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Black holes in relativistic gravity

What is a black hole?

A layperson definition
A black hole is a localized region of spacetime from which no particle, be
it massive or massless (photon), can escape to an infinitely remote region.

[A. Riazuelo, IJMPD 28, 1950042 (2019)]
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The (immaterial) boundary of the
black hole region is called the event
horizon
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Black holes in relativistic gravity

Relativistic spacetime
Spacetime (M , g)

M = 4-dimensional smooth
manifold
g = metric tensor: field of
symmetric bilinear forms, of
signature (−,+,+,+)

=⇒ pseudo-scalar product
ds2 := g(dx,dx) = gµνdx

µdxν

Example 1: Minkowski spacetime (special relativity)

M = R4; ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2)

Example 2: Schwarzschild spacetime (static black hole)

M = R2 × S2;
ds2 = −

(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2)
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Black holes in relativistic gravity

Physical meaning of the metric tensor

sign(g) = (−,+,+,+) =⇒ null cones =⇒ spacetime’s causal structure

Proper time
Proper time τ of an observer = length measured via g
along the observer’s worldline L

dτ =
1

c

√
−g(dx,dx)

Light rays
Wordlines of photons = null geodesics of g.
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Black holes in relativistic gravity

General relativity

(M , g) is ruled by general relativity ⇐⇒ g obeys Einstein’s equation:

R− 1

2
R g + Λ g =

8πG

c4
T

where
R := Ric(g), Ricci tensor: Rαβ = Riem(g)µαµβ
Riem(g): Riemann curvature tensor
R := gµνRµν , Ricci scalar
Λ: cosmological constant
T : energy-momentum tensor of matter/fields

Many alternative theories of gravity are being considered, mainly in the
framework of testing general relativity or explaining the dark energy mystery
A large class of them are the scalar-tensor theories: g =⇒ (g, ϕ)
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Black holes in relativistic gravity

Black hole definition in a metric theory of gravity

Carter-Penrose diagram

Spacetime (M , g) with asymptotic
infinity I : region “r → +∞” modeled
as the boundary I of a larger spacetime
(M̃ , g̃) such that
M̃ = M ∪ I , g̃ = Ω2g, Ω|I = 0
(conformal completion [Penrose (1963)])
Future null infinity I +: part of I
that can be reached by future-directed
causal curves

The black hole region is the
complement of the causal past of I +:

B := M \ J−(I +)

The event horizon is the boundary of
the black hole region: H := ∂B
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Black holes in relativistic gravity

The event horizon is a null hypersurface

The black hole event horizon H is a null hypersurface of (M , g)

A hypersurface of a 4-dimensional manifold M is a submanifold of M of
dimension 3 (codimension 1).

Locally, a hypersurface Σ can be of one of 3 types (n = normal to Σ):

Σ timelike Σ spacelike Σ null
g|Σ Lorentzian g|Σ Riemannian g|Σ degenerate
n spacelike n timelike n null (and tangent to Σ)
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Black holes in relativistic gravity

The event horizon is a null hypersurface

As a null hypersurface, the event horizon H is similar to a light cone in
Minkowski spacetime:

light cone event horizon

Minkowski spacetime black hole spacetime

t = 0 t = 0

t = T t = T

space

tim
e

Both hypersurfaces are one-way membranes; the event horizon is
distinguished by its bounded spatial extension
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Black holes in relativistic gravity

Geodesic generators of a null hypersurface

cross-section S : 2-surface
of H intersected at most
once by a given null generator

Let H be a null hypersurface:
H is ruled by a family of null geodesics,
called the null generators of H ;
any vector ℓ normal to H is tangent to
a null generator
=⇒ ℓ obeys the pregeodesic equation:

∇ℓℓ = κℓ ⇐⇒ ℓµ∇µℓ
α = κ ℓα

∇: covariant derivative associated to g
κ: non-affinity coefficient of ℓ
κ = 0 ⇐⇒ the generator parameter λ

such that ℓ =
dx

dλ
is an affine parameter
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Black holes in relativistic gravity

The no-hair theorem

Uniqueness theorem (“no-hair”)
(Dorochkevitch, Novikov & Zeldovitch 1965, Israel 1967, Carter 1971, Hawking 1972,
Robinson 1975)

