Étoiles à neutrons, étoiles de quarks, trous noirs

et

ondes gravitationnelles

Éric Gourgoulhon
Laboratoire de l'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris / Université Paris 7
F-92195 Meudon

Eric.Gourgoulhon@obspm.fr

http://www.luth.obspm.fr

Plan

- 1. La gravitation relativiste et les ondes gravitationnelles
- 2. Étoiles relativistes en rotation : espaces-temps axisymétriques et stationnaires
- 3. Étoiles relativistes triaxiales et systèmes binaires : espaces-temps hélicoïdaux
- 4. Conclusions et perspectives

1

La gravitation relativiste et

les ondes gravitationnelles

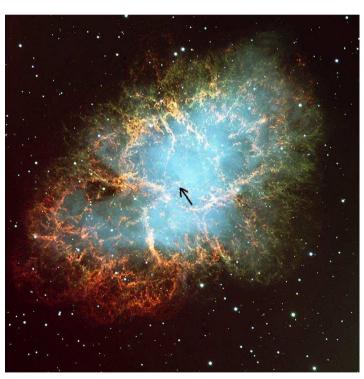
1.1

Les étoiles relativistes

Étoiles à neutrons, étoiles de quarks et trous noirs = objets compacts

Points communs:

- stade final de l'évolution des étoiles massives
- petite taille relativement à leur masse
 - ⇒ très fort champ gravitationnel

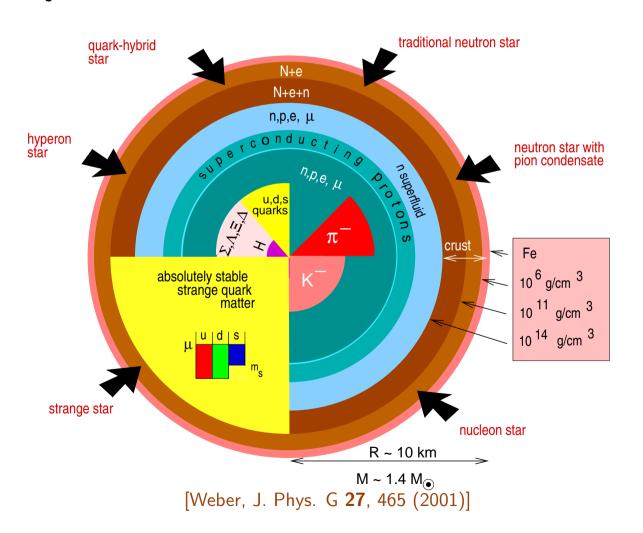


 \leftarrow nébuleuse du Crabe : reste de la supernova de l'an 1054, contient une étoile à neutrons en rotation rapide: $P=33~\mathrm{ms}$ (pulsar)

[VLT/ESO]

Étoiles à neutrons et étoiles de quarks = étoiles denses

Effondrement gravitationnel du cœur de fer lors de la supernova \Rightarrow petite taille de l'objet résidu



Étoile à neutrons :

 $R \sim 10 \text{ km}$ $M \sim 1.4 M_{\odot}$ $\rho_{\rm c} \sim 2 - 10 \rho_{\rm nuc}$ $(\rho_{\rm nuc} := 2 \times 10^{17} \text{ kg m}^{-3})$ \Rightarrow intérieur régi par
l'interaction forte (QCD)

Objet compact = astre relativiste

grande masse
$$(M \sim M_{\odot})$$
 petit rayon $(R \sim 10 \text{ km})$ \Longrightarrow fort champ gravitationnel

Question: que signifie un champ gravitationnel fort?

Réponse: l'énergie du champ gravitationnel est une fraction importante de l'énergie de masse:

$$\Xi := \frac{|E_{\text{grav}}|}{Mc^2} > 10^{-3}$$

- ullet $E_{
 m grav}=$ énergie potentielle gravitationnelle: $E_{
 m grav}\sim -GM^2/R$
- Mc^2 = énergie de masse

 Ξ = facteur de relativité ou paramètre de compacité

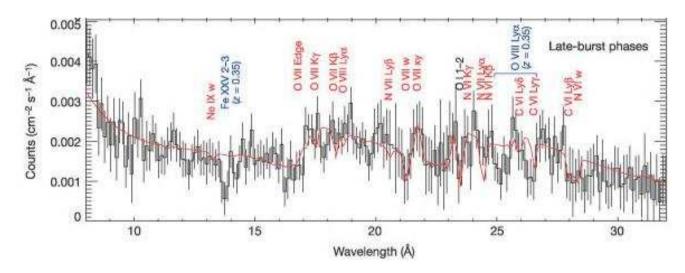
$$\Xi \sim \frac{GM}{c^2R} \sim \frac{|\Phi_{\rm surf}|}{c^2}$$

Terre: $\Xi\sim 10^{-10}$, Soleil: $\Xi\sim 10^{-6}$, naine blanche: $\Xi\sim 10^{-4}-10^{-3}$ étoile à neutrons: $\Xi\sim 0.2$, trou noir: $\Xi=1$

≡ grand ⇒ nécessité d'un traitement relativiste de la gravitation

Observations d'effets relativistes forts

Mesure à l'aide du satellite XMM-Newton du décalage spectral gravitationnel (effet Einstein) de raies du fer et de l'oxygène à la surface d'une étoile à neutrons



