NUMERICAL RELATIVITY AND THE SIMULATION OF GRAVITATIONAL WAVES

Jérôme Novak (Jerome.Novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

> in collaboration with Silvano Bonazzola, Philippe Grandclément, Éric Gourgoulhon & Nicolas Vasset

CEA, Bruyères-le-Chatel, 25 juin 2009

Gravitational waves: an introduction

DEFINITION

Gravitational waves are predicted in Einstein's relativistic theory of gravity: general relativity

EINSTEIN'S EQUATIONS
$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi T_{\mu\nu}$$

Linearizing around the flat (Minkowski) solution in vacuum $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$:

$$\Box \left(h_{\mu\nu} - \frac{1}{2} h \eta_{\mu\nu} \right) = -16\pi T_{\mu\nu}.$$

EFFECTS AND AMPLITUDES

The effect of a gravitational wave of (dimensionless) amplitude h is a brief change of the relative distances

Two polarization modes "+" and "×": corresponding to the two dynamical degrees of freedom of the gravitational field.

Using the linearized Einstein equations: \Rightarrow at first order $h \sim \ddot{Q}$ (mass quadrupole momentum of the source), the total gravitational power of a source is

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4.$$

A LABORATORY EXPERIMENT?

The proof of the existence of electromagnetic waves has been achieved by producing them in a laboratory and detecting them. Can we do this with gravitational waves?

- electromagnetic waves are produced by accelerating electric charges,
- gravitational waves are produced by accelerating masses.

Trying to accelerate a mass by rotating it

Consider a cylinder made of steel • one meter in diameter and twenty

- one meter in diameter and **twenty** meters long,
- weighting about **490 tons**,
- rotating at a maximal velocity of 260 rotations/minute (before breaking apart),

 \Rightarrow **ABSOLUTELY NO HOPE** of detection, the emission is much too low.

ASTROPHYSICAL SOURCES

The problem stems from the constant factor in

$$L \sim \frac{G}{c^5} s^2 \omega^6 M^2 R^4$$

Introducing the Schwarzschild radius (radius of a black hole having the same mass) $R_S = \frac{2GM}{c^2}$, one gets

$$L \sim \frac{c^3}{G} s^2 \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6$$

 \Rightarrow accelerated masses:

- with strong gravitational field ↔ compact: neutron stars & black holes,
- at relativistic speeds,
- far from spherical symmetry ($s \leq 1$).

Binary systems of compact objects, neutrons stars & supernovae.

LIGO: USA, WASHINGTON

GROUND DETECTORS

VIRGO: FRANCE/ITALY NEAR PISA

Michelson-type interferometers with 3 km (VIRGO) and 4 km (LIGO) long arms and almost perfect vacuum! Frequency range $10 \rightarrow 10000$ Hz.

 \Rightarrow Have been acquiring data together since a couple of years.

SPACE PROJECT LISA

On Earth, the vibrations propagating on the crust (seismic noise, human activities, ...) are limiting the detectors' sensitivity.

⇒LISA project (ESA / NASA) should be launched in 2019: 3 satellites at 5 millions kilometers one from another, in orbit around the Sun, 20 degrees behind the Earth. Frequency range $10^{-4} \rightarrow 1$ Hz.

Many more sources to be detected, with even a few certain ones.

COMPUTE WAVEFORMS!

• The signal at the output of the detector $\sigma(t) = h(t) + n(t),$ with $h(t) \le n(t).$

- The probability of detection is greatly enhanced in case of matched filtering: convolution with *a priori* known signal.
- ⇒ Need of full database of possible waveforms, to be computed by any means: analytic (post-Newtonian, ...) or numeric (our group).

Formulation of Einstein equations

3+1 FORMALISM

Decomposition of spacetime and of Einstein equations

$$\begin{split} &\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\beta} K_{ij} = \\ &- D_i D_j N + N R_{ij} - 2N K_{ik} K^k_{\ j} + \\ &N \left[K K_{ij} + 4 \pi ((S - E) \gamma_{ij} - 2 S_{ij}) \right] \\ &K^{ij} = \frac{1}{2N} \left(\frac{\partial \gamma^{ij}}{\partial t} + D^i \beta^j + D^j \beta^i \right). \end{split}$$

CONSTRAINT EQUATIONS:

 $R + K^{2} - K_{ij}K^{ij} = 16\pi E,$ $D_{j}K^{ij} - D^{i}K = 8\pi J^{i}.$

 $g_{\mu\nu}\,dx^{\mu}\,dx^{\nu} = -N^2\,dt^2 + \gamma_{ij}\,(dx^i + \beta^i dt)\,(dx^j + \beta^j dt) \sum_{i=1}^{N} dt^{i} = 0$

Constrained / free Formulations

As in electromagnetism, if the constraints are satisfied initially, they remain so for a solution of the evolution equations.