Within 4-dimensional general relativity and modulo some “reasonable”
hypotheses, any stationary black hole is a Kerr-Newman black hole, which
is entirely described by only three numbers:

its mass M

its angular momentum J

its electric charge Q

Special cases:
Q = 0: Kerr BH (1963)
J = 0: Reissner-Nordström BH (1916)
Q = 0, J = 0: Schwarzschild BH (1915)

=⇒ “A black hole has no hair” (John A. Wheeler)
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Black holes in relativistic gravity

The Kerr black hole

Kerr solution to the vacuum Einstein equation (1963)

Expression in Boyer-Lindquist coordinates (t, r, θ, φ):

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2

+ρ2dθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

ρ2

)
sin2 θ dφ2

where a := J/M , ρ2 := r2 + a2 cos2 θ, ∆ := r2 − 2Mr + a2

→ spacetime manifold: M = R2 × S2 \ {r = 0 & θ = π/2};
NB: r ∈ (−∞,∞)

→ describes a rotating black hole with the event horizon H located at
r = rH := M +

√
M2 − a2
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Black holes in relativistic gravity

Physical meaning of the parameters M and J

Mass M : not a measure of the “amount of matter” inside the black
hole, but rather a characteristic of the external gravitational field
→ measurable from the orbital period of a test particle in remote
circular orbit around the black hole (Kepler’s third law)

Angular momentum J : characterizes the gravito-magnetic part of the
gravitational field
→ measurable from the precession of a gyroscope orbiting the black
hole (Lense-Thirring effect)
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Black holes in relativistic gravity

Black hole area
No well-defined concept of radius to evaluate the “size” of a black hole
=⇒ on the contrary, the area is well defined and locally measurable

Each cross-section S of the event
horizon H is a spacelike surface:
the metric q induced by g on S is
Riemannian (sign q = (+,+))

The area of S is

A(S ) =

∫
S

√
q dy1dy2,

where (y1, y2) are coordinates on S
and q := det(qab)

For a stationary black hole, the area A(S ) is independent of the choice of
the cross-section S =⇒ area A of the black hole
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Black holes in relativistic gravity

Black hole area

Example: Kerr black hole

A = 8π(M2 +
√

M4 − J2)

Schwarzschild limit (J = 0): A = 16πM2

Restoring the G and c’s =⇒ A = 16π

(
GM

c2

)2

If you insist in speaking about a “radius”, you may define the black hole’s
areal radius R by setting A =: 4πR2

=⇒ for a Schwarzschild black hole: R :=

√
A

4π
=

2GM

c2
≃ 3

(
M

M⊙

)
km
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The laws of classical black hole dynamics The zeroth law
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The laws of classical black hole dynamics The zeroth law

Equilibrium in spacetime
A black hole “in equilibrium” is modeled by a stationary spacetime.

Definition of stationarity

A spacetime (M , g) is stationary iff it invariant under the action of the
translation group (R,+) and the orbits of the group action are timelike in
the vicinity of the conformal infinity I .

Killing vector
Let G be a 1-dimensional Lie group acting on M and ξ the vector field
generating G.

G symmetry group of (M , g) ⇐⇒ Lξ g = 0 (Lie derivative along ξ)

⇐⇒ ∇αξβ +∇βξα = 0

⇐⇒ ∃ coordinates (t, x1, x2, x3)

such that
∂gαβ
∂t

= 0

The vector field ξ is then called a Killing vector of (M , g).
E. Gourgoulhon (LUTH) Black hole thermodynamics É. Polytech., 17 Sep. 2024 19 / 52



The laws of classical black hole dynamics The zeroth law

Equilibrium in spacetime

Equivalent definition of stationarity

A spacetime (M , g) is stationary iff there exists a Killing vector ξ that is
timelike in the vicinity of the conformal infinity I .

ξ is uniquely determined by requiring that it is future-directed near I and

ξ · ξ → −1 near I

=⇒ in asymptotically inertial coordinates (t, x, y, z), ξ =
∂

∂t
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The laws of classical black hole dynamics The zeroth law

Killing horizons

Definition
A Killing horizon is a connected null hypersurface H in a spacetime
(M , g) endowed with a Killing vector ξ such that, on H , ξ is normal to
H :

ξ
H
= ℓ,

where ℓ is a null normal to H .

