about 10−4.

satellite distances [10], parabolic comet perihelions [Nottale & Schumacher, in
preparation]. Moreover, it also allows one to predict and understand structures
observed on a large range of scales, from binary stars [20], to binary galaxies
[14], [Tricottet & Nottale, in preparation], and the distribution of galaxies at
the scale of the local supercluster [20]. A similar kind of approach has been
applied by Perdang [28] to a statistical description of HR diagrams.

It has been also demonstrated that the first newly discovered extra-solar
planetary systems come under the same structures, in terms of the same uni-
versal constant as in our own Solar System [15] [22] [23] (see Fig. 1). Their
distribution shows peaks of probability density that are consistent with the law
a/GM = n2/w0

2, where the constant w0 takes the value 144 km/s as in our
own inner Solar System and in extragalactic data. Moreover, most of these exo-
planets (51 Peg-type objects) fall in the fundamental probability density peaks
(n = 1, a/M = 0.043 AU/M�) and in the second orbital (n = 2, a/M = 0.17
AU/M�) predicted by the theory. The system of three planets discovered around
the pulsar PSR B1257+12 also agree with the theoretical prediction with a very
high precision of some 10−4 [15] [18].

6 Conclusion

After having summarized the main lines of development of the scale-relativity
theory, we have, in the present contribution, updated some of its theoretical pre-
dictions, then we have shown that they continue to agree with recently improved
experimental results.

Moreover, we have recalled that scale relativity, when combined with the
laws of gravitation, provides us with a general theory of the structuring of grav-
itational systems [14] [16]. In this new approach, we do not any longer follow
individual trajectories, but we jump to a statistical description in terms of prob-
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ability amplitudes. Indeed, under only three simple hypotheses (large number
of potential trajectories, fractal geometry of each trajectory and differential irre-
versibility), Newton’s equation of dynamics can be transformed and integrated
in terms of a generalized Schrödinger equation. This result suggests, in ac-
cordance with recent similar conclusions [31] [25] [26] [7] that the Schrödinger
equation could be universal, i.e. that it may have a larger domain of applica-
tion than previously thought, but with an interpretation different from that of
standard quantum mechanics.
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