
1

Scale-Relativistic Estimate of the Fine Structure Constant
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Abstract. The low energy value of the fine structure constant is theoretically estimated to within 1‰ of

its observed value in the framework of the theory of scale relativity, in which the Planck length-scale is

reinterpreted as a lowest, limiting, unpassable length, invariant under dilatations. This estimate is

performed by using the renormalization group equations to evolve the QED coupling constant from

infinite energy, where the bare mean electroweak coupling is assumed to reach its “natural” value 1/4π2,

down to the electron energy. A consequence of this calculation is that the number of Higgs boson

doublets is predicted to be NH = 1.
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1. Introduction

Present high energy physics seems to be faced with several unsolved fundamental

problems, among which: (i) the problem of divergences of self-energies and charges in

QED; (ii) the nature of the Planck scale; (iii) the origin and values of universal scales,

such as the Electroweak and GUT scales; (iv) the values of coupling constants. These

problems are clearly related with one another.

Indeed, consider in particular the question of the theoretical understanding of the

coupling constant values which we address in the present letter. Once it was realized that

vacuum polarization by virtual particle-antiparticle pairs resulted in a screening of bare

charges, it became clear that the most straighforward programme for theoretically

predicting the low energy value of the electromagnetic coupling (i.e., the fine structure

constant) was to derive it from its “bare” (infinite energy) value and from its variation

with scale. Even though considerable progress has been made thanks to the development

of quantum gauge theories and of the renormalization group approach, the hope to

implement this programme in the framework of the standard model was finally deceived.

The reason for this failure comes precisely from the asymptotic behaviour of present

theories: the inverse coupling constants are found to vary logarithmically with scale, so

that the charges are found either to become infinite at infinite energy in the abelian group

case (more precisely, the divergence occurs at some ultra-high energy given by the

“Landau ghost”), or to vanish (asymptotic freedom of non abelian groups). Both

situations prevent from defining a bare charge: for example, in the simplest GUT theory

based on the SU(5) group, the three fundamental couplings derive from a unique high

energy coupling, whose  quantization can be theoretically demonstrated, while its bare

value is predicted to be zero. One generally attempts to escape from this contradiction by

noting that new unknown physics is needed beyond the Planck scale because of the

intervening of gravitation...

We have recently proposed a new frame of thought for understanding the

asymptotic behavior of the quantum theory at high energy [1], which allows us to

reconsider the coupling constant problem. It can be founded on three postulates:

(i) the equations of physics must be written in a scale-covariant way;

(ii) the explicit dependence on scale of the laws of physics at high energy (such as

observed in the variation of charges and self-energies in terms of scale and as described

in the renormalization group approach [2]) is broken at low energy, i.e., equivalently, at

large length-time scale (as shown by the independence of classical laws on resolution);

the transition from scale-dependence to scale independence occurs about the Compton

length of the electron.

(iii) the Planck scale is invariant under dilatations and contractions.
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While postulates (i) and (ii) give back today's physics, our third postulate (iii) is a

new interpretation for the Planck scale, which implies profound changes in the

asymptotic behavior of quantum field theories. We have called scale relativity the

resulting theory [1]. Our aim in the present letter is, after having recalled the main results

which have already been obtained, to reconsider in its framework the question of the

theoretical estimate of the fine structure constant α. This is motivated by the fact that, in

scale relativity, the coupling constants are now converging toward finite values at infinite

energy, so that one may explicitly wonder about the expected value of the quantized bare

charge (we shall argue that one can define an “electroweak charge” (8α/3)1/2 whose bare

value is 1/2π), then compute the corresponding low energy value and finally compare this

prediction to the experimental value.