=⇒ ξ|H ̸= 0 and ξ|H is a null vector

What about the event horizon H of a stationary black hole?
H is a null hypersurface that is stable (globally invariant) by the
stationarity group action
=⇒ stationary Killing vector ξ is tangent to H
A priori, this does not imply that H is a Killing horizon...
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The laws of classical black hole dynamics The zeroth law

The event horizon as a Killing horizon

Rigidity theorem (Hawking 1972)

Let (M , g) be a stationary spacetime containing a black hole. Let H be a
connected component of the event horizon. The stationary Killing vector ξ
is either (i) null on all H or (ii) spacelike on some part of H . In case (i),
H is a Killing horizon w.r.t. ξ. In case (ii), assume further that

M and H are (real) analytic manifolds and g is an analytic field,
g fulfills the electrovacuum Einstein equation,
H has compact cross-sections and ξ is transverse to them.

Then (M , g) admits a second Killing vector η, generating a SO(2) action
(axisymmetry) and there exists a constant ΩH such that H is a Killing
horizon w.r.t. χ, where

χ := ξ +ΩH η.

ΩH is called the black hole rotation velocity.
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The laws of classical black hole dynamics The zeroth law

The event horizon as a Killing horizon

ξ: Killing vector generating the
stationary group action; ξ is spacelike
on H

χ: Killing vector normal to H ; χ is
null on H and tangent to H ’s null
geodesic generators

χ = ξ +ΩH η

Example: Kerr black hole
ξ = ∂t, η = ∂φ

ΩH =
J

2M(M2 +
√
M4 − J2)

Schwarzschild (J = 0): χ = ξ and ΩH = 0
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The laws of classical black hole dynamics The zeroth law

Surface gravity of a Killing horizon

Definition
Let H be a Killing horizon w.r.t. a Killing vector χ. The non-affinity
coefficient κ of χ considered as a null normal to H , i.e. the coefficient κ
such that

∇χχ
H
= κχ,

is called the surface gravity of H .

Example: Kerr black hole

κ =

√
M4 − J2

2M(M2 +
√
M4 − J2)

Schwarzschild limit (J = 0): κ =
1

4M
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The laws of classical black hole dynamics The zeroth law

A surface gravity?
The genuine surface gravity of a black hole is the acceleration a felt by a
corotating observer O just above the horizon in order not to fall into the
black hole. It diverges when O is set closer and closer to H :

lim
O→H

a = +∞

The finite quantity κ is actually a rescaled surface gravity:

κ = lim
O→H

V a,

where V is the redshift factor of O with respect to a remote observer:
V =

√
−χ · χ → 0 as O → H .

For a Schwarzschild black hole: V = (1− 2M/r)
1/2.

Physical interpretation of κ
For a static black hole, κ is the magnitude of the force exerted by a static
observer at infinity to hold in place a particle of unit mass close to H by
means of an infinitely long massless string.
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The laws of classical black hole dynamics The zeroth law

Zeroth law of black hole dynamics

Constancy of surface gravity (Hawking, Carter 1973, Kay & Wald 1991)

Let H be a Killing horizon on (M , g). If
(1) g obeys Einstein’s equation, with T fulfilling the null dominant energy

condition: −Tα
µℓ

µ is zero or future-directed causal vector for any
future-directed null vector ℓ

or
(2) H is part of a bifurcate Killing horizon: χ → 0 at some spacelike

2-surface bounding H

or
(3) (M , g) is stationary, axisymmetric and invariant under

(t, φ) 7→ (−t,−φ),
then the surface gravity κ is uniform over H :

κ = const.

Remark: (1) requires general relativity, contrary to (2) and (3)
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The laws of classical black hole dynamics The zeroth law

Zeroth law of black hole dynamics
When combined with the rigidity theorem (a stationary BH event horizon is
a Killing horizon), the property κ = const leads to

Zeroth law of black hole dynamics
Under the hypotheses of the rigidity theorem and of the constancy of κ
theorem, the surface gravity of the event horizon H of a stationary black
hole is uniform over H :

κ = const.

=⇒ Analogy with (a consequence of) the zeroth law of thermodynamics:
the temperature T of a body in equilibrium is uniform over the body

Example: Kerr black hole

κ =

√
M4 − J2

2M(M2 +
√
M4 − J2)

= const,

while a priori κ could have depended on the coordinate θ on H .
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The laws of classical black hole dynamics The first law
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The laws of classical black hole dynamics The first law

First law of black hole dynamics

First law of black hole dynamics
(Bekenstein 1972, Bardeen, Carter & Hawking 1973)

In general relativity, the change δM in total mass between two nearby
electrovacuum configurations of a black hole in equilibrium is related to the
change δA in horizon area, the change δJ in angular momentum and the
change δQ in electric charge by