Décalage spectral mesuré:

$$z = \frac{\lambda_{\infty} - \lambda}{\lambda} = 0.35$$

NB: $z_{\text{Doppler}} \sim 10^{-3}$

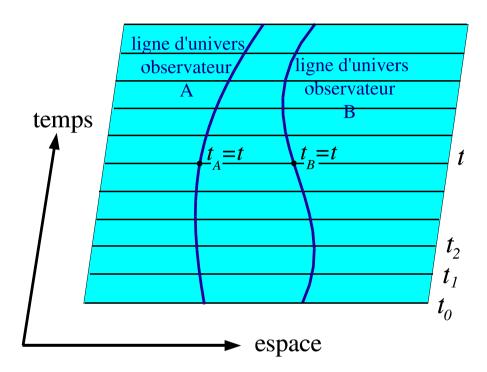
LMXB EXO0748-676 [Cottam, Paerels & Mendez, Nature 420, 51 (2002)]

$$z = (1 - 2\Xi)^{-1/2} - 1 = 0.35$$
 \Longrightarrow $\Xi = \frac{GM}{c^2 R} = 0.23$

1.2

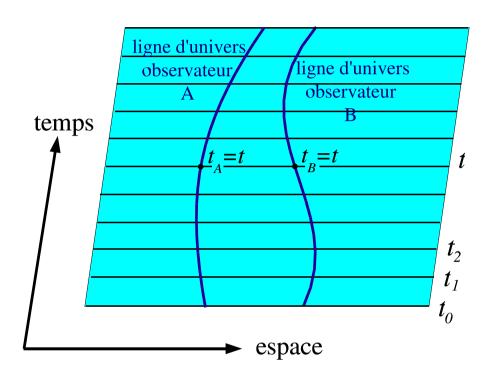
L'espace-temps relativiste et les ondes gravitationnelles

L'espace-temps relativiste

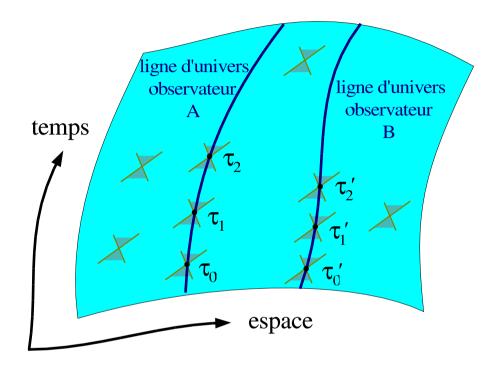


Espace-temps newtonien structure: temps universel

L'espace-temps relativiste

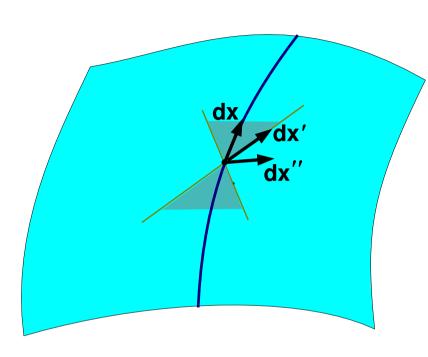


Espace-temps newtonien structure: temps universel



Espace-temps de la relativité générale structure: cônes de lumière (tenseur métrique)

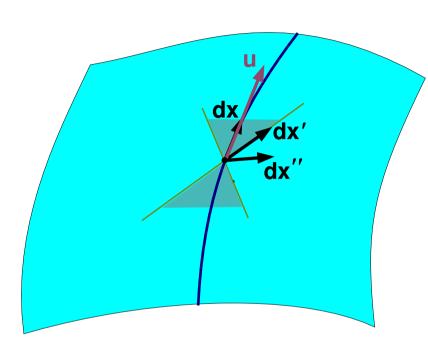
Le tenseur métrique



tenseur métrique $\mathbf{g} =$ forme bilinéaire symétrique signature (-,+,+,+) telle que

- temps propre pour un déplacement \mathbf{dx} : $d\tau^2 = -\mathbf{g}(\mathbf{dx}, \mathbf{dx}) = -g_{\mu\nu} \, dx^\mu \, dx^\nu = -\mathbf{dx} \cdot \mathbf{dx}$
- le long du cône de lumière : $\mathbf{g}(\mathbf{dx'}, \mathbf{dx'}) = 0$
- distance propre pour un déplacement dx'': $dl^2 = g(dx'', dx'')$

Le tenseur métrique



tenseur métrique g = forme bilinéaire symétrique signature (-, +, +, +) telle que

- temps propre pour un déplacement \mathbf{dx} : $d\tau^2 = -\mathbf{g}(\mathbf{dx}, \mathbf{dx}) = -g_{\mu\nu} dx^{\mu} dx^{\nu} = -\mathbf{dx} \cdot \mathbf{dx}$
- le long du cône de lumière : $\mathbf{g}(\mathbf{dx'}, \mathbf{dx'}) = 0$
- distance propre pour un déplacement dx'': $dl^2 = g(dx'', dx'')$

Quadrivitesse le long d'une ligne d'univers: $\mathbf{u} := \frac{\mathbf{dx}}{d\tau}$ NB: $\mathbf{g}(\mathbf{u},\mathbf{u}) = -1$