2. Scale relativity

Let us first consider the current form of renormalization group equations in

today's standard theory. For relevant fields, the lowest order equation in its simplest

form reads, in terms of a scale dimension δ

dϕ

d  ln  
λo
r

   =   δ   ϕ   , (1)

which is integrated in the scale-invariant power law ϕ = ϕo(λo/r)δ, i.e., in logarithm

form

 ln (ϕ/ϕo)  =   δ ln 
λo
r   . (2)

The scale dimension δ is usually assumed to be a constant. For marginal fields the lowest

order equation reads

dα

d  ln  
λo
r

   =   βo  α
2   , (3)

which is integrated into the well-known logarithmic scale dependence of couplings and

self-energies,

α−  (r)   =  α−  (λo) −  βo  ln 
λo
r   . (4)
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Here and in what follows we use the notation α−  = α−1. In the above laws, as in the whole

of standard physics, the length scale r is allowed to go to zero, so that (4) is

asymptotically either divergent or vanishing.

Let us now try to analyse the meaning of the above laws in the light of the scale-

relativistic method [1,3]. Our approach consists in (i) redefining the resolution ln (λo/r)

as a state of scale of the reference system (note its relative character); (ii) requiring that

the equations of physics be written in a covariant way under scale transformations of

resolutions. Then the general problem of finding the laws of linear transformation of

fields in a scale transformation r→r' amounts to finding four quantities, A(V), B(V),

C(V), and D(V), where V = ln (r/r'), such that

ln  
ϕ(r')

ϕo
  =   A(V)   ln  

ϕ(r)

ϕo
   +  B(V)   δ(r)    , (5a)

δ(r')  =  C(V)   ln  
ϕ(r)

ϕo
   +  D(V)   δ(r)    . (5b)

Set in this way, it immediately appears that the current “scale-invariant” structure of the

standard renormalization group (Eq. 2), i.e. A =  1, B  =  V , C  = 0  and D  = 1,

corresponds to the Galileo group. This is also clear from the law of composition of

dilatations, r→r' →r", which has a simple additive form,

V" =  V + V' . (5c)

However the general solution to the “special relativity problem” (namely, find  A,

B, C and D from the principle of relativity) is the Lorentz group [1,4], of which the

Galileo group is only a very particular solution. Our proposal [1] is then to implement the

above axiom (iii) by replacing the standard law of dilatation, r→r'=ρr by a new relation

having Lorentzian form. But this is not the last word to this problem: while the relativistic

symmetry is universal in the case of the laws of motion, this is not true for the laws of

scale. As experimentally observed and as described by axiom (ii), self-energies and

charges are no longer dependent on resolution for scales larger than the electron Compton

scale. This implies that the dilatation law must remain Galilean above the Compton scale

of the electron. We have shown in Ref. [1] that such a combination of a high energy

Lorentzian symmetry and of its breaking to Galilean symmetry at low energy was indeed

possible to implement, and that it implied the emergence of a universal, invariant, length-

time-scale, rather than that of an invariant dilatation as expected from unbroken

Lorentzian laws.

For simplicity, we shall consider in what follows only the one-dimensional case.

We define the resolution as r = c δt, and define a characteristic Compton scale λo = h
_
/moc
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(in the calculation of Sec. 4, λo will be identified successively with the electron and Z

boson scales). The new law of dilatation which implements axioms (i) to (iii) reads, for r

< λo and r'< λo

ln 
r'

λo
  =  

ln(r/λo) + lnρ 

1 + 
lnρ   ln(r/λo)

ln
2
(λo/Λ)

   , (6)

where Λ is the Planck length (currently 1.61605(10) x 10−35 m),

Λ  =  (h
_
G/c3)1/2   , (7)

and is now interpreted as a limiting lowest length-scale, impassable, invariant under

dilatations and contractions. Equation (2) (for r ≤ λo) is replaced by

 ln (ϕ/ϕo)  =   
δo ln

λo
r

√1 −  ln
2
(λ o /r) / l n

2
(λ o /Λ)

    . (8)

The scale dimension is now varying with scale (for r ≤ λo) as

 δ(r)   =   
δo

√1 −  ln
2
(λ o /r) / l n

2
(λ o /Λ)

    , (9)

so that Eq.(8) may be given the explicitly scale-covariant form ϕ = ϕo (λo /r)δ(r). As a

consequence the mass-energy scale and length scale are no longer inverse, but related by

the scale-relativistic generalized Compton formula

l n m
m o

  = 
l n  (λ o /λ ) 