δM =
κ

8π
δA+ΩH δJ +ΦH δQ

ΦH : horizon’s electric potential (constant): ΦH
H
= −A · χ H

= −Aµχ
µ

(A : electromagnetic potential 1-form =⇒ electromagnetic field F = dA)

δM ∼ energy variation (recall that E = Mc2 !)
ΩH δJ ∼ work performed by a torque on a body rotating at angular
velocity ΩH

ΦH δQ ∼ work to change the electric charge of a body at electric
potential ΦH
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The laws of classical black hole dynamics The second law
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The laws of classical black hole dynamics The second law

Null convergence/energy condition

R = Ricci tensor of metric g (part of the curvature tensor)

Null convergence condition

R(ℓ, ℓ) ≥ 0 for any null vector ℓ

If gravitation is described by general relativity:
Einstein’s equation =⇒ R(ℓ, ℓ) = 8πT (ℓ, ℓ)
T = energy-momentum tensor of matter and fields
=⇒ In general relativity, the null convergence condition is equivalent to

Null energy condition

T (ℓ, ℓ) ≥ 0 for any null vector ℓ

This is a very weak physical requirement: it is fulfilled by vacuum (T = 0),
standard matter (ρ+ p ≥ 0), any electromagnetic field and any massless
scalar field.
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The laws of classical black hole dynamics The second law

Second law of black hole dynamics

Area theorem / Second law
(Hawking 1971, Chruściel, Delay, Galloway &
Howard 2001)

Let S1 = H ∩ Σ1 and S2 = H ∩ Σ2,
where Σ1 and Σ2 are two spacelike
hypersurfaces, such that S2 lies in the
causal future of S1: S2 ⊂ J+(S1).
If the null convergence condition is
fulfilled and the black hole exterior is
“well behaved” (globally hyperbolic), the
area of S2 is greater than or equal to the
area of S1:

A(S2) ≥ A(S1)
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The laws of classical black hole dynamics The second law

Early history of the second law of black hole dynamics
1970: D. Christodoulou showed that in the process of particle
accretion into a Kerr black hole, a certain function of M and J , the
irreducible mass Mirr, is always increasing, or stays constant in some
idealized cases corresponding to reversible transformations. This
contrasts with the black hole mass M , which may decrease (energy
extraction by the Penrose process (1969)).

1970: R. Penrose & R. Floyd noticed that the area A of a Kerr black
hole always increases during particle accretion, even if the black hole
mass decreases.
1971: S. Hawking established the area increase theorem in full
generality (not assuming a Kerr black hole, nor a small perturbation
such as the fall of a particle)
1971: D. Christodoulou & R. Ruffini showed that M2

irr = A/(16π)

1972: J. Bekenstein proposed to endow black holes with a genuine

physical entropy S = ηkB
A

4πℏ
, with η ∼ 1 by means of heuristic

arguments
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The laws of classical black hole dynamics The second law

Entropy and temperature of a black hole?

Area theorem as thermodynamical second law =⇒ S = αA
with α = const, to be determined...

Interpret the first law δM =
κ

8π
δA+ΩH δJ +ΦH δQ︸ ︷︷ ︸

δW

as a genuine thermodynamical first law δE = T δS + δW

=⇒ κ

8π
δA = T δS

=⇒ black hole temperature T =
1

8πα
κ

=⇒ consistent with zeroth law: T uniform over a black hole in equilibrium
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The laws of classical black hole dynamics A third law?
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The laws of classical black hole dynamics A third law?

What about the third law?

Planck-Nernst statement of the third law of thermodynamics

S → 0 (or universal constant) as T → 0.

=⇒ cannot hold for black holes since some black holes (called extremal)
have κ = 0 and A ̸= 0.

Example: extremal Kerr black hole

J = M2 =⇒ κ = 0 and A = 8πM2

Unattainability statement of the third law of thermodynamics
It is impossible to bring any system to zero temperature by a finite number
of operations.

=⇒ holds for astrophysical black holes accreting matter: can be spun up to
J = 0.998M2, not to the extremal state J = M2 (κ = 0) [Thorne (1974)]

=⇒ counterexamples (reaching the extremal Reissner-Nordström state)
have been found recently [Kehle & Unger (2024)]
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The laws of classical black hole dynamics A third law?

Shouldn’t the temperature be absolute zero instead of ∝ κ?

