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Abstract

Gauge field theory is developed in the framework of scale relativity. In this the-
ory, space-time is described as a nondifferentiable continuum, which implies it is
fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle
of relativity that has been extended to scales, these scale variables can themselves
become functions of the space-time coordinates. Therefore, a coupling is expected
between displacements in the fractal space-time and the transformations of these
scale variables. In previous works, an Abelian gauge theory (electromagnetism)
has been derived as a consequence of this coupling for global dilations and/or con-
tractions. We consider here more general transformations of the scale variables by
taking into account separate dilations for each of them, which yield non-Abelian
gauge theories. We identify these transformations with the usual gauge transfor-
mations. The gauge fields naturally appear as a new geometric contribution to the
total variation of the action involving these scale variables, while the gauge charges
emerge as the generators of the scale transformation group. A generalized action
is identified with the scale-relativistic invariant. The gauge charges are the conser-
vative quantities, conjugates of the scale variables through the action, which find
their origin in the symmetries of the “scale-space”. We thus found in a geometric
way and recover the expression for the covariant derivative of gauge theory. Adding
the requirement that under the scale transformations the fermion multiplets and
the boson fields transform such that the derived Lagrangian remains invariant, we
obtain gauge theories as a consequence of scale symmetries issued from a geometric
space-time description. c©2006 American Institute of Physics.
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1 Introduction

In standard gauge field theory, the nature of the gauge transformations, of the gauge
fields and of the conserved charges are postulated and designed from experimental
considerations. The group of gauge transformations does not act upon the space-
time coordinates, as does, for example, the SU(2) spin rotation group or the Lorentz
group, but in an “internal space” whose physical meaning is not understood from
first principles. For a general gauge group G, the particle wave functions that are
multiplets of Dirac bi-spinors form a n-component vector in the internal space,
and the gauge potentials Aµ (more generally W a

µ ) are fields in standard space-time
defined only up to a gauge transformation.

There is indeed a fundamental difference between the situation of transforma-
tions in the standard gauge theories and of, e.g., Lorentz transformations. Thanks
to the fact that space-time coordinates are directly observable, we know from the
very beginning what Lorentz transformations are, namely, space-time rotations of
the coordinates, dx′ = Λα

β dx
β . They write in the case of an infinitesimal trans-

formation, (i) dx′α = (δα
β + ωα

β )dxβ , where the ωij (i and j = 1 to 3) represent

the infinitesimal angles of rotation in space and the ω0i = vi/c (vi � c) are the
infinitesimal Lorentz boosts. Then, once this basic definition is given, one can con-
sider the effect of these transformations on various physical quantities defined in
space-time, e.g., the wave function ψ. This involves representations of the Lorentz
group adapted to the nature of the physical object under consideration, i.e., (ii)
ψ′ = (1 + 1

2
ωαβσαβ)ψ (see, e.g., [1]).

In contradistinction with this situation, in standard gauge theories the gauge
functions, being arbitrary, are considered to be devoid of physical meaning. As a
consequence, there is up to now no equivalent of the basic defining transformation
(i). Therefore, in the standard framework, the gauge group is indirectly defined
through its action on the various physical objects according to its representations,
in similarity with relation (ii), but the physical meaning of the gauge space itself is
lacking.

In the present paper, we place ourselves in the framework of the scale relativity
theory, in which the description of the space-time geometry is generalized to con-
tinuous but nondifferentiable ‘manifolds’. In this theory, one attempts to recover
the quantum behavior as a manifestation of the nondifferentiability, then the gauge
fields themselves as a manifestation of the nondifferentiable and fractal geometry (in
analogy with gravitation interpreted as a manifestation of the non-Euclidean curved
geometry in general relativity).

In this framework, we give a geometric meaning to the gauge space, then we can
rebuild the gauge transformations of the various physical quantities (namely, the
various quantum fields) as consequences of the fundamental transformations of the
variables which define this gauge space. In other words, it is precisely an equivalent
for gauge theories of the defining transformation (i) that can be proposed in scale
relativity. The specifically new results given in the present paper consist of extending
to non-Abelian gauge theory the results of previous works [2, 3, 4] devoted to the
understanding of the simpler gauge invariant theory of electromagnetism.
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The paper is organized as follows. After a summarized review (Sec. 2) of the
main steps of the construction of the scale relativity theory, including the exposition
of the salient features that have led to the demonstration of the Dirac equation
[5, 6] from the scale relativistic first principles, we give a brief reminder of the
results previously obtained for electromagnetism (Sec. 3). Then we give, in Sec. 4,
an extension of the concepts and methods thus obtained, and we apply them to a
general development of the non-Abelian gauge formalism. Section 5 is devoted to
the conclusion.

2 Scale relativity and quantum mechanics: sum-

mary

2.1 Foundations of scale relativity

The theory of scale relativity is based on the giving up of the hypothesis of manifold
differentiability which is a key assumption of Einstein’s general relativity. In the
new theory, the coordinate transformations are continuous but can be differentiable
(and therefore it includes general relativity) or nondifferentiable. The giving up of
the assumption of differentiability implies several consequences [7], leading to the
successive steps of the construction of the theory:

(1) It has been proved [7, 3, 8] that a continuous and nondifferentiable curve is
fractal in a general meaning, namely, its length is explicitly scale dependent and
goes to infinity when the scale interval ε goes to zero, i.e., L = L(ε) → ∞ when
ε→ 0. This result can be readily extended to a continuous and nondifferentiable
manifold.

(2) The fractality of space-time [9, 10] involves the scale dependence of the ref-
erence frames. We therefore add to the usual variables defining the reference frames
(position, orientation, motion), new variables ε characterizing their ‘state of scale’.
In particular, the coordinates themselves become functions of these scale variables,
i.e., X = X(ε) (in the simplified case of only one variable). In an experimental situa-
tion, these scale variables are identified with the resolution scale of the measurement
apparatus. In the case of a theoretical physics description, they are identified with
the differential elements themselves, of which the coordinates become explicit func-
tions, i.e., X = X(dX).

(3) The scale variables ε can never be defined in an absolute way, but only in a
relative way. Namely, only their ratio ρ = ε′/ε does have a physical meaning. This
universal behavior leads to extend to scales the principle of relativity [11, 12, 7], in
order to include in the possible changes of reference frames the new ones which are
described by the transformations of these scale variables.