√1 −   
l n

2
(λ o /λ )

l n
2
(λ o /Λ )

   , (10)

i.e., m/mo=(λo/λ)
δ(λ) 

, with δ(λo) = 1. A similar generalization holds for the Heisenberg

relations [1]. Concerning coupling constants and self-energies, the fact that the lowest

order terms of their β-functions are quadratic implies that their variation with scale is

unaffected by scale-relativistic corrections [1], provided it is written in terms of length

scale. The passage to mass-energy scale is now performed by using Eq.(10).

A detailed justification of the above formulas can be found in Refs.[1]. Let us

simply note here that: (i) these new laws are valid only below the electron scale, i.e.

when the reference Compton length λo is equal to or smaller than the Compton length of

the electron λe = h
_
/mec (ii) in scale relativity, one should be cautious that all scales are

relative, i.e. only scale ratios keep a physical meaning; (iii) while Eq. (10) has
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observational meaning,  as we shall see hereafter, Eq. (6) should be understood as

having only a virtual meaning. Indeed, assume that a system is prepared in such a way

that its de Broglie length is λo. Then if a measurement is performed on this system at

resolution r << λo, the Heisenberg relation implies that it will get a new impulsion p  =

po +∆p ≈  ∆p ≈h
_
/r, so that its de Broglie length itself is changed and becomes of the

order of r.

3. Emergence of the GUT Scale

Before coming to the theoretical estimate of the electromagnetic coupling, let us

recall the results which have already been obtained in this new framework [1].

(i) The problem of the divergence of charge and self-energy is solved: they now have

finite non-zero values at infinite energy.

(ii) A new fundamental scale emerges, which is given by the length scale corresponding

to the Planck energy. Let us set CZ = ln(λZ/Λ) ≈ ln(mp/mZ): this new scale is given to

lowest order by ln(λZ/λ) = CZ /√2 (see Eq. 10), and is thus ≈10−12 times smaller than the

W/Z length scale. In other words, this is but the GUT scale (1014 GeV in the standard

theory).

(iii) As a consequence, the four fundamental couplings, U(1), SU(2), SU(3) and

gravitational converge in the new framework toward about the same scale, which now

corresponds to the Planck energy.

(iv) The GUT energy now being of the order of the Planck one (≈1019GeV), the

predicted lifetime of the proton (∝ m 4
GUT/mp

5 >> 1038 yrs) becomes compatible with

experimental results [1] (> 5.5 x 1032 yrs, [16]).

4. Theoretical Estimate of the Low Energy QED Coupling

We shall now attempt to perform a completely scale-relativistic calculation relating

the low energy value of the fine structure constant (α−  = 137.0359914(11), [15]) to its

(formal) infinite energy value. For this purpose we define from the U(1) and SU(2)

couplings an averaged electroweak inverse coupling α− 0
 =  

3
8 α− 2 + 

5
8 α− 1, which is simply

related to the (running) fine structure constant α by α−  = 
8
3 α− 0. Let us first demonstrate that

in the new framework the infinite energy coupling is finite.

 Between the Planck and Z boson  length-scale, the variation of α−   is given to

leading order by the solution to its renormalization group equation [5,7] ,

α−  (r)  =  α−  (λZ)  – 
10+NH

6π
  ln

λZ

r    , (11)
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where NH  is the number of Higgs doublets. So, while in the standard theory the QED

coupling is divergent at the “Landau ghost” ln
λZ

r
  ≈ 3π α− Z / 5, in scale relativity the length-

scale r  is limited by the lowest scale Λ. The new convergence of charge at infinite energy

is better understood by writing Eq.(11) in terms of a running mass-energy scale m:

α−  (m)  =  α−  (mZ)  –  
10+NH

6π
   

ln(m/mZ)

√1 + ln2(m/mZ)/CZ
2
   . (12)

Making m  tend to infinity yields the finite result:

α−  (∞)  =  α−  (mZ)  –  
10+NH

6π
  CZ    . (13)