Dynamique de l'espace-temps

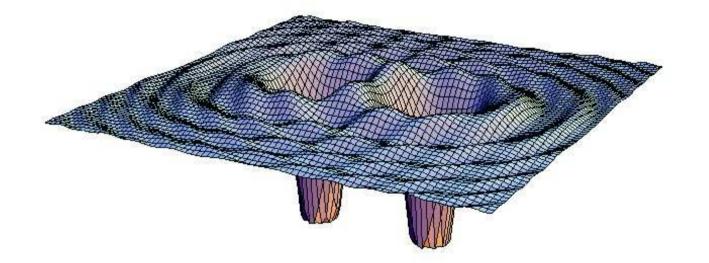
Équation d'Einstein :
$$\mathbf{R} - \frac{1}{2}R\mathbf{g} = \frac{8\pi G}{c^4}\mathbf{T}$$

- $\mathbf{R} = \text{tenseur de Ricci} = \text{trace du tenseur de courbure (tenseur de Riemann)}$: " $\mathbf{R} \sim \mathbf{g} \, \partial^2 \mathbf{g} + \mathbf{g} \, \partial \mathbf{g} \, \partial \mathbf{g}$ "
- $R = \operatorname{Trace}(\mathbf{R})$
- T = tenseur énergie-impulsion de la matière = forme bilinéaire symétrique telle que
 - $\star E := \mathbf{T}(\mathbf{u}, \mathbf{u})$ est la densité d'énergie de la matière mesurée par un observateur \mathcal{O} de quadrivitesse \mathbf{u}
 - $\star p_i := -\mathsf{T}(\mathbf{u}, \mathbf{e}_i)$ composante i de la densité d'impulsion de la matière mesurée par \mathcal{O} dans la direction \mathbf{e}_i
 - $\star S_{ij} := \mathsf{T}(\mathbf{e}_i, \mathbf{e}_j)$ composante i de la force exercée par la matière sur l'unité de surface normale à \mathbf{e}_i

Ondes gravitationnelles

Linéarisation de l'équation d'Einstein en champ faible ($\mathbf{g} = \boldsymbol{\eta} + \mathbf{h}$, $\boldsymbol{\eta} := \text{métrique de Minkowski}^1$)

$$\Rightarrow \quad \Box \, \overline{\mathbf{h}} = 0 \quad \text{(en jauge de Lorentz)}$$
 avec $\Box := \eta^{\mu\nu} \partial_{\mu} \partial_{\nu}$, $\overline{\mathbf{h}} := \mathbf{h} - \frac{1}{2} h \, \boldsymbol{\eta}$ et $h := \operatorname{Trace}(\mathbf{h})$.



Puissance totale émise:

$$L \sim \frac{c^5}{G} \, s^2 \left(\frac{v}{c}\right)^6 \, \Xi^2$$

s = facteur d'asymétrie

v = vitesse caractéristique

dans la source

 Ξ = compacité

⇒ Bons émetteurs d'ondes gravitationnelles **=** objets compacts

 $^{^{1}\}eta_{\mu\nu} = \mathrm{diag}(-1,1,1,1)$ en coordonnées cartésiennes

Détection des ondes gravitationnelles

Des détecteurs d'ondes gravitationnelles entrent en service...

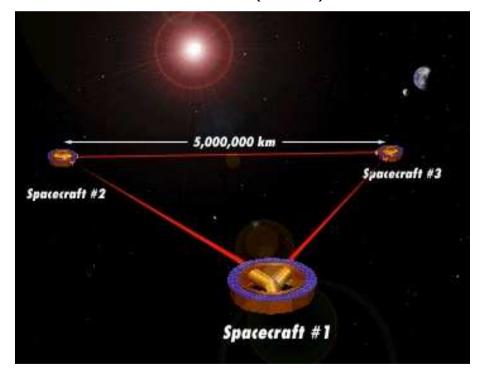
VIRGO, Cascina, Italie $10 \ \mathrm{Hz} < f < 10^3 \ \mathrm{Hz}$

(inauguration le 23 juillet 2003)

Autres détecteurs: LIGO, GEO600, TAMA

$$\delta L = hL, \quad h \sim 10^{-21}$$

...ou seront lancés dans un futur pas trop lointain (2011)



LISA (ESA/NASA)
$$10^{-4} \text{ Hz} < f < 10^{-1} \text{ Hz}$$

Modélisation des sources d'ondes gravitationnelles

Ondes gravitationnelles = nouveau vecteur d'information pour l'astronomie, complémentaire du photon:

- se propagent pratiquement sans absorption
- proviennent d'objets qui n'émettent pas ou peu de photons (ex: trous noirs)

Calcul théorique des formes d'ondes gravitationnelles

- nécessaire pour la détection des ondes (extraction du signal du bruit de fond à faible S/N)
- permet l'analyse du signal et la détermination des caractéristiques de la source

Sources principales = objets compacts (étoiles à neutrons, trous noirs), dont la dynamique est régie par la relativité générale