(4) Though the nondifferentiability manifests itself at the limit ε → 0, the use
of differential equations is made possible by representing physical quantities f by
fractal functions f [X(ε), ε] [7]. Even if the function f(X, 0) is nondifferentiable with
respect to the variable X, the fractal function f(X, ε) is differentiable for any ε 6= 0
with respect to both X and ε. This allows us to complete the differential equations
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of standard physics by new differential equations of scale, which are constrained
by the principle of scale relativity. The study of the scale laws derived from these
differential equations has been developed according to various levels of relativistic
transformations [12, 3, 13]. In what follows, we consider only the simplest case,
namely Galilean-type scale transformations (i.e., characterized by a constant fractal
dimension).

(5) The simplest possible scale differential equation is a first order equation,
∂X/∂ ln ε = β(X), which can be simplified again by Taylor expanding the unknown
function β, so that it reads ∂X/∂ ln ε = a+ bX + · · ·. The solution of this equation
is made of two terms, a scale-independent, differentiable, classical part and a power-
law, nondifferentiable fractal part, which read

X = x+ ζ

(

λ

ε

)−b

, (1)

where x = −a/b. When the coefficient b is constant, the second term is the stan-
dard expression for the length of a fractal curve of dimension DF = 1 − b [14].
Moreover, the transformation law of this power-law term under a scale transforma-
tion ln(λ/ε) → ln(λ/ε′) takes the mathematical form of the Galileo group, and it
therefore comes under the principle of relativity [12], as initially required.

2.2 Metric of a fractal space-time

In Eq. (1), the scale variable ε is a space resolution, e.g., ε = δX. The next step
consists of considering its four-dimensional differential counterpart and to express it
in terms of intervals of the invariant length (proper time) ds, by using the standard
relation between the resolution interval of projected coordinates and the resolution
interval of the invariant length on a fractal, (δXµ)DF ∼ δs,

dXµ = dxµ + dξµ = vµds+ ζµ × (λc)
1−1/DF × ds1/DF , (2)

where ζµ is dimensionless, λc is a length scale which must be introduced for di-
mensional reasons and DF is a fractal (covering) dimension. In the case where this
description holds for a quantum particle of mass m, λc will be identified with its
Compton length h̄/mc. The elementary displacement on a fractal space-time is
therefore the sum of a classical, standard differentiable element, which is leading
at large scales, and of a fractal, nonstandard fluctuation which is leading at small
scales.

In what follows, we simplify again the description by considering only the case
DF = 2. For this, we base ourselves on Feynman’s result [15, 16] according to which
the typical paths of quantum particles (those which contribute mainly to the path
integral) are nondifferentiable and (in modern words) fractal of dimension DF = 2.
The case DF 6= 2 has also been studied in detail: it has been shown that DF = 2 is
a critical dimension for which the explicit scale dependence disappears in the final
equations (see [3] and references therein).

Let us now show how Eq. (2) can be used to give an explicit form to the metric of
a fractal space-time (disregarding at this step of the construction other consequences
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of nondifferentiability such as the multivaluedness of derivatives, see next sections).
The fractal fluctuations (here in four dimensions) write for fractal dimension 2,

dξµ = ζµ
√

λc ds, (3)

where the ζµ are dimensionless highly fluctuating functions.
In what follows, we replace them (in a provisional way) by stochastic variables

such that 〈ζµ〉 = 0, 〈(ζ0)2〉 = −1 and 〈(ζk)2〉 = 1 (k =1 to 3). We recover here
a description which is familiar in usual stochastic processes, which can also be
separated in a regular part and a stochastic part, but here this is done at the level of
the metric. As we shall see, we do not have to be more specific about the probability
distribution of these stochastic variables. Their zero mean and unit variance is the
only information needed in the subsequent calculations, which are therefore valid
whatever this distribution.

Now we can write the fractal fluctuations in terms of the coordinate differentials
instead of the invariant length differential,

dξµ = ζµ
√
λµ dxµ. (4)

The identification of Eqs. (3) and (4) leads very simply to the establishment of the
expressions for the de Broglie-Einstein length and time scales from the Compton
one, i.e., for two variables,

λx =
λc

dx/ds
=

h̄

px
, τ =

λc

dt/ds
=
h̄

E
. (5)

The de Broglie scale (and the Compton scale in rest frame) therefore plays an essen-
tial role in the properties of the scale variables (identified here with the differential
elements). It stands out as a natural reference scale for them, since it plays the role
of a fractal to nonfractal transition (that should not be understood as a transition
acting in position space but instead in scale space). Indeed we see from the relation
〈dξ2

x〉 = λxdx (and similar relations for the other variables) that when |dx| � λx,
the fractal fluctuation becomes |dξx| � |dx| and therefore it dominates the classical
(differentiable) contribution. On the contrary, when |dx| � λx, the fractal fluc-
tuation |dξx| � |dx| becomes negligible and only the classical term remains. The
subsequent developments of the theory, which lead to construct a wave function and
to derive Schrödinger and Dirac equations (see Sec. 2.4), finally allow one to identify
this transition with a quantum to classical transition [7].

Let us now assume that the large scale (classical) behavior is given by Rieman-
nian metric potentials gµν(x, y, z, t). The invariant proper time dS along a geodesic
(which is therefore subjected to curvature at large scale and fractality at small
scales) writes in terms of the complete differential elements dXµ = dxµ + dξµ:

dS2 = gµνdX
µdXν = gµν(dxµ + dξµ)(dxν + dξν). (6)

Now replacing the dξ’s by their expression (Eq. 4), we obtain a fractal metric.
Assuming for simplicity (1+1) dimensions, a diagonal classical part of the metric
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and a fractal dimension DF = 2, it reads

dS2 = g00

(

1 + ζ0

√

τ

dt

)2

c2dt2 − g11



1 + ζ1

√

λx

dx





2

dx2. (7)

We therefore obtain generalized fractal metric potentials which are explicitly de-
pendent on the coordinate differential elements, in agreement with the program of
Refs. [11, 7]. More generally the metric potentials can be written in their turn as the
sum of the standard metric potentials (which describe curvature) and of divergent,
highly fluctuating terms (which describe fractality), e.g., for the g00 component,

g̃00(x, t; dt) = g00(x, t) + γ00(x, t)

(

τ

dt

)

, (8)

where we have kept only the leading term, owing to the fact that 〈ζµ〉 = 0. The
γµν(x, t) can be described at a first approximation in terms of stochastic variables.
We recover here our result [7] according to which, in the limit (dx, dt → 0), the
metric is divergent (singular) at each of its points and instants, which is the very
intrinsic expression of the fractality of space-time. As a consequence, the curvature is
also explicitly scale-dependent and divergent when the scale intervals tend to zero.
This property ensures the fundamentally non-Riemannian character of a fractal
space-time as well as the ability to characterize it in an intrinsic way.