This finiteness of the bare charge sets in completely renewed terms the problem of

the theoretical prediction of the low energy charge. Knowing that the bare charge is

neither null nor infinite, we can now wonder about its expected value. We shall only give

here a simple dimensional argument. Consider a Coulomb-like force between two

“charges”. It is given by F = e2 / 4πεor2 = α~ h
_
c / r2. Hence the dimensional equation of

α~ h
_
c = F r2 is [ML3T–2]. The natural possible values for the length scale in this

dimensional equation are the reduced Compton length L = h
_
/Mc or Compton wavelength

h/Mc, and similarly for the time scale T = h
_
/Mc2 or h/Mc2. Combining these possibilities

yields  α~ = 1/4π2, 1, 2π or 8π3. The only value smaller than 1  (i.e., compatible with the

smallness of the observed electric and weak charges) is α~ = 1/4π2. Knowing that the low

energy electric charge results from a mixing of the high energy U(1) and SU(2) charges

in the electroweak theory, we suggest to identify this coupling  α~  with the electroweak

coupling α0 defined above, α− 0
 =  

3
8 α− 2 + 

5
8 α− 1, which is such that α0 = α1 = α2 at

unification scale. This corresponds to a bare inverse fine structure constant of α− (∞) =

32π2/3.

In order to deduce the low energy fine structure constant from this bare value, we

shall now run the inverse coupling, thanks to its renormalization group equation [2,5,6],

from the Planck length scale (i.e. infinite mass-energy scale) to the Z boson scale, then to

the electron scale.

If we disregard for the moment the purely scale-relativistic correction which arises

from the fact that the Z mass-scale and Z length-scale are no longer directly inverse (see

Eq.10), we have CZ ≈ ln(mp/mZ) = 39.436 (where mp is the Planck mass), and we find

numerically for the first order variation of the inverse QED coupling (Eq. 12):

∆α− ΛZ

(1)
   =  23.01  +  2.1 (NH – 1)   . (14)

To next-to-leading order, its variation between infinite energy and the Z mass is

given by [6,7,1]
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∆α− ΛZ

(2)
   =  – 

104+9NH

6π(40+NH)
 ln{1 – 

40+NH

20π
 α1(λZ)ln

λZ

Λ
}

             + 
20+11NH

2π(20–NH)
 ln{1 + 

20–NH

12π
 α2(λZ) ln

λZ

Λ
} + 20

21π
 ln{1 + 

7
2π

 α3(λZ)ln
λZ

Λ
} (15)

This expression depends on the values of the U(1), SU(2) and SU(3) couplings at the Z

scale. One could use their known values, but they are themselves derived in part from the

observed value of the low energy fine structure constant. Fortunately, our prediction of

the GUT scale provides us with a possibility to make a self-consistent calculation (see

Fig.1). Since this is a second order correction, we do not need to have very precise

estimates of the couplings as input in Eq. (15). (More precise theoretical estimates of the

3 fundamental couplings will be given in a forthcoming work). So we first compute the

GUT scale:

ln(λZ/λGUT) ≈ CZ /√2   ⇒  CGUT  = ln(λGUT/Λ)  ≈ 11.5   , (16)

then run the inverse coupling α− 0 from infinite mass scale to GUT scale and assume an

exact convergence of the three couplings at the GUT scale:

  α− 1(λGUT) ≈ α− 2(λGUT) ≈ α− 3(λGUT) ≈ α− 0(λGUT) ≈ 4π2 + 
11

16π
 CGUT ≈ 42.0, (17)

and finally use the lowest order solutions to the renormalization group equations [5] to

obtain the couplings at Z scale:

α− 1 (λZ)  =  α− 1 (λGUT)  +  
40+NH

20π
  ln(λZ/λGUT)  , (18a)

α− 2 (λZ)  =  α− 2 (λGUT)  –  
20–NH

12π
  ln(λZ/λGUT)  , (18b)

α− 3 (λZ)  =  α− 3 (λGUT)  –  7
2π

  ln(λZ/λGUT)  . (18c)

The precise value of NH  is unimportant at the precision searched. We find α− 1(λZ) ≈ 60,

α− 2(λZ) ≈ 28 and α− 3(λZ) ≈ 10.6 (the current values are 59.22(14), 30.10(23) [7] and

8.93(23) [8]). Inputing these estimates in Eq.(15), we find the second order correction to

be:

 ∆α− ΛZ

(2)
   = 0.73 ± 0.03  , (19)

(inputing the experimental values would have given ∆α− ΛZ

(2)
 = 0.76).