FREE EVOLUTION

- start with initial data verifying the constraints,
- solve only the 6 evolution equations,
- recover a solution of all Einstein equations.

 \Rightarrow apparition of constraint violating modes from round-off errors. Considered cures:

- Using of constraint damping terms and adapted gauges.
- Solving the constraints at every time-step: e.g. fully-constrained formalism in Dirac gauge (2004).

Conformal-flatness

CONDITION

UNIQUENESS ISSUE

4 constraints and the choice of time-slicing (gauge) \Rightarrow elliptic system of 5 non-linear equations can be formed

- Elliptic part of Einstein equations in the constrained scheme,
- Conformal-Flatness Condition (CFC): no evolution, no gravitational waves. used for computing initial data.

Because of non-linear terms, the elliptic system may not converge \Rightarrow the case appears for dynamical, very compact matter and GW configurations (before appearance of the black hole).

SUMMARY OF EINSTEIN EQUATIONS

CONSTRAINED SCHEME

with

$$\lim_{r \to \infty} \tilde{\gamma}^{ij} = f^{ij}, \lim_{r \to \infty} \Psi = \lim_{r \to \infty} N = 1.$$

Spectral methods for numerical relativity

SIMPLIFIED PICTURE

(SEE ALSO GRANDCLÉMENT & JN 2009) How to deal with functions on a computer? \Rightarrow a computer can manage only integers In order to represent a function $\phi(x)$ (e.g. interpolate), one can use:

- a finite set of its values $\{\phi_i\}_{i=0...N}$ on a grid $\{x_i\}_{i=0...N}$,
- a finite set of its coefficients in a functional basis $\phi(x) \simeq \sum_{i=0}^{N} c_i \Psi_i(x).$

In order to manipulate a function (e.g. derive), each approach leads to:

• finite differences schemes

$$\phi'(x_i) \simeq \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i}$$

• spectral methods $\phi'(x) \simeq \sum^N c_i \Psi_i'(x)$

Convergence of Fourier series

USE OF ORTHOGONAL POLYNOMIALS

The solutions $(\lambda_i, u_i)_{i \in \mathbb{N}}$ of a singular Sturm-Liouville problem on the interval $x \in [-1, 1]$:

$$-\left(pu'\right)'+qu=\lambda wu,$$

with $p > 0, C^1, p(\pm 1) = 0$

• are orthogonal with respect to the measure w:

$$(u_i, u_j) = \int_{-1}^{1} u_i(x) u_j(x) w(x) dx = 0 \text{ for } m \neq n,$$

• form a spectral basis such that, if f(x) is smooth (\mathcal{C}^{∞}) $f(x) \simeq \sum_{i=0}^{N} c_i u_i(x)$

converges faster than any power of N (usually as e^{-N}). Gauss quadrature to compute the integrals giving the c_i 's. Chebyshev, Legendre and, more generally any type of Jacobi polynomial enters this category. Method of weighted residuals

General form of an ODE of unknown u(x):

$$\forall x\in [a,b],\ Lu(x)=s(x),\ \text{and}\ Bu(x)|_{x=a,b}=0,$$

The approximate solution is sought in the form

$$\bar{u}(x) = \sum_{i=0}^{N} c_i \Psi_i(x).$$

The $\{\Psi_i\}_{i=0...N}$ are called trial functions: they belong to a finite-dimension sub-space of some Hilbert space $\mathcal{H}_{[a,b]}$. \bar{u} is said to be a numerical solution if:

- $B\bar{u} = 0$ for x = a, b,
- $R\bar{u} = L\bar{u} s$ is "small".

Defining a set of test functions $\{\xi_i\}_{i=0...N}$ and a scalar product on $\mathcal{H}_{[a,b]}$, R is small iff:

$$\forall i = 0 \dots N, \quad (\xi_i, R) = 0.$$

It is expected that $\lim_{N\to\infty} \bar{u} = u$, "true" solution of the ODE.

INVERSION OF LINEAR ODES

Thanks to the well-known recurrence relations of Legendre and Chebyshev polynomials, it is possible to express the coefficients $\{b_i\}_{i=0...N}$ of

$$Lu(x) = \sum_{i=0}^{N} b_i \left| \begin{array}{c} P_i(x) \\ T_i(x) \end{array} \right|, \text{ with } u(x) = \sum_{i=0}^{N} a_i \left| \begin{array}{c} P_i(x) \\ T_i(x) \end{array} \right|.$$

If $L = d/dx, x \times, \dots$, and $u(x)$ is represented by the vector $\{a_i\}_{i=0\dots N}, L$ can be approximated by a matrix.