Note that all the above developments have been made in the framework of
Galilean scale relativity, in which the fractal dimension is assumed to be constant
(we call it Galilean because its laws of scale transformation are similar to inertial
laws of motion). However it is worth briefly recalling here that a special scale rela-
tivity theory has been proposed [7, 12], in which the transformation laws of the scale
variables ln ρ take the form of a Lorentz group, so that the fractal dimension becomes
itself a variable. In this framework, the differential elements dX can no longer tend
to zero since they are limited at small scales by a minimal length scale, invariant
under dilations, that we have identified with the Planck length λIP =

√

h̄G/c3. It
has a status similar to that of c in motion special relativity, i.e., of an unreachable
and impassable horizon rather than of a cutoff or a barrier: namely, it replaces the
zero point since an infinite contraction would be needed to obtain it from another
scale. Combined with the role of scale transition played by the Compton length
(in rest frame), this interpretation of the Planck scale leads to introduce a set of
fundamental constants IC = ln(λc/λIP ) = ln(mIP /m) which are characteristic of el-
ementary particles of mass m and Compton length λc = h̄/mc. These constants
play an essential role in structuring the geometry of the geodesics families of the
fractal space-time [3] (to which we identify the particles, see next Sec. 2.3), in par-
ticular when accounting for the coupling between scale and motion that leads to the
emergence of gauge fields, which is the main subject of the present paper.
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2.3 Geodesics of a fractal space-time

2.3.1 Infinity of geodesics

The next step in such a geometric approach consists of writing the geodesics equa-
tion. We make the conjecture that the description of quantum particles can be
reduced to that of these geodesics. Then their internal properties are the geometri-
cal properties of the geodesics bundle corresponding to their state, according to the
various conservative quantities (prime integrals) that define them.

Any measurement performed on the “particle” is interpreted as a selection of the
geodesics bundle linked to the interaction with the measurement apparatus (that
depends on its resolution) and/or to the information known about it (for example,
the which-way-information in a two-slit experiment [3]).

Generalizing to space-times the definition of fractal functions, we have defined
a fractal space-time as the equivalence class of a family of Riemanian manifolds,
explicitly depending on the scale variables. In such space-times, the geodesics equa-
tions are also scale dependent and the number of geodesics that relate any two events
(or starts from any event) is infinite. We are therefore led to adopt a generalized
statistical fluidlike description where the deterministic velocity V µ(s) is replaced by
a scale-dependent, fractal velocity field V µ[Xµ(s, ds), s, ds].

2.3.2 Discrete symmetry breaking

Another consequence of nondifferentiability is the breaking of the invariance by
reflexion of the differential element ds. Indeed, for fractal functions f(s, ds), two
generalized derivatives are defined instead of one,

f ′+(s, ds) =
f(s+ ds, ds) − f(s, ds)

ds
, f ′−(s, ds) =

f(s, ds) − f(s− ds, ds)

ds
, (9)

that are transformed one into the other by the reflexion ds ↔ −ds. Applied to
the space-time coordinates, these two derivatives give two divergent velocity fields,
V µ

+ [x(s, ds), s, ds] and V µ
− [x(s, ds), s, ds]. Each of them can be in turn decomposed

in terms of classical parts v+ and v−, and of fractal parts w+ and w−.
Then we define two “classical” derivatives d+/ds and d−/ds, which, when they

are applied to xµ, yield the “classical” velocity fields

d+

ds
xµ(s) = vµ

+

d−
ds
xµ(s) = vµ

−. (10)

Since there is no reason to privilegize one process rather than the other, we consider
both (+) and (−) processes on the same footing, and we combine them in a unique
twin process in terms of which the microscopic reversibility is recovered [7]. A
simple and natural way to account for this doubling is to use complex numbers
and the complex product [6]. In the scale relativity framework, this fundamental
two-valuedness implied by nondifferentiability can be shown to be the origin of the
complex nature of the wave function of quantum mechanics.
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2.3.3 Quantum-covariant derivative

The next step of the scale-relativity program amounts to include in the construction
of a complex derivative operator the various effects (described above) of nondiffer-
entiability and fractality [7] :

d̄

ds
=

1

2

(

d+

ds
+
d−
ds

)

− i

2

(

d+

ds
− d−
ds

)

. (11)

Such an operator will play the role of a covariant derivative (in Einstein’s general
meaning given to this word, i.e., as a tool of implementation of the principle of
covariance, according to which the fundamental equations of physics should keep
their form under transformations of the reference system). It can be used to define
a complex four-velocity field,

Vµ =
d̄

ds
xµ = V µ − iUµ =

vµ
+ + vµ

−

2
− i

vµ
+ − vµ

−

2
. (12)

The total derivative of a fractal function contains finite terms up to highest orders.
For a constant fractal dimension DF = 2, a finite contribution only proceeds from
terms up to second order. Since only stationary functions which do not depend
explicitly on s are considered, one can show that the complex covariant derivative
operator reads in the relativistic case [2, 6]

d̄

ds
= (Vµ + i

λc

2
∂µ) ∂µ. (13)

Finally, using the strong covariance principle (extended to scales), we are led to
write a geodesics equation by using this covariant derivative in terms of a freelike
equation of motion:

d̄

ds
Vµ = 0. (14)

At this stage, the wave function ψ = eiS/mλc is defined as a mere re-expression of the
complex action S. By introducing it in the above geodesics equation thanks to its
relation to the velocity field Vµ = iλ ∂µ lnψ, it gives after integration the complex
(standard) free Klein-Gordon equation, λ2

c ∂
µ∂µψ + ψ = 0 [2, 3].

Note that we consider in this paper only the full relativistic case in which both
space and time are fractal (which corresponds to energies larger than mc2, i.e., to
scales smaller than the Compton scale). However it is worth briefly recalling that
nonrelativistic quantum mechanics (which usually applies at intermediate scales) is
recovered in our framework in terms of a three-dimensional fractal space, with no
fractal time. In this case a generalized Schrödinger equation for a complex wave
function is derived [7, 3, 6, 17, 18, 19]. The reason for such an asymmetry between
space and time in the scale-relativity description (and in quantum mechanics) is to
be found in the quantum-classical transition, identified with the fractal-nonfractal
transition (see Sec. 2.2). Indeed, for a free particle it is given by the Einstein-de
Broglie scale λµ = h̄/pµ, whose time scale τ = h̄/E is always smaller than its
corresponding space-scales λ = h̄/p, because of the relation E2 = p2 + m2 (and
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therefore finally because of the existence of mass). This implies a first transition
from standard space-time to fractal space, then at smaller scales a second transition
to fractal space-time [7]. These three regimes manisfest themselves successively as
classical, quantum non-relativistic then quantum relativistic mechanics.