We must now run the QED inverse coupling from the Z scale to the  electron

scale. This problem has been considered by many authors [5,7,10]. The main difficulty
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is to estimate the QCD contribution, but recent progress have been made on this problem.

The running QED coupling variation is directly given by the variation in the QED vacuum

polarization, which can itself be deduced from the well-known ratio R of the cross

sections σ(e+e–→hadrons)/σ(e+e–→µ+µ–) [9,10]. A detailed computation based on the

available experiment results by Burkhardt et al  [10] have yielded:

∆α− Ze
h

   = 3.94 ± 0.12  . (20)

Holdom and Lewis [9] have recently shown that a constituent quark model including the

momentum dependence of the dynamical quark mass is able to reproduce this result

theoretically, but with a much larger uncertainty (they find ∆α− Ze
h

   = 3.85 ± 0.3 if Λ s
(4)

 =

100 MeV and 4.1 ± 0.6 if Λ s
(4)

 = 200 MeV).

The leptonic contribution is given by (see e.g. ref. [11], p. 635):

∆α− Ze
L

  =  
2

3π
  {ln(

mZ

me
) + ln(

mZ

mµ
) + ln(

mZ

mτ
)  – 5

2
 }  =  4.30 ± 0.05 . (21)

The full variation between electron and Z boson is thus 8.24±0.13. From the observed

value α− e = 137.04, this yields α− Z  = 128.80, in agreement with Amaldi et al. [7] or

Holdom and Lewis [9].

Let us finally consider the scale-relativistic corrections to ∆α− . Between Z and

Planck scale, one should account for the fact that the Z length-scale is now slightly

different from its mass scale. Inverting Eq.(10) yields

l n λ e

λ Z
  = 

l n(mZ/me ) 

√(1 +  
l n2(mZ/me )

C e
2 )

(22)

where C e = ln(mP/me) = 51.52797(7) [12]. From mZ  = 91.18(2) [13], we find ln(λ e/λZ)

= 11.772, so that C Z = 39.756. With this more precise value of C Z , ∆α−ΛZ
  is increased

by +0.19. But the same effect holds between electron and WZ scales. Let us compare the

mass-scales and Compton length-scales of elementary particles in scale relativity, when

taking the electron scale as reference scale:

ln(λ e/λµ)    = 5.30;   ln(mµ/me)   = 5.33,

ln(λ e/λ uds)  = 6.37;   ln(muds/me)  = 6.42,

ln(λ e/λ c)    = 7.73;   ln(mc/me)    = 7.82,

ln(λ e/λτ)    = 8.06;   ln(mτ/me)    = 8.16,

ln(λ e/λ b)    = 8.89;   ln(mb/me)    = 9.03.

ln(λ e/λ t)    = 12.05;  ln(mt/me)   = 12.39.
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(for u, d, s quarks the quoted mass is an effective mass ≈ mproton/3; for the t-quark, we

have taken a value recently deduced from a fit of precise electroweak data, mt = 122±22

GeV [18]).  Including these corrections decreases ∆α− Ze by 0.37. The net scale-relativistic

correction is then finally:

∆α− Sc-rel  =  – 0.18  . (23)
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Fig. 1. Evolution of the inverse coupling constant  α− 0
 = 

3
8 α−    between the Planck length-scale (which

corresponds to infinite energy in scale relativity, see upper graduation) and the electron scale, beyond
which it keeps its constant low energy value [experimentally ≈ 137.036 x (3/8)]. The conjecture that the
bare coupling at infinite energy is 4π2 (i.e. that the corresponding "charge" is 1/2π) allows us to estimate
its low energy value to better than 1‰ by using the renormalization group equations for the running
coupling. An approximate estimate of the U(1), SU(2) and SU(3) inverse couplings (broken lines) is used
for computing the next-to-leading order effects (see text).