⇒ il faut résoudre l'équation d'Einstein

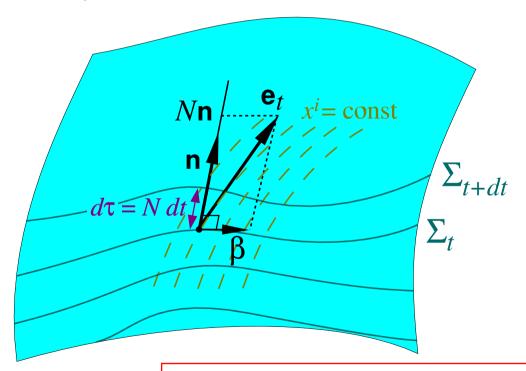
1.3

Vers la résolution numérique de l'équation d'Einstein: le formalisme 3+1

Formalisme 3+1 de la relativité générale

Rappel: pas de structure temporelle globale privilégiée dans l'espace-temps relativiste

Formalisme 3+1: Feuilletage de l'espace-temps par une famille d'hypersurfaces $(\Sigma_t)_{t\in\mathbb{R}}$ spatiales; sur chaque hypersurface, système de coordonnées $(x^i)_{i\in\{1,2,3\}}$ $\Longrightarrow (x^\mu)_{\mu\in\{0,1,2,3\}} = (t,x^1,x^2,x^3) =$ système de coordonnées de l'espace-temps tout entier (t= coordonnée "temps", sans signification physique particulière)



n : normale unitaire à Σ_t / métrique ${\bf g}$ ${\bf e}_t$: vecteur "temps" de la base naturelle / coordonnées (x^μ)

 $\left\{egin{array}{ll} oldsymbol{\Sigma}_{t+dt} & N : ext{ fonction lapse} \ oldsymbol{eta}: ext{ vecteur shift} \end{array}
ight\} egin{array}{c} oldsymbol{e}_t = N oldsymbol{\mathsf{n}} + oldsymbol{eta} \ oldsymbol{\Sigma}_t \end{array}$

Géométrie des hypersurfaces Σ_t :

- métrique induite $\gamma = \mathbf{g} + \mathbf{n} \otimes \mathbf{n}$
- tenseur de courbure extrinsèque : K

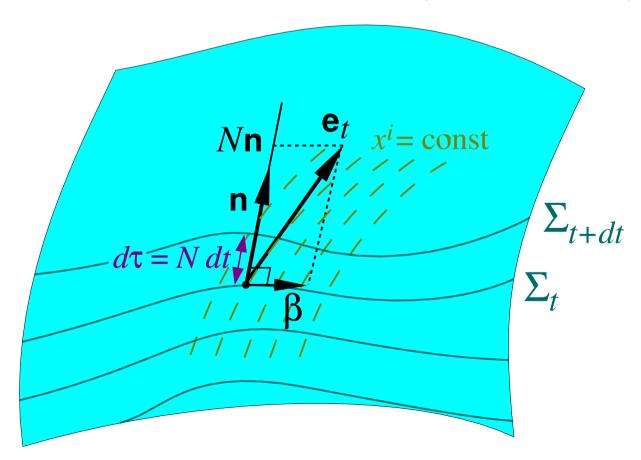
$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -(N^2 - \beta_i\beta^i) dt^2 + 2\beta_i dt dx^i + \gamma_{ij} dx^i dx^j$$

Choix de coordonnées et formalisme 3+1

$$(x^{\mu}) = (t, x^{i}) = (t, x^{1}, x^{2}, x^{3})$$

Choix de la fonction lapse $N \iff \text{choix du feuilletage } (\Sigma_t)$

Choix du vecteur shift $\beta \iff$ choix des coordonnées spatiales (x^i) sur chaque hypersurface Σ_t (via le choix de \mathbf{e}_t)



Équations d'Einstein sous forme 3+1

Projection orthogonale de l'équation d'Einstein sur Σ_t et suivant la normale à Σ_t :

• Équation de contrainte hamiltonienne:

$$R + K^2 - K_{ij}K^{ij} = 16\pi E$$

• Équation de contrainte impulsionnelle :

$$D_j K^{ij} - D^i K = 8\pi J^i$$

• Équations dynamiques :

$$\frac{\partial K_{ij}}{\partial t} - \pounds_{\beta} K_{ij} = -D_i D_j N + N \left[R_{ij} - 2K_{ik} K_j^k + K K_{ij} + 4\pi ((S - E)\gamma_{ij} - 2S_{ij}) \right]$$

$$E := \mathbf{T}(\mathbf{n}, \mathbf{n}) = T_{\mu\nu} \, n^{\mu} n^{\nu}, \qquad J_i := -\gamma_i^{\ \mu} \, T_{\mu\nu} \, n^{\nu}, \qquad S_{ij} := \gamma_i^{\ \mu} \, \gamma_j^{\ \nu} \, T_{\mu\nu}$$

 R_{ij} : tenseur de Ricci de la métrique spatiale γ , D_i : dérivée covariante associée à γ

Relation cinématique entre γ et \mathbf{K} : $\frac{\partial \gamma_{ij}}{\partial t} - \pounds_{\boldsymbol{\beta}} \gamma_{ij} = -2NK_{ij}$

Formal. $3+1 \Longrightarrow \text{Résolution équation d'Einstein} = \text{problème de Cauchy}$