2.4 The Dirac equation as a geodesics equation in a

fractal space-time

As recalled hereabove, the Klein-Gordon equation is obtained as a result of the
ds ↔ −ds symmetry breaking. The consideration of a more general case where
we add the breaking of the symmetries dxµ ↔ −dxµ and xµ ↔ −xµ leads to the
appearance of bispinors which are solutions of the Dirac equation [6].

Following the method described in Sec. 2.3.3, these additional discrete symme-
try breakings lead to two new doublings of the velocity field and of the classical
derivative. The four-velocity field has now eight components, which are used to
construct a biquaternionic (complex-quaternionic) velocity field. Then a biquater-
nionic covariant derivative operator may be built, which keeps once again the same
form (Eq. 13) as in the complex case [6], even though the velocity field is now a
biquaternion instead of a complex number.

The biquaternionic geodesics equation reads

d̄

ds
Vα = (Vµ + i

λc

2
∂µ) ∂µVα = 0. (15)

A biquaternionic action is defined according to

δS = ∂µS δxµ = −mc Vµ δx
µ. (16)

The biquaternionic four-momentum can therefore be written Pµ = mc Vµ = −∂µS.
Then we introduce a biquaternionic wave function, which is once again a mere re-
expression of the action, as

ψ−1∂µψ =
i

cS0

∂µS, (17)

which yields for the biquaternionic four-velocity the expression

Vµ = iλcψ
−1∂µψ. (18)

This relation is destined to play an essential role in the subsequent construction of
the non-Abelian gauge theory. Indeed, its specific form (ψ−1∂µψ), which is linked
to the noncommutativity of biquaternions, will allow a proper generalization to
multiplets which permits in its turn a geometric construction of the non-Abelian
charges in accordance with the standard Yang-Mills theory (Sec. 4).

Then we replace in Eq. (15) the velocity field Vα by its expression (Eq. 18). We
obtain the motion equation as a third order differential equation, which becomes
after some calculations ∂µ[(∂ν∂νψ)ψ−1] = 0 and may therefore be integrated. This
yields the Klein-Gordon equation for a free particle, λ2

c ∂
µ∂µψ + ψ = 0, but now

generalized to complex quaternions [5, 6].
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Long-known properties of the quaternionic formalism (see, e.g., [20, 21]) can
finally be used to readily obtain the Dirac equation for a free particle, namely,

1

c

∂ψ

∂t
= −αk ∂ψ

∂xk
− i

mc

h̄
βψ, (19)

as a mere square root of the Klein-Gordon operator [5, 6], which was itself derived
from the geodesics equation (15). Then the isomorphism which can be established
between the quaternionic and spinorial algebrae [22] allows us to identify the wave-
function ψ to a Dirac spinor. In a Lagrangian formalism, the Dirac equation proceeds
from the Lagrangian density,

L = ψ̄ (iγµ∂µ −m) ψ, (20)

which therefore becomes a direct consequence of the scale relativity principles [6].
It is also easy to derive the Pauli equation, since it is known that it can be obtained
as a non-(motion)-relativistic approximation of the Dirac equation, while, in this
approximation, Dirac bispinors become Pauli spinors.

Let us conclude this section by a final remark: one of the consequences of this
theory is that it provides a physical picture of the nature of spin. In the scalerel-
ativistic framework, the complex nature of the wave function and the existence of
spin have both a common origin, namely, the fundamental twovaluedness of the
derivative (in its generalized definition) coming from nondifferentiability. These two
successive doublings are naturally accounted for in terms of algebra doublings (see
Appendix of Ref. [6]), i.e., of a description tool that jumps from real numbers IR to
complex numbers IC = IR2, then to quaternions IH = IC2. However, while the origin
of the complex nature of the wave function is linked to the total derivative (and
therefore to proper time) through the doubling d/ds → (d+/ds, d−/ds), the origin
of spin is linked to the partial derivative with respect to the coordinates through
the doubling ∂/∂xµ → (∂+/∂x

µ, ∂−/∂x
µ), which finally leads to the twovaluedness

of the wave function itself ψ → (ψ1, ψ2), characterizing a (Pauli) spinor.
Such a physical effect has naturally a consequence on the angular momentum

(xµ∂/∂xν−xν∂/∂xµ), leading to the two directions in which spin can become locked.
Moreover, numerical simulations of the fractal geodesical curves (work in prepara-
tion) which are solutions of Eq. (15) allow us to obtain a more specific picture of
the spin as an internal angular momentum of these geodesics. Indeed, these solu-
tions are characterized by spiral structures at all scales, in agreement with Ord’s
reformulation of the Feynman relativistic chessboard model in terms of spiral paths
[23]. They also support our early models of emergence of a spinlike internal angular
momentum in fractal spiral curves of fractal dimension 2 [7, 11]. We here recall
briefly the argument: the angular momentum Lz = mr2ϕ̇ should classically vanish
for r → 0. But in the fractal spiral model, ϕ̇ → ∞ when r → 0 in such a way that
r2ϕ̇ remains finite when DF = 2 (while it is vanishing for DF < 2 and divergent for
DF > 2). This result solves the problem of the apparent impossibility to define a
spin in a classical way both for an extended object and for a pointlike object, and
provides another proof of the critical character of the value DF = 2 for the fractal
dimension of quantum particle paths (which can be derived from the Heisenberg
relations).
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3 Scale-relativistic theory of electromagnetism:

summary

3.1 Electromagnetic field and electric charges

Let us now briefly recall the results previously obtained in the case of a U(1) field
[2, 3, 4].

We consider here a special situation in which the set of the scale variables comes
down to only one element, % = ε/λ. This amounts to limit ourselves to the study
of global scale transformations (contractions/dilations) in “scale-space”.

Because, according to the principle of scale relativity, this “scale-space” is fun-
damentaly non-absolute, the scale of a structure (internal to the fractal geodesics
which are identified with a “particle”) is expected to change during a displacement
in space-time. In other words, we now consider scale variables which become explicit
functions of the coordinates, i.e., % = %(x, y, z, t).

This is analogous to the situation encountered in general relativity (GR) for a
curved space-time: namely, in a parallel displacement, a vector V µ is subjected to
an increase δV µ = −Γµ

νρV
νdxρ (where the Γµ

νρ are the Christoffel symbols, i.e., the
gravitational field), due to the geometric effects of curvature. Then, if one substracts
this geometric increase from its total variation dV µ, one recovers the inertial part
of the variation (see, e.g., [24]). This allows to define the GR covariant derivative
D as DV µ = dV µ − δV µ = dV µ + Γµ

νρV
νdxρ.

The same kind of behavior is true in the scale relativity framework, but with
an essential difference: while the effects of curvature affect vectors, tensors, etc.,
but not scalars, the effects of fractality begin already at the level of scalars, among
which the “invariant” of length ds2 itself.