The laws of black hole dynamics, arising from classical (non-quantum)
gravity, seem to open a nice path to black hole thermodynamics, but

From the very nature of a black hole, its “true” thermodynamic
temperature T must be zero.

Proof: consider a thermal reservoir of temperature T0 > 0 in contact with
the black hole. Energy flows from the reservoir to the black hole and not in
the reverse way
=⇒ black hole temperature T < T0, whatever T0

=⇒ T = 0

This contradicts the tentative identification T =
κ

8πα
. . .

However, we are going to see that

Taking into account quantum physics restores the identification T ↔ κ.
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Hawking radiation and black hole thermodynamics

Quantum physics enters the game: Hawking radiation

Spectrum for a Schwarzschild
black hole (κ = (4M)−1) of
mass M ≫ 1014 kg
σ∞/(2π) = frequency at infinity

[Thorne, Zurek & Price (1986)]

Hawking radiation (Hawking 1974)

Let (M , g) be a stationary asymptotically
flat spacetime that contains a black hole, the
event horizon of which is a Killing horizon of
constant surface gravity κ.
Quantum field theory in curved background
predicts that any quantum field gives birth to
a thermal radiation from the black hole to
infinity, called Hawking radiation.
The radiation temperature as measured by
asymptotic inertial observers, called the
Hawking temperature, is

TH =
ℏ
kB

κ

2πc
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Hawking radiation and black hole thermodynamics

Properties of Hawking radiation
Hawking radiation is a prediction of semiclassical gravity (gravity is
not quantized); it is independent of the metric theory of gravity (in
particular, it does not rely on Einstein’s equation).
The Hawking temperature TH is the temperature measured at infinity;
a static observer O at finite distance measures T = TH/V , where V is
the redshift factor: V → 0 for O → H , while a free-falling observer
perceives no radiation at all (T = 0).

For a Kerr black hole, TH =
ℏ
kB

c3

8πGM

2

1 + (1− ā2)−1/2
,

where ā := a/M = J/M2

The Hawking temperature is tiny for astrophysical black holes:

TH = 6.17 10−8

(
M⊙
M

)
2

1 + (1− ā2)−1/2
K

=⇒ Hawking radiation has not been detected, and will not be in the
forseeable future (except for hypothetical micro black holes created in
particle colliders)
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Hawking radiation and black hole thermodynamics

Black hole evaporation

Backreaction to Hawking radiation =⇒ dM

dt
= AσT 4

H ∼ −C
ℏ
M2

=⇒ M(t) ∼
(
M3

0 − 3Cℏt
)1/3, C ≃ 2.83 10−4

Evaporation time
A Schwarzschild black hole of initial mass M0 fully evaporates via Hawking
radiation within a time (measured at infinity)

tevap =
M3

0

3Cℏ
= 1.54 1066

(
M0

M⊙

)3

yr

For astrophysical BHs: M0 > 1M⊙ =⇒ tevap > 1056 Universe age!

tevap < tUniv ⇐⇒ M0 < 5.00 1011 kg (mountain mass, proton-size BH)
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Hawking radiation and black hole thermodynamics

Bekenstein-Hawking entropy

Recall: laws of BH dynamics =⇒ S = αA and T =
1

8πα
κ

Identifying T to the Hawking temperature TH sets α =
kB
4ℏ

Hence S = SBH, with SBH = kB
c3A

4Gℏ
Bekenstein-Hawking entropy

or, in terms of the Planck length ℓP :=

√
Gℏ
c3

≃ 1.62 10−35 m,

SBH = kB
A

4ℓ2P
ℓP tiny =⇒ SBH is huge!
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Hawking radiation and black hole thermodynamics

Black holes have a huge entropy!

For a Schwarzschild black hole:

A = 16πM2 =⇒ SBH = 4πkB
GM2

ℏc
= 1.05 1077

(
M

M⊙

)2

kB

Sgr A* M ≃ 4 106M⊙ SBH ≃ 2 1090 kB

M87* M ≃ 6 109M⊙ SBH ≃ 4 1096 kB

=⇒ compare with the total entropy of the observable Universe: 1.1 1090 kB
(mostly from cosmic microwave and neutrino backgrounds, with only
∼ 1081 kB in all the stars)

The entropy of a single massive black hole, such as Sgr A* or M 87*, is
larger than the entropy of the whole observable Universe!
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Hawking radiation and black hole thermodynamics

The generalized second law (GSL)

In presence of black holes, the standard second law of thermodynamics has
to be replaced by the