2

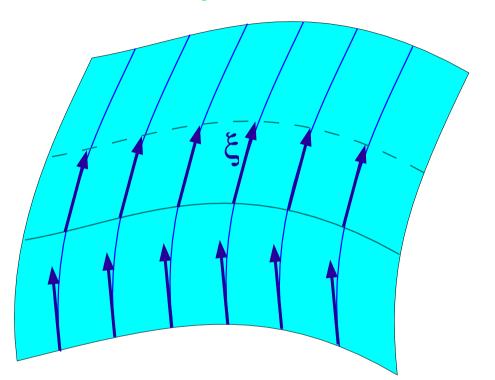
Étoiles relativistes en rotation :

Espaces-temps axisymétriques stationnaires

2.1 Formulation analytique

Description d'une symétrie de l'espace-temps

Symétrie: invariance sous un groupe de transformations



Cas d'un groupe continu de transformations G à un paramètre (groupe de Lie unidimensionnel): invariance le long des lignes de champs du vecteur générateur ξ de ce groupe : vecteur de Killing : la dérivée (de Lie) du tenseur métrique g le long du vecteur ξ est nulle:

$$\pounds_{\boldsymbol{\xi}} \, \mathbf{g} = 0$$

- stationnarité: invariance par translation dans le temps: $G = (\mathbb{R}, +)$, ξ de genre temps: $\mathbf{g}(\xi, \xi) < 0$
- axisymétrie: invariance par rotation autour d'un axe: G = SO(2), ξ de genre espace: $\mathbf{g}(\xi,\xi) \geq 0$

Espaces-temps axisymétriques stationnaires

Coordonnées adaptées: (t, r, θ, φ) : $\mathbf{e}_t = \text{vecteur de Killing stationnarité}$ $\mathbf{e}_{\varphi} = \text{vecteur de Killing axisymétrie}$

 \implies composantes du tenseur métrique indépendantes de (t,φ) : $g_{\mu\nu}=g_{\mu\nu}(r,\theta)$

Stationnarité et formalisme 3+1:

- $\frac{\partial}{\partial t} = 0$ dans les équations 3+1
- Équation elliptique pour le vecteur shift β :

$$D_j D^j \beta^i + \frac{1}{3} D^i (D_j \beta^j) + R^i{}_j \beta^j = 16\pi N J^i + 2\left(K^{ij} - \frac{1}{3} K \gamma^{ij}\right) D_j N$$
 (équation de distortion minimale)

Simplification supplémentaire dans le cas circulaire

Si pas de convection dans les plans méridiens $\varphi = \text{const}$ (mouvement circulaire), alors ∃ une famille de 2-surfaces *orthogonales* aux surfaces engendrées par les deux vecteurs de Killing \mathbf{e}_t et \mathbf{e}_{φ} , i.e. on peut choisir (r,θ) tels que

$$g_{tr} = g_{t\theta} = g_{r\varphi} = g_{\theta\varphi} = 0$$

[Papapetrou 1966, Kundt & Trümper 1966, Carter 1969]

- $\implies \quad \text{métrique spatiale } \gamma_{ij} = \left(\begin{array}{ccc} A(r,\theta)^2 & 0 & 0 \\ 0 & A(r,\theta)^2 \, r^2 & 0 \\ 0 & 0 & B(r,\theta)^2 \, r^2 \sin^2 \theta \end{array} \right)$
 - ullet vecteur shift parallèle à ${f e}_{arphi}$: ${m eta}=eta^{arphi}(r, heta)\,{f e}_{arphi}$
 - K = 0 (feuilletage maximal)

Métrique complète :

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + B^2 r^2 \sin^2 \theta (d\varphi + \beta^{\varphi} dt)^2 + A^2 (dr^2 + r^2 d\theta^2)$$

4 potentiels métriques : $N(r,\theta)$, $\beta^{\varphi}(r,\theta)$, $A(r,\theta)$ et $B(r,\theta)$

Équations d'Einstein

Dans le cas axisymétrique stationnaire et circulaire, les équations d'Einstein se réduisent au système de 4 équations elliptiques:

$$\Delta_{3} \nu = 4\pi A^{2} (E + S^{i}_{i}) + \frac{B^{2} r^{2} \sin^{2} \theta}{2N^{2}} (\partial \beta^{\varphi})^{2} - \partial \nu \, \partial (\nu + \ln B)$$

$$\tilde{\Delta}_{3} (\beta^{\varphi} r \sin \theta) = 16\pi \frac{NA^{2}}{B^{2}} \frac{J_{\varphi}}{r \sin \theta} - r \sin \theta \, \partial \beta^{\varphi} \, \partial (3 \ln B - \nu)$$

$$\Delta_{2} [(NB - 1) r \sin \theta] = 8\pi NA^{2} B (S^{r}_{r} + S^{\theta}_{\theta}) r \sin \theta$$

$$\Delta_{2} \zeta = 8\pi A^{2} S^{\varphi}_{\varphi} + \frac{3B^{2} r^{2} \sin^{2} \theta}{4N^{2}} (\partial \beta^{\varphi})^{2} - (\partial \nu)^{2}$$

[Bonazzola, Gourgoulhon, Salgado & Marck, A&A 278, 421 (1993)]