Therefore, we expect in a displacement the appearance of a resolution change
due to the fractal geometry, that reads

δε = −1

q
Aµ ε dx

µ, (21)

i.e., in terms of the scale ratio,

δ ln % =
1

q
Aµ dx

µ. (22)

The introduction of the (1/q) term in this definition is an important point for
the electromagnetic case and also for its non-Abelian generalizations. Indeed, as
we shall see in what follows, the “field” Aµ will be identified with an electromag-
netic potential. Since ln % is dimensionless, we are led to divide the potential term
by the “active” electric charge q, leaving a charge-independent purely geometric
contribution.

This leads to the appearance of a dilation field, according to the construction of
a scale-covariant derivative,

Dχ = dχ− δχ = dχ−Aµdx
µ, (23)
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where we have set χ = q ln %. We finally obtain the partial derivative as the sum of
the inertial and of the geometric terms as

∂µχ = Dµχ+Aµ. (24)

Let us now consider the action S for, e.g., an electron. In the framework of a
space-time theory based on a relativity principle, which is here the case, its variation
should be given directly by the space-time invariant ds, i.e., δ

∫

dS = 0 becomes
identical with a geodesics (Fermat) principle δ

∫

ds = 0. But now the fractality of
the geodesical curves to which the electron wave field is identified means that their
proper length becomes a function of the scale variable, so that S = S(χ).

Therefore the differential of the action reads

dS =
∂S

∂χ
dχ =

∂S

∂χ
(Dχ+Aµdx

µ), (25)

so that we obtain

∂µS = DµS +
∂S

∂χ
Aµ. (26)

This result provides us with a definition for the “passive” charge (on which the
electromagnetic field acts) as [2, 3]

e

c
= −∂S

∂χ
. (27)

This is a second important point worth to be emphasized, since it will play an
important role for the generalization to non-Abelian gauge theories. In the standard
theory, the charge is set from experiment, then it is shown to be related to gauge
transformations, while the gauge functions are considered to be arbitrary and devoid
of physical meaning. In the scale relativity approach, the charges are built from the
symmetries of the “scale space”. One indeed recognizes in Eq. (27) the standard
expression that relates a conservative quantity to the symmetry of a fundamental
variable (here, the relative resolution), according to Noether’s theorem.

Note that, at this level of the construction of the theory, the charge is defined
as a large scale prime integral (conservative quantity). But, once this result is
obtained, a second step consists of studying in detail the internal structures of the
fractal geodesics (that are identified with the charged particle) [3, 7]. These internal
structures can afterwards be interpreted (at time scales smaller than τ = h̄/E), in
terms of virtual particle-antiparticle pairs, then of radiative corrections and of the
scale variation of the charge toward small scales, as described by the renormalization
group equations.

It is also remarkable that, in such a relativistic foundation of electromagnetism,
we are led to introduce in a separate way an active and a passive charge. This is
also analogous to the introduction in GR of an active gravitational mass and of a
passive mass which are equal according to the GR strong principle of equivalence.
As a consequence, a scale-relativistic principle of equivalence of these charges can be
set (in order to account for the action-reaction principle in Coulomb’s law). Under
this principle, e = q and Eq. (27) becomes e2/c = −∂S/∂ ln %.

12



We have therefore established from first principles the form of the action in the
classical electromagnetic theory, in particular the form of the particle-field coupling
term (which was postulated in the standard theory), as (see, e.g., [24])

dS = −mcds− e

c
Aµ dx

µ. (28)

But this form has also a new geometrical interpretation. It means that, in this
framework, an increase of the length can come from two contributions: the first is the
usual variation due to the motion of the particle, while the second new contribution,
which is of geometric nature, is a length dilation of the internal fractal structures.

We are now able to write a geodesics equation minimizing the length invariant
(i.e., the proper time), which coincides with the least-action principle δ

∫

dS = 0
(see [24]). The variation of the above action yields the Lorentz equation of electro-
dynamics,

mc
duα

ds
=
e

c
Fαµ u

µ, (29)

where Fαµ = ∂αAµ − ∂µAα is the electromagnetic tensor field. We also recover the
standard form for the differential of the action as a function of the coordinates,
namely,

dS = −(mcuµ +
e

c
Aµ) dxµ. (30)

3.2 Quantum electrodynamics

Let us proceed with a brief account of the generalization of this approach to quan-
tum electrodynamics. As recalled in Sec. 2, in the scale relativistic approach to the
quantum theory [3, 7], the four-velocity Vµ that describes a scalar particle is com-
plex, so that its action is also a complex number and it now writes S = S(xµ,Vµ, χ).
The wave function is defined from this action as ψ = exp (iS/h̄).

Therefore Eq. (30) now takes the form

dS = −mcVµ dx
µ − e

c
Aµdx

µ. (31)

The new relation between the wave function and the velocity reads

mcVµ = ih̄ Dµ lnψ = ih̄∂µ lnψ − e

c
Aµ, (32)

so that we recover the standard QED-covariant derivative as being nothing but
the scale-covariant derivative previously introduced, but now acting on the wave
function,

Dµ = ∂µ + i
e

h̄c
Aµ. (33)

3.3 Gauge invariance

Let us now consider a second internal structure of the fractal geodesics, that lies at
a relative scale ε′ = ρ′λ. Equation (22) becomes

δ ln ρ′ =
1

q
A′

µ dx
µ. (34)
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Let ϕ be the ratio between the scales ε′ and ε. In the framework of Galilean scale
relativity (where the product of two successive dilations ρ and ρ′ is ρ′′ = ρ × ρ′),
this ratio is simply ϕ = ρ′/ρ. One therefore finds

A′
µ = Aµ + q ∂µ lnϕ, (35)

which is the standard gauge invariance relation for the potential. But here a gauge
transformation, instead of being arbitrary, is identified with a scale transformation
of the resolution variable in scale space. Under such a transformation, the wave
function of the particle becomes

ψ′ = ψ exp

(

−i eq
h̄c

lnϕ

)

. (36)

As a consequence, the Lagrangian given by Eq. (31), that includes the particle and
field-particle coupling terms, remains globally invariant under a gauge transforma-
tion.

When q = e (the electron charge), we have e2 = 4παh̄c, where α is the “fine
structure constant”, i.e., the electromagnetic coupling constant. The previous ex-
pression becomes in this case ψ′ = ψ exp(−i4πα lnϕ). In the framework of the
special scale-relativity theory [12] in which possible scale ratios become limited
[lnϕ < ln(mIP /me)] because of the identification of the Planck length scale with
a lowest (invariant under dilations) scale, this expression has been used to suggest
the existence of a relation between the mass and the charge of the electron [2, 3, 4].