Resolution of a linear ODE

 \uparrow

inversion of an $(N+1) \times (N+1)$ matrix

With non-trivial ODE kernels, one must add the boundary conditions to the matrix to make it invertible!

Some singular operators

 $u(x) \mapsto \frac{u(x)}{x}$ is a linear operator, inverse of $u(x) \mapsto xu(x)$.

Its action on the coefficients $\{a_i\}_{i=0...N}$ representing the *N*-order approximation to a function u(x) can be computed as the product by a regular matrix. \Rightarrow The computation in the coefficient space of u(x)/x, on the interval [-1, 1]always gives a finite result (both with Chebyshev and Legendre polynomials).

 \Rightarrow The actual operator which is thus computed is

$$u(x) \mapsto \frac{u(x) - u(0)}{x}.$$

 \Rightarrow Compute operators in spherical coordinates, with coordinate singularities

e.g.
$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\Delta_{\theta\varphi}$$

EXPLICIT / IMPLICIT SCHEMES Let us look for the numerical solution of (L acts only on x):

$$\forall t \ge 0, \quad \forall x \in [-1, 1], \quad \frac{\partial u(x, t)}{\partial t} = Lu(x, t),$$

with good boundary conditions. Then, with δt the time-step: $\forall J \in \mathbb{N}$, $u^J(x) = u(x, J \times \delta t)$, it is possible to discretize the PDE as

- $u^{J+1}(x) = u^J(x) + \delta t L u^J(x)$: explicit time scheme (forward Euler); easy to implement, fast but limited by the CFL condition.
- $u^{J+1}(x) \delta t L u^{J+1}(x) = u^J(x)$: implicit time scheme (backward Euler); one must solve an equation (ODE) to get u^{J+1} , the matrix approximating it here is $I - \delta t L$. Allows longer time-steps but slower and limited to second-order schemes.

Multi-domain Approach

Multi-domain technique : several touching, or overlapping, domains (intervals), each one mapped on [-1, 1].

	Domain 1		Domain 2	
x ₁ =-1		$x_1 = 1 x_2 = -1$		$x_2 = 1$
y=a				y=b
		$y = y_0$		

- boundary between two domains can be the place of a discontinuity ⇒recover spectral convergence,
- one can set a domain with more coefficients (collocation points) in a region where much resolution is needed ⇒fixed mesh refinement,
- 2D or 3D, allows to build a complex domain from several simpler ones,

Depending on the PDE, matching conditions are imposed at $y = y_0 \iff$ boundary conditions in each domain.

MAPPINGS AND MULTI-D

In two spatial dimensions, the usual technique is to write a function as:

$$f : \hat{\Omega} = [-1, 1] \times [-1, 1] \to \mathbb{R}$$
$$f(x, y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} c_{ij} P_i(x) P_j(y)$$

$$\widehat{\Omega} \xrightarrow{\Pi} \Omega$$

The domain $\hat{\Omega}$ is then mapped to the real physical domain, trough some mapping $\Pi : (x, y) \mapsto (X, Y) \in \Omega$.

 \Rightarrow When computing derivatives, the Jacobian of Π is used.

COMPACTIFICATION

A very convenient mapping in spherical coordinates is

$$x \in [-1,1] \mapsto r = \frac{1}{\alpha(x-1)},$$

to impose boundary condition for $r \to \infty$ at x = 1.

LUTH

EXAMPLE:

3D POISSON EQUATION, WITH NON-COMPACT SUPPORT To solve $\Delta \phi(r, \theta, \varphi) = s(r, \theta, \varphi)$, with s extending to infinity.

- setup two domains in the radial direction: one to deal with the singularity at r = 0, the other with a compactified mapping.
- In each domain decompose the angular part of both fields onto spherical harmonics:

$$\phi(\xi,\theta,\varphi) \simeq \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{m=\ell} \phi_{\ell m}(\xi) Y_{\ell}^{m}(\theta,\varphi)$$

۲

$$\forall (\ell, m) \text{ solve the ODE: } \frac{\mathrm{d}^2 \phi_{\ell m}}{\mathrm{d}\xi^2} + \frac{2}{\xi} \frac{\mathrm{d}\phi_{\ell m}}{\mathrm{d}\xi} - \frac{\ell(\ell+1)\phi_{\ell m}}{\xi^2} = s_{\ell m}(\xi)$$

• match between domains, with regularity conditions at r = 0, and boundary conditions at $r \to \infty$.