Abréviations et notations: $\nu := \ln N$, $\zeta := \ln (AN)$

$$\Delta_{2} := \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \qquad \Delta_{3} := \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{r^{2} \tan \theta} \frac{\partial}{\partial \theta} \qquad \tilde{\Delta}_{3} := \Delta_{3} - \frac{1}{r^{2} \sin^{2} \theta}$$

$$\partial a \, \partial b := \frac{\partial a}{\partial r} \frac{\partial b}{\partial r} + \frac{1}{r^{2}} \frac{\partial a}{\partial \theta} \frac{\partial b}{\partial \theta} \qquad \tilde{\Delta}_{3} := \Delta_{3} - \frac{1}{r^{2} \sin^{2} \theta}$$

Limite newtonienne

$$egin{aligned}
u \sim \Phi & (ext{potential gravitationnel newtonien}) \ eta^{arphi}
ightarrow 0 \ A
ightarrow 1 \ B
ightarrow 1 \end{aligned}$$
 $rac{E}{c^2} \sim
ho \quad (ext{densit\'e de masse})$

Des 4 équations d'Einstein, il ne reste que la première:

$$\Delta_3 \nu = 4\pi\rho$$
 (équation de Poisson)

Équations pour le fluide

Matière nucléaire = fluide parfait : $\mathbf{T} = (e + p)\mathbf{u} \otimes \mathbf{u} + p\mathbf{g}$

Mouvement circulaire: quadrivitesse u du fluide = combinaison linéaire des deux vecteurs de Killing : $\mathbf{u} = u^t \mathbf{e}_t + u^{\varphi} \mathbf{e}_{\varphi}$

Rotation rigide: $\mathbf{u} = u^t(\mathbf{e}_t + \Omega \mathbf{e}_{\varphi})$ avec $\Omega = \mathrm{const}$

Remarque: rotation rigide \iff $\mathbf{u} = u^t \boldsymbol{\ell}$ avec $\boldsymbol{\ell} := \mathbf{e}_t + \Omega \mathbf{e}_{\varphi}$ vecteur de Killing

Intégrale première du mouvement: $\ell \cdot (h\mathbf{u}) = \mathrm{const}$

$$\ell \cdot (h\mathbf{u}) = \text{const}$$

avec $h:=\frac{e+p}{m_{\rm B}nc^2}$ enthalpie spécifique

Limite newtonienne de l'intégrale première: $h + \Phi - \frac{1}{2}(\Omega \wedge r)^2 = \text{const}$

Fermeture du système d'équations: Équation d'état de la matière dense froide: e = e(h), p = p(h), n = n(h)

Théorème du viriel relativiste GRV3

Motivation: obtenir une version relativiste du théorème du viriel newtonien

$$2E_{\rm kin} + 3P + E_{\rm mag} + E_{\rm grav} = 0$$

pour tester les solutions numériques décrivant des étoiles à neutrons en rotation.

Cadre: Espace-temps asymptotiquement plat et stationnaire (vecteur de Killing \mathbf{e}_t)

$$ullet$$
 Masse ADM : $M_{
m ADM}:=rac{1}{16\pi}\oint_{\infty}f^{jk}\left(ar{D}_{k}\gamma_{ij}-ar{D}_{i}\gamma_{jk}
ight)\,dS^{i}$

$$ullet$$
 Masse de Komar : $M_{
m K}:=rac{1}{8\pi}\oint\limits_{-\infty}^{\infty}oldsymbol{
abla}_{
m e}_t$

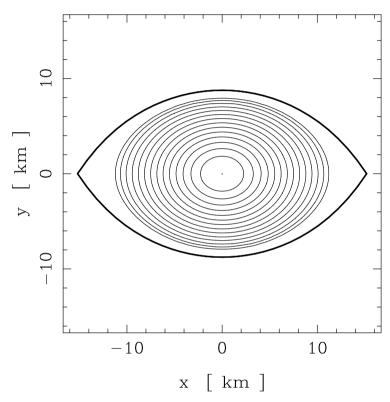
Théorème de Beig (1978) et Ashtekar & Magnon-Ashtekar (1979): $M_{\rm ADM} = M_{\rm K}$ Résultat:

$$\int_{\Sigma_{t}} \Gamma^{2}(e+p)U_{i}U^{i} \sqrt{\gamma} d^{3}x + 3 \int_{\Sigma_{t}} p \sqrt{\gamma} d^{3}x + \frac{1}{2\mu_{0}} \int_{\Sigma_{t}} \left(E_{i}E^{i} + B_{i}B^{i} \right) \sqrt{\gamma} d^{3}x + \frac{1}{4\pi} \int_{\Sigma_{t}} \left[-D_{i}\nu D^{i}\nu + \frac{1}{4}\gamma^{ij} \left(\Delta^{l}_{im} \Delta^{m}_{jl} - \Delta^{l}_{lm} \Delta^{m}_{ij} \right) + \frac{3}{4}K_{ij}K^{ij} \right] \sqrt{\gamma} d^{3}x = 0$$

[Gourgoulhon & Bonazzola, CQG 11, 443 (1994)]