Let us conclude this review part by stressing that the scale-relativity theory
of electromagnetism shares some features with the Weyl-Dirac theory [25, 26], but
that it has new and essential differences. Namely, the Weyl theory considers scale
transformations of the line element, ds → ds′ = ρ ds, but without specifying any
fundamental cause for this dilation. The variation of ds should therefore exist at all
scales, in contradiction with the observed invariance of the Compton length of the
electron (i.e., of its mass).

In the scale relativity proposal, the change of the line element comes from the
fractal geometry of space-time, and it is therefore a consequence of the dilation of
the scale variables (“resolutions”). Moreover, the explicit effects of the dependence
on resolutions is observable only below the transition between scale dependence and
scale independence, which is identified with the Compton scale of the particle in
its rest frame. This ensures the invariance, in this theory, of the observed electron
mass.

4 Non-Abelian gauge fields

4.1 Scale-relativistic description

4.1.1 Introduction

We now generalize the electromagnetic description to a geometric foundation of non-
Abelian gauge theories, based upon the scale relativity first principles. We consider
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that the internal fractal structures of the “particle” (i.e., of the family of geodesics of
a nondifferentiable space-time) are now described in terms of several scale variables
ηαβ...(x, y, z, t), that generalize the single resolution variable ε. We write them for
simplicity in units of λ, and we assume that the various indices can be gathered into
one common index: we therefore write the scale variables under the simplified form
ηα (α = 0 to N).

In the simplest case, ηα = εα, where εα correspond to the resolutions of the space-
time coordinates Xα (α = 1 to 4). However, other situations can be considered,
since their true nature is tensorial rather than vectorial, and since, in analogy with
GR, general transformations can be applied to these variables, for example, the
transformation εα → ln εα may be particularly relevant for such scale variables. In
this paper, we shall not be more specific about the choice of the scale variables, in
order to keep generality. Moreover, our aim here is mainly to relate in a general
way the scale-relativistic tools to the standard description of current gauge theories,
so that we shall present only a general description of the scale transformations
obtained, leaving to future works a more specific establishment of the final gauge
group. However, even at this preliminary stage of the analysis, we can show that in
any case it contains at least an SU(2) subgroup, e.g., the three-dimensional rotations
in scale-space which can be identified with the isospin transformation group (see
Sec. 4.1.4 below).

4.1.2 General scale transformations

Let us consider infinitesimal scale transformations. The transformation law on the
ηα can be written in a linear way as

η′α = ηα + δηα = (δαβ + δθαβ) ηβ , (37)

where δαβ is the Kronecker symbol, or equivalently,

δηα = δθαβ η
β . (38)

Let us now assume that the ηα’s are functions of the standard space-time coordi-
nates. This leads us to generalize the scale-covariant derivative previously defined
in the electromagnetic case as follows: the total variation of the resolution variables
becomes the sum of the inertial one, described by the covariant derivative, and of
the new geometric contribution, namely,

dηα = Dηα − ηβδθαβ = Dηα − ηβW µ
αβ dxµ. (39)

Note that, here, this covariant derivative is similar to that of GR, i.e., it amounts to
subtract the new geometric part in order to keep only the inertial part (for which the
motion equation will therefore take a geodesical, freelike form). This is different from
the case of the quantum-covariant derivative (Eq. 13), which includes the effects of
nondifferentiability by adding new terms in the total derivative.

Recall that in the Abelian case, which corresponds to a unique global dilation,
this expression can be simplified since dη/η = d ln η = dχ. We want also to note
here that we have chosen to write the new geometric contribution −ηβδθαβ , i.e.,
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with a minus sign, in order to recover the covariant derivative of gauge theories in
its standard form (this is actually an inessential sign ambiguity).

In this new situation we are led to introduce “gauge field potentials” W µ
αβ that

enter naturally in the geometrical frame of Eq. (39). These potentials are linked to
the scale transformations as follows:

δθαβ = W µ
αβ dxµ. (40)

One should remain cautious about this expression and keep in mind that these
potentials find their origin in a covariant derivative process and are therefore not
gradients (this is expressed by the use of a difference sign δθαβ instead of dθαβ). They
formalize the coupling between displacements in space-time and transformations of
the scale variables and play in Eq. (39) a role analogous to the one played in general
relativity by the Christoffel symbols. It is also important to notice that the W µ

αβ

introduced at this level of the analysis do not include charges. They are functions
of the space and time coordinates only. This is a necessary choice because our
method generates, as we shall see, not only the fields but also the charges from,
respectively, the scale transformations and the scale symmetries of the dynamical
fractal space-time.

4.1.3 Multiplets

After having written the transformation law of the basic variables (the ηα’s), we
are now led to describe how various physical quantities transform under these ηα

transformations. These new transformation laws are expected to depend on the
nature of the objects to transform (e.g., vectors, tensors, spinors, etc.), which implies
to jump to group representations.

In the case where the particle is a spin-1/2 fermion, it has been recalled in
Eq. (18) that the relation between the velocity and the spinor fields reads

Vµ = iλ ψ−1∂µψ, (41)

where Vµ and ψ are complex quaternions and the constant λ = h̄/mc is the Compton
length of the particle.

However, bispinors are not a general enough description for fermions subjected
to a general gauge field. Indeed, we consider here a generalized group of transforma-
tions which therefore involves generalized charges. As a consequence of these new
charges (whose existence will be fully justified below and their form specified), the
very nature of the fermions is expected to become more complicated. Experiments
have indeed shown that new degrees of freedom must be added in order to represent
the weak isospin, hypercharge and color. In order to account in a general way for
this more complicated description, we shall simply introduce multiplets ψk, where
each component is a Dirac bispinor. Therefore, as already remarked in previous
presentations [3], when the scale variables become multiplets, the same is true of
the charges. As we shall see in what follows, in the present approach it is at the
level of the construction of the charges that the set generators enter.
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In this case the multivalued velocity becomes a biquaternionic matrix,

Vµ
jk = iλ ψ−1

j ∂µψk. (42)

The biquaternionic (therefore noncommutative) nature of the wave function (which
is equivalent to Dirac bispinors) plays here an essential role, as previously an-
nounced. Indeed, it leads to write the velocity field as ψ−1∂µψ instead of ∂µ lnψ in
the complex case, so that its generalization to multiplets involves two indices instead
of one. As we shall see in what follows, the general structure of Yang-Mills theories
and the correct construction of non-Abelian charges will be obtained thanks to this
result.