Generalized second law of thermodynamics (GSL) (Bekenstein 1973)

Define the generalized entropy

Sgen := Smat + SBH,

where Smat is the ordinary entropy of matter and fields and SBH is the
Bekenstein-Hawking entropy of the black holes. Then, in any physical
process, Sgen can only increase or stay constant:

∆Sgen ≥ 0
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Hawking radiation and black hole thermodynamics

Status of the generalized second law (GSL)
GSL: ∆Sgen = ∆(Smat + SBH) ≥ 0

Contrary to the second law of black hole dynamics, the GSL is not a
theorem: it has not been proved.
Actually, as a thermodynamic statement, it can even be violated in some
statiscally very unlikely processes. However:

The GSL has been checked in many processes involving black holes

Example: Hawking evaporation
The GSL holds during the evaporation of a black hole:
Hawking radiation =⇒ ∆M < 0 =⇒ ∆A < 0 =⇒ ∆SBH < 0
but one can show that the entropy in the Hawking radiation is larger than
|∆SBH|, so that ∆Sgen > 0.

Remark: since ∆A < 0, the second law of BH dynamics (area theorem) is violated, but
there is no issue since one of the hypotheses of the theorem is not fulfilled: the effective
energy-momentum tensor of Hawking radiation does not obey the null energy condition.
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Hawking radiation and black hole thermodynamics

Microscopic origin of the Bekenstein-Hawking entropy

GLS =⇒ SBH same status as Smat: a genuine thermodynamic entropy!
=⇒ It should have some statistical meaning, i.e. count the number N of
microstates for a given macroscopic black hole state, via Boltzmann’s
formula:

SBH = kB lnN

Black hole microstates? =⇒ quantum theory of gravity

Not existing yet, but two paths are explored:

1. String theories

Bekenstein-Hawking formula SBH = kB
A

4ℓ2P
recovered by Strominger &

Vafa (1996) for an extremal (κ = 0) BH in some Yang-Mills theory in
dimension 5.
Since then, SBH recovered only for extremal or near-extremal BHs
No result for the Schwarzschild BH yet!
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Hawking radiation and black hole thermodynamics

Microscopic origin of the Bekenstein-Hawking entropy

2. Loop quantum gravity (LQG)

Rovelli (1996), Ashtekar, Baez, Corichi & Krasnov (1997) have obtained

SBH = kB
γ0
γ

A

4ℓ2P
, γ0 ≃ 0.274

where γ = Barbero-Immirzi parameter of LGQ
γ determines the quantum of area as a0 = 4

√
3πγℓ2P but is not set by LQG
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Final remarks

Black hole entropy and the holographic principle

Striking feature of the black hole entropy: it is proportional to the area of
the body, not to its “volume”.
Thanks to the GSL, this feature extends to an upper bound for the entropy
of any physical system:

Entropy bound
The entropy S of any system enclosed within a surface of area A must obey

S < kB
c3A

4Gℏ

This entropy bound is at the origin of a cornerstone of contemporary
theoretical physics:

Holographic principle (’t Hooft 1993, Susskind 1995)

Physics in a given spatial region can be fully described in terms of a set of
degrees of freedom which reside on the surface bounding the region.
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Final remarks

Recent developments

The laws of black hole dynamics have been extended in two directions:
1 For general relativity in dimension n > 4:

All laws generalizes rather straightforwardly
n = 5 relevant for holographic approaches such as gauge/gravity
duality (e.g. AdS/CFT)
no black hole uniqueness theorem for n > 4

2 Beyond general relativity:
zeroth law: actually does not depend on the gravity theory
first law: extension to any diffeomorphism-invariant gravity theory =⇒
Bekenstein-Hawking entropy (area) → Wald entropy [Wald (1993)] and
generalizations [Dong (2014)], [Wall (2015)]
second law: work in progress [Hollands, Wald & Zhang (2024)] [Visser & Yan
(2024)]
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Final remarks

Conclusions

The laws of black hole evolution derived from (classical) general
relativity involve geometrical quantities, like A and κ, and display a
striking analogy with the laws of thermodynamics, especially the
irreversible evolution of the area (second law).
Quantum field theory in curved spacetime promotes this analogy to a
physically meaningful identification: the area is the entropy and the
second law of thermodynamics becomes the GSL.
Black hole thermodynamics has deep connections with any (tentative)
quantum theory of gravitation; in particular any such theory must
provide a microscopic explanation of the Bekenstein-Hawking formula
for the entropy.
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