Application to binary compact stars

INSPIRALLING BINARIES

Astrophysical scenario: binary systems of compact objects evolve toward the final coalescence by emission of gravitational waves and angular momentum loss.

Stiff problem: the orbital and coalescence timescales are very different.

Post-Newtonian

(perturbative) computations assume point-mass particles \Rightarrow valid until separation is comparable to size.

 \Rightarrow numerical simulation of initial data and evolution.

BINARY NEUTRON STARS

BINARY OUARK STARS

- Initial data: irrotational flow and conformal-flatness approximation,
- two adapted-grid system, to take into account tidal effects,

- use of realistic equations of state for cold nuclear matter,
- exploration of strange-quark equations of state.

BINARY BLACK HOLE

Stellar masses (for VIRGO) or galactic masses (for LISA).

- First realistic initial data (2002), with excision techniques,
- Good agreement with post-Newtonian computations,
- Determination of the last stable orbit, important for gravitational wave data analysis.

Stellar core-collapse simulations

SIMPLIFIED PHYSICAL MODEL OF CORE-COLLAPSE

The phenomenon of *supernova* is too rich to be fully-modeled on a computer

- relativistic hydrodynamics ($v/c \sim 0.3$), including shocks, turbulence and rotation,
- strong gravitational field \Rightarrow General Relativity?
- neutrino transport (matter deleptonization)
- nuclear equation of state (EOS)
- radiative transfer and ionization of higher layers
- magnetic field?

 \Rightarrow to track gravitational waves, some features must be neglected...and we use an effective model (not trying to make them explode).

SIMPLIFIED PHYSICAL MODEL OF CORE-COLLAPSE

- General-relativistic hydrodynamics: 5 hyperbolic PDEs in conservation form,
- Conformal-flatness condition for the relativistic gravity: 5 elliptic PDEs to be solved at each time-step,
- Initial model is a rotating polytrope with an effective adiabatic index $\gamma \lesssim 4/3$. During the collapse, when the density reaches the nuclear level, $\gamma \to \gamma_2 \gtrsim 2$,
- Passive magnetic field,
- Lepton fraction deduced from density, following spherically-symmetric simulations with more detailed neutrino transport.

Combination of two NUMERICAL TECHNIQUES

- hydrodynamics ⇒High-Resolution Shock-Capturing schemes (HRSC), also known as Godunov methods, here implemented in General Relativity;
- gravity \Rightarrow multi-domain spectral solver using spherical harmonics and Chebyshev polynomials, with a compactification of type u = 1/r.

Use of two numerical grids with interpolation:

• matter sources: Godunov (HRSC) grid \rightarrow spectral grid;

• gravitational fields: spectral grid \rightarrow Godunov grid. First achieved in the case of spherical symmetry, in tensor-scalar theory of gravity (JN & Ibáñez 2000). Spares a lot of CPU time in the gravitational sector, that can be used for other physical ingredients.

TOWARD A REALISTIC RELATIVISTIC COLLAPSE

Together with the use of a purely finite-differences code in full GR, first results of realistic collapse of rotating stellar iron cores in GR

4 (10⁻²¹ at 10 kpc) 2 • with finite 0 temperature EOS; -2 • (approximate) 2B2 3D full GR s20A2B2 2D CFC treatment of 20A1B5 3D full GR deleptonization. -8 s20A1B5 2D CFC -10 5 t - thomas (ms) \Rightarrow complete check that CFC is a good approximation in

the case of core-collapse.

NEUTRON STAR OSCILLATIONS

Study of non-linear axisymmetric pulsations of rotating

- uniformly and differentially rotating relativistic polytropes ⇒differential rotation significantly shifts frequencies to smaller values;
- mass-shedding-induced damping of pulsations, close to maximal rotation frequency.
- most powerful modes could be seen by current detectors if the source is about ~ 10 kpc;
- if 4 modes are detected, information about cold nuclear matter equation of state could be extracted
 ⇒gravitational asterosismology.

Summary - Perspectives

- Numerical simulations of sources of gravitational waves are of highest importance for the detection
- Use of spectral methods can bring high accuracy with moderate computational means (exploration of parameter space)
- Spectral methods can be associated with other types, as in the core-collapse code presented here
- Core-collapse code: going beyond conformal-flatness approximation ⇒better extraction of waves
- Improvement of this code: realistic EOS, temperature effects for very massive star collapses (hypernovae). Neutrinos? Ongoing work with M. Oertel
- Study of the electro-weak processes: electron capture rate, nucleon effective masses and EOS. Work by A. Fantina, P. Blottiau, J. Margueron, P. Pizzochero, ...