Therefore the action becomes also a tensorial two-index quantity,

dSjk = dSjk(x
µ,Vµ

jk, ηα). (43)

In the absence of a field, it is linked to the generalized velocity (and therefore to the
spinor multiplet) by the relation

∂µSjk = −mc Vµ
jk = −ih̄ ψ−1

j ∂µψk. (44)

Now, in the presence of a field [i.e., when the second-order effects of the fractal
geometry appearing in the right hand side of Eq. (39) are included], using the
complete expression for ∂µηα,

∂µηα = Dµηα −W µ
αβ η

β , (45)

we are led to write a relation that generalizes Eq. (25) to the non-Abelian case,

∂µSjk =
∂Sjk

∂ηα
∂µηα =

∂Sjk

∂ηα
(Dµηα −W µ

αβ η
β). (46)

Thus we obtain

∂µSjk = DµSjk − ηβ ∂Sjk

∂ηα
W µ

αβ . (47)

We are finally led to define a general group of scale transformations whose gen-
erators are

Tαβ = ηβ∂α (48)

(where we use the compact notation ∂α = ∂/∂ηα), yielding the generalized charges,

g̃

c
tαβ
jk = ηβ ∂Sjk

∂ηα
. (49)

This group is submitted to a unitarity condition, since, when it is applied to the
wave functions, ψψ† must be conserved.
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4.1.4 Rotations in “scale-space”

In order to enlight the meaning of the new definition we have obtained for the
charges, we consider in the present section a subsample of the possible scale trans-
formations on intrinsic scale variables: namely, those which are built from the anti-
symmetric part of the gauge set (that can therefore be identified as rotations in the
scale space). In this case the infinitesimal transformation is such that

δθαβ = −δθβα ⇒ W µ
αβ = −W µ

βα. (50)

Therefore, reversing the indices in Eq. (47), we may write

∂µSjk = DµSjk − ηα ∂Sjk

∂ηβ
W µ

βα. (51)

Taking the half-sum of Eqs. (47) and (51) we finally obtain

∂µSjk = DµSjk −
1

2

(

ηβ ∂Sjk

∂ηα
− ηα ∂Sjk

∂ηβ

)

W µ
αβ. (52)

This leads to define the new charges,

g̃

c
tαβ
jk =

∂Sjk

∂θαβ
=

1

2

(

ηβ ∂Sjk

∂ηα
− ηα ∂Sjk

∂ηβ

)

. (53)

We recognize here a definition similar to that of the angular momentum, i.e., of the
conservative quantity that finds its origin in the isotropy of space; but the space
under consideration is here the “scale-space”, i.e., the space of the scale variables
that must be added for a proper description of a fractal geometry of space-time.
Therefore the charges of the gauge fields are identified, in this interpretation, with
“scale-angular momenta”.

The subgroup of transformations corresponding to these generalized charges is,
in three dimensions, a SO(3) group related to a SU(2) group by the homomorphism
which associates to two distinct 2×2 unitary matrices of opposite sign the same
rotation. We are therefore naturally led to define a “scale-spin”, which we propose
to identify to the simplest non-Abelian charge in the current standard model: the
weak isospin.

Coupling this SU(2) representation of the rotations in a three dimensional sub-
“scale-space” to the U(1) representation of the global scale dilations (that describes,
e.g., the electromagnetism process) analyzed in Sec. 3, we are therefore able to give
a physical geometric meaning to the transformation group corresponding to the
U(1)×SU(2) representation of the standard electroweak theory [27, 28].

It is worth stressing here that the group of three-dimensional rotations in “scale
space” is only a subgroup of an at least four dimensional rotation group (one scale
variable for each space-time coordinate), and therefore at least SO(4), and, more
precisely, its universal covering group SU(2) × SU(2).
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4.2 Yang-Mills theory with the scale relativity tools

4.2.1 Simplified notation

For the subsequent developments, we shall simplify the notations and use only one
index a = (α, β) for the scale transformations: this index runs on the gauge group
parameters, now written θa. For example, in three dimensions, this means that we
replace the three rotations θ23, θ31, θ12, respectively, by θ1, θ2, θ3. We obtain the
following more compact form for the complete action:

dSjk =

(

DµSjk −
g̃

c
tajk Waµ

)

dxµ, (54)

and therefore

DµSjk = −ih̄ ψ−1
j Dµψk = −ih̄ ψ−1

j ∂µψk +
g̃

c
tajk W

µ
a . (55)

4.2.2 Scale relativistic tools for Yang-Mills theory

The previous equations have used new concepts that are specific of the scale rela-
tivity approach, namely (i) the scale variables ηα, (ii) the biquaternionic velocity
matrix Vµ

jk, and (iii) its associated action Sjk. The standard concepts of quantum
field theories, namely the fermionic field ψ, the bosonic field W µ

a , the charges g, the
gauge group generators tajk and the gauge-covariant derivative Dµ are here all of
them derived from these new tools.

Let us show that we are thus able to recover the basic relations of standard non-
Abelian gauge theories (see e.g. [29]). From Eq. (55), we first obtain the standard
form for the covariant partial derivative, now acting on the wave function multiplets,

Dµψk = ∂µψk + i
g̃

h̄c
tjak W µ

a ψj. (56)

The ψk’s do not commute together since they are biquaternionic quantities, but
this is the case neither of tjak nor of W µ

a , so that ψj can be set to the right as in
the standard way of writing; from the multiplet point of view (index j), we simply
exchange the lines and columns.

Now introducing a dimensionless coupling constant αg and a dimensionless charge
g, such that

g2 = 4παg =
g̃2

h̄c
, (57)

and redefining the dimensionality of the gauge field (namely, we replace W µ
a /

√
h̄c

by W µ
a ), the covariant derivative may be more simply written under its standard

form,
Dµψk = ∂µψk + i g tjak W µ

a ψj , (58)

where all of the three new contributions, g, tjak , and W µ
a have been constructed from

the origin by the theory and given a geometric meaning.
In the simplified case of a fermion singlet, it reads

Dµ = ∂µ + i g ta W µ
a . (59)
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Let us now derive the laws of gauge transformation for the fermion field. Consider a
transformation θa of the scale variables. As we shall now see, the θa can be identified
with the standard parameters of a non-Abelian gauge transformation. Indeed, using
the above remark about the exchange of lines and columns, Eq. (44) becomes

−ih̄∂µψk = ∂µSj
k ψj (60)

and allows us to recover by a different way Eq. (58), from which we obtain the
standard form for the transformed fermion multiplet in the case of an infinitesimal
gauge transformation δθa,

ψ′
k =

(

δj
k − ig tjak δθa

)

ψj . (61)

4.2.3 Yang-Mills theory

We have now at our disposal all the tools of quantum gauge theories. The subsequent
developments are standard ones in terms of these tools. Namely, one introduces the
commutator of the matrices ta (which have a priori no reason to commute), under
the form

tatb − tbta = if c
ab tc. (62)

Therefore the ta’s are identified with the generators of the gauge group and the i f c
ab’s

with the structure constants of its associated Lie algebra. The noncommutativity
of the generators and the requirement of the full Lagrangian invariance under the
scale transformations finally imply the appearance of an additional term in the
gauge transformation law of the boson fields. We obtain this additional term by the
standard method recalled below.