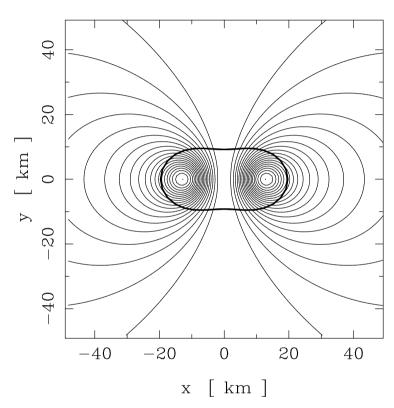
2.2 Résultats numériques

Modèles d'étoiles à neutrons



Étoile à neutrons en rotation maximale Équation d'état: Bethe-Johnson I, $M=1.47\,M_{\odot}$

[Salgado, Bonazzola, Gourgoulhon & Haensel, A&A **291**, 155 (1994)]



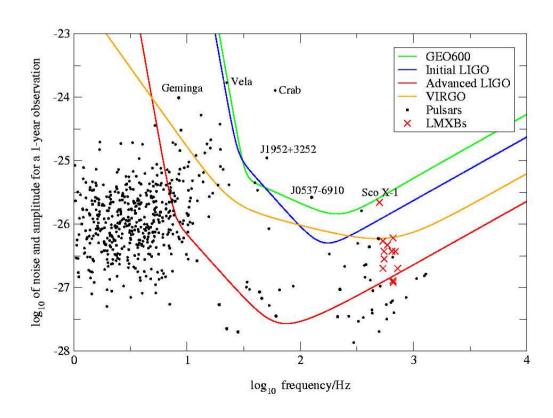
Étoile à neutrons fortement magnétisée $B_{\rm p} \sim 5 \times 10^4 \ {\rm GT}$

[Bocquet, Bonazzola, Gourgoulhon & Novak, A&A **301**, 757 (1995)]

Application: ondes gravitationnelles émises par les pulsars

Étoile parfaitement symétrique par rapport à son axe de rotation \Longrightarrow pas d'OG Déviation $\epsilon \neq 0$ par rapport à l'axisymétrie \Longrightarrow émission d'ondes gravitationnelles d'amplitude (P: période de rotation, r: distance, I: moment d'inertie)

$$h_0 = 4.2 \times 10^{-24} \left(\frac{\text{ms}}{P}\right)^2 \left(\frac{\text{kpc}}{r}\right) \left(\frac{I}{10^{38} \text{ kg m}^2}\right) \left(\frac{\epsilon}{10^{-6}}\right)$$



Sources d'asymétrie:

- "montagnes" dans l'écorce solide
- champ magnétique
- instabilités

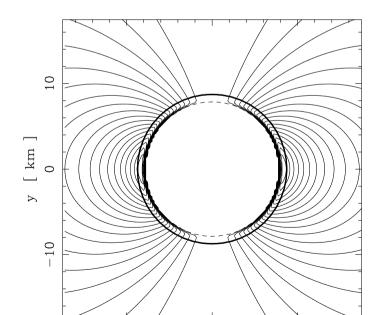
Bornes supérieures:

$$\dot{P}_{\rm OG} < \dot{P}_{\rm mesur\acute{e}}$$

[Jones, CQG 19, 1255 (2002)]

Calcul de l'émission induite par le champ magnétique

- Premiers calculs relativistes de la déformation de l'étoile à neutrons par son champ magnétique (forces de Laplace sur les courants électriques qui parcourent l'étoile)
- Prise en compte d'une équation d'état réaliste de la matière nucléaire (Wiringa, Fiks
 & Fabrocini 1988)
- Utilisation d'une formule pleinement relativiste pour l'émissivité gravitationnelle (Ipser 1971)



Ω

x [km]

-10

10

Magnetic field lines

déformation
$$\epsilon = \beta \frac{\mathcal{M}^2}{\mathcal{M}_0^2}$$

ß dépend de la configuration magnétique

Conclusion: détectabilité par VIRGO ($h > 10^{-26}$) \Longrightarrow champ magnétique stochastique ou intérieur supraconducteur de type II

[Bonazzola & Gourgoulhon, A&A 312, 675 (1996)]

2.3 Étoiles de quarks étranges

L'hypothèse des étoiles de quarks étranges

1971: A.R. Bodmer → l'état fondamental de la matière nucléaire pourrait être un état de quarks déconfinés

1984: E. Witten reformule (indépendamment) cette idée, et considère la possibilité selon laquelle les étoiles à neutrons seraient en fait des étoiles de quarks étranges

1986: Premiers modèles numériques d'étoiles de quarks étranges statiques par P. Haensel, J.L. Zdunik & R. Schaeffer et C. Alcock, E. Farhi & A.V. Olinto

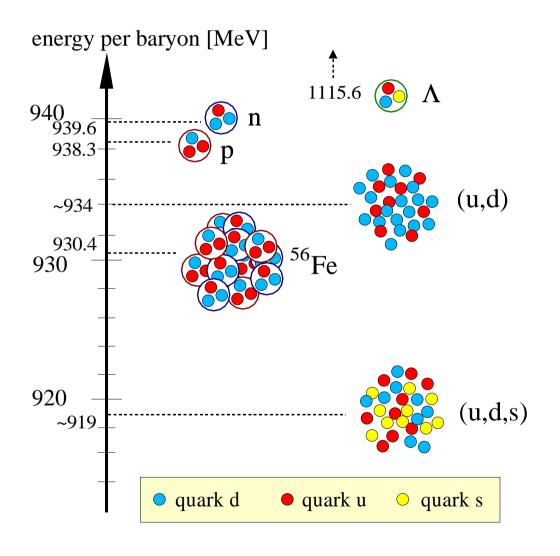
1989 : Annonce de la "détection" d'un pulsar demi-milliseconde dans SN 1987A