We have also considered other possible contributions, which happen to be

negligible at the precision considered. This includes the second order terms between

electron and Z scales {∆α− (2) = (3α/4π)∆α− (1) ≈ 0.015}, the third order terms between
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Planck scale and Z scale (∆α− ΛZ

(3)
  ≈ ±0.02), the effects of Yukawa couplings and Higgs

mass (~< 0.01).

Combining all the relevant contributions, we obtain a theoretical estimate of the

fine structure constant:

 α− e   =  α− (∞) + ∆α− ΛZ

(1)
  + ∆α− ΛZ

(2)
  + ∆α− Ze

h
  + ∆α− Ze

L
  + ∆α− Sc-rel

= 137.08 + 2.11 (NH – 1) ± 0.13  . (24)

This leads for 1 Higgs doublet to α− e = 137.08 ± 0.13, where we have added in

quadrature the estimated errors. Though such an estimate cannot compete with the

precision of the experimental one (currently 137.0359914(11) [15] at zero energy, which

implies  α− e = 137.028 at electron energy), they nevertheless agree to better than 1‰,

which is a very encouraging result.

We can also use our calculation the reverse way: start from the observed low

energy fine structure constant and compute the bare inverse coupling α− 0. We find  α− 0(∞)

= 39.465 ± 0.049, which agrees within error bars with our expectation 4π2 = 39.478.

Finally our results can be utilized to make predictions on other quantities by

setting the low and high energy values of the coupling. As a consequence of the fact that

each Higgs doublet contributes by +2.11 in the final result, we can predict with a high

level of confidence that the number of Higgs doublets is 1:

NH   = 1.02 ± 0.06  . (25)

Another spinoff of our calculation is a prediction of the hadron contribution to the inverse

coupling variation ∆α− Ze
h

  = 3.86 ± 0.05, improved with respect to the present

experimental value [Eq. 20]. 

5. Summary and Conclusion

We have performed in the present letter a calculation of the variation of the inverse

QED coupling (“fine structure constant”) from infinite energy to electron energy, by

using its renormalization group equations in the framework of a scale-relativistic

extension of the standard model assuming three families of elementary particles and the

‘great desert’ hypothesis. We find ∆α−∞e = 31.80 + 2.11(NH –1) ± 0.13. This calculation

allows us to get an estimate to better than 1‰ of the low energy fine structure constant,

based on the conjecture that the bare dimensionless “charge” α0
1/2 is 1/2π. Such a result

is made possible by the new structure of space-time postulated in scale relativity: in this

theory, the Planck length plays the new role of a lowest, unpassable scale, invariant

under dilatations, which may be reached only at infinite energy and replaces the zero
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point of standard physics. A direct consequence of this calculation is that the number of

Higgs doublets can be only one, in agreement with the minimal version of the

electroweak theory with an explicit Higgs mechanism.

One can finally note that, though it is only in the framework of scale relativity that

our result is fully understandable (since the Planck length-scale corresponds there to

infinite energy-scale), a similar though less significant result may be obtained in the

framework of the standard model. Assuming that the inverse coupling α− 0 is 4π2 at the

Planck scale, the same calculation would yield α− e = 137.26 ± 0.13, which is marginally

consistent (1.8σ) with the observed value. Note also that, even though we have based our

calculation on the (conjectured) value of α− 0 at the Planck scale, one expects this value not

to be actually achieved in nature, since physics drastically changes at the GUT scale [17].

So this limit must be understood as purely virtual, and defined in the framework of a

formal high energy electroweak theory.

We shall in forthcoming works present other theoretical estimates of fundamental

parameters of the standard model, depending more tightly on the scale-relativistic

structure, and shall also attempt to justify in more detail the 1/2π conjecture.
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