We replace into the Lagrangian of the fermionic field given by Eq. (20) the partial
derivative ∂µ by its covariant counterpart Dµ of Eq. (59). The development of the
covariant derivative leads to the appearance of two terms, a free particle one and a
fermion-boson coupling term,

L = ψ̄ (iγµ∂µ −m) ψ − g ψ̄ γµtaW
a
µ ψ. (63)

Let us now consider an infinitesimal scale transformation of the fermion field,

ψ → ψ e−ig δθb tb . (64)

The requirement of the full Lagrangian invariance under this transformation involves
also the coupling term. Let us consider the transformation of this term, except for
the Wµ contribution,

ψ̄ γµta ψ → ψ̄ eig δθb tbγµta ψ e
−ig δθb tb . (65)

Accounting for the fact that this is an infinitesimal transformation, it becomes

ψ̄ (1 + ig δθb tb)γ
µta ψ (1 − ig δθb tb) = ψ̄γµta ψ + ig ψ̄γµ δθb (tbta − tatb)ψ. (66)
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We replace the commutator tbta − tatb by its expression in Eq. (62), and we obtain

ψ̄ γµta ψ → ψ̄ γµta ψ − g ψ̄ γµ δθb f c
batc ψ. (67)

Then the requirement of invariance could be fulfilled only provided the transfor-
mation of the field W a

µ itself involves a new term (in addition to the Abelian term
∂µδθ

a), i.e.,
W a

µ →W a
µ + δW a

µ . (68)

The transformation of the full coupling term now reads

ψ̄ γµtaW
a
µ ψ → [(ψ̄ γµta ψ) − g f c

ba δθ
b (ψ̄ γµtc ψ)] [W a

µ + δW a
µ ]. (69)

Neglecting the second order term in the elementary variations and using the fact
that we can interchange the running indices, we see that this expression is invariant
provided

ψ̄ γµ {ta[δW a
µ − g fa

bc δθ
bW c

µ]} ψ = 0. (70)

One general solution, independent of the ta’s, to the requirement of the Lagrangian
invariance in the non-Abelian case is therefore

δW a
µ = g fa

bc δθ
bW c

µ. (71)

Finally, under an infinitesimal scale transformation δθb, the non-Abelian gauge bo-
son field W a

µ transforms as

W a
µ →W ′a

µ = W a
µ + ∂µδθ

a + g fa
bc δθ

bW c
µ. (72)

We recognize here once again a standard transformation of non-Abelian gauge the-
ories, which is now derived from the basic transformations on the ηa’s of Eq. (39).

We can finish as usual the development of standard Yang-Mills theory. The gauge
field self-coupling term, − 1

4
FµνF

µν , is retained as the simplest invariant scalar that
can be added to the Lagrangian. It is defined as follows.

First, one defines the Yang-Mills field,

Aµ ≡ taW
a
µ , (73)

which yields the covariant derivative of Eq. (59) under the standard form,

Dµ = ∂µ + igAµ. (74)

Then, one establishes the analogue of the Faraday tensor of electromagnetism, by
defining

F a
µν ≡ ∂µW

a
ν − ∂νW

a
µ − gfa

bcW
b
µW

c
ν (75)

and
Fµν ≡ taF

a
µν , (76)

which gives
Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (77)

21



One adds to the Lagrangian density L a kinetic term for the free Yang-Mills gauge
field,

LA = −1

4
FµνF

µν . (78)

This form is justified by the same reasons as in the standard theory (namely, it must
be a scalar and constructed from the fields and not from the potentials, which are
gauge dependent). The Euler-Lagrange equations therefore read

∂µF
µν + ig[Aµ, F

µν ] = 0. (79)

Introducing the Yang-Mills derivative operator,

5µ = ∂µ + ig[Aµ, ], (80)

one finally obtains the standard Yang-Mills equations which generalize to the non-
Abelian case the source-free Maxwell equation,

5µF
µν = 0. (81)

We are therefore provided with a fully consistent gauge theory obtained as a conse-
quence of scale symmetries issued from a geometric space-time description.

5 Conclusion

In the present paper our purpose has been to give a physical meaning to the various
items entering the gauge field theories in the framework of scale relativity, extending
to the non-Abelian case the results of previous works devoted to the understanding
of the Abelian gauge-invariant theory of electromagnetism.

We have so far reached an understanding of the nature of gauge transformations,
in terms of a geometric space-time description. We decompose, for simplification
purpose, the dynamics emerging from displacements in the fractal space-time of scale
relativity into (i) transformations occuring on the scale variables in the framework of
a nondirectly observable local “scale space” coupled to (ii) displacements in space-
time. The scale variables become thus functions of the space-time coordinates.

The gauge charges appear as the generators of the set of scale transformations
applied to a generalized action, therefore emerging from the scale symmetries of
the dynamical fractal space-time. Considering the transformation laws verified by
the scale variables, we are able to establish how the various physical quantities
transform under these laws and to recover the standard gauge theory form of these
transformations.

We are now provided with a theory where the gauge group is no more defined
through its only action on the physical objects, as in the standard framework, but
as the transformation group of the scale variables, and where the boson fields and
the charges are given a physical meaning. We have established the following cor-
respondences between the standard gauge theory items and the scale relativistic
tools:
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• gauge transformations ↔ scale transformations in scale-space,

• internal gauge space ↔ local “scale space”,

• gauge fields ↔ manifestations of the fractal and scale-relativistic geometry of
space-time (analogues of the Christoffel symbols issuing from the curvature of
space-time in general relativity),

• gauge charges ↔ conservative quantities, conjugate to the scale variables, orig-
inating from the symmetries of the “scale space” and generators of the scale
transformation group.

Since, in the present study, our aim was to recover the standard description of
current gauge theory, we have, in the main part of the work, retained a general form
for the scale variables. However we have shown that, whatever will be their more
specific form, the gauge set will contain in any case the U(1) × SU(2) electroweak
theory group as subset.

In future works, we shall study other sets of transformations that can be derived
from the present study, where the scale variables will be given new precise definitions
and which hopefully could yield hypercharge, color and maybe new developments in
gauge field theory. We shall also consider in more details the issues of the fermion
sectors, of the mass and charge renormalization and of the Higgs field.
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