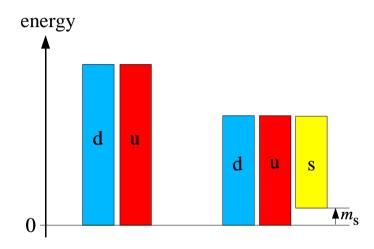
1996 : Découverte des oscillations quasi-périodiques (QPO) dans les binaires X de faible masse

2002 : Annonce très médiatisée par la NASA de la "découverte" de deux étoiles de quarks étranges

saveur	d	u	S	С	b	t
spin	1/2					
nombre baryonique	1/3					
charge électrique	-e/3	2e/3	-e/3	2e/3	-e/3	2e/3
masse $[\operatorname{MeV} c^{-2}]$	~ 7	~ 3	~ 150	~ 1200	~ 4200	$\sim 175 \; \mathrm{GeV} c^{-2}$

État fondamental de la matière hadronique



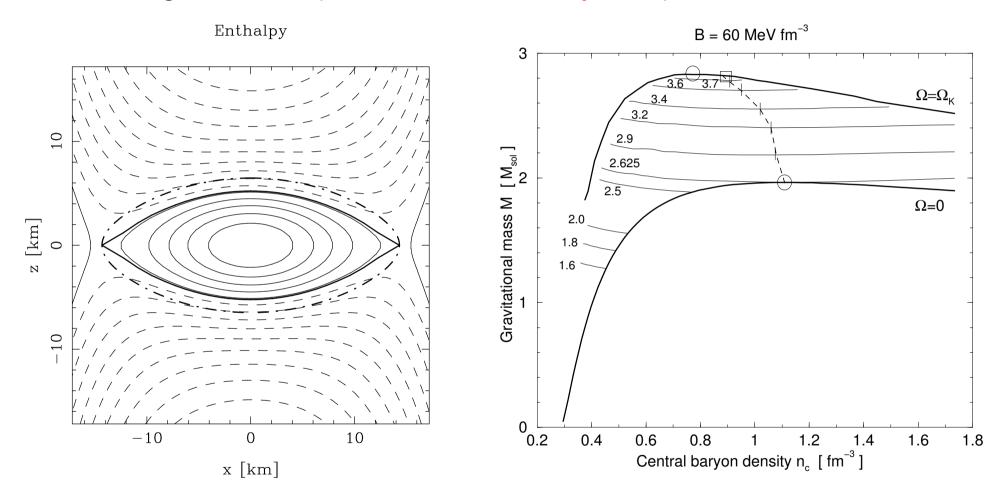


Les quarks sont des fermions:

Principe d'exclusion de Pauli \Longrightarrow la matière de quarks à *trois* saveurs a une énergie par baryon plus basse que la matière de quarks à *deux* saveurs

Modèle numériques d'étoiles de quark étranges en rotation

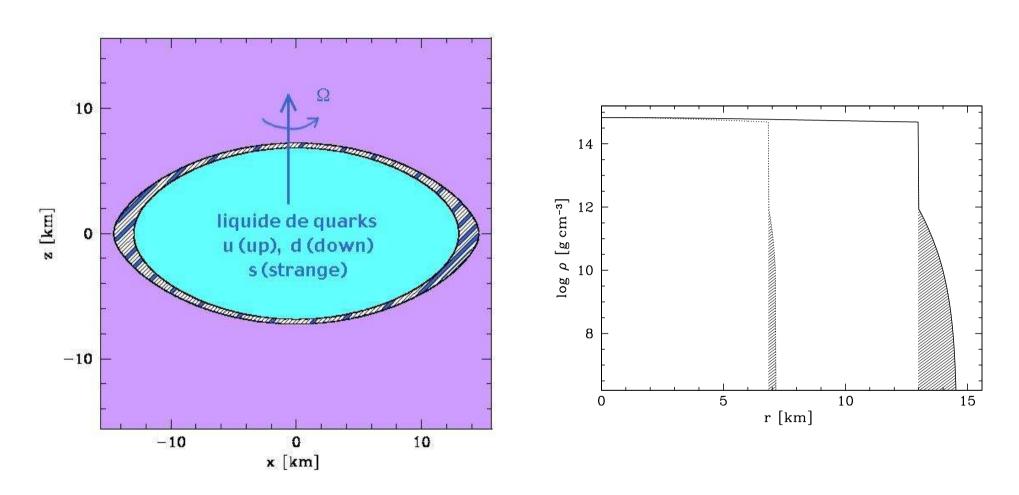
Intégration des équations d'Einstein axisymétriques et stationnaires



[Gourgoulhon, Haensel, Livine, Paluch, Bonazzola & Marck, A&A 349, 851 (1999)]

Période de rotation minimale (pour $m_{\rm s}=0$ et $\alpha_{\rm s}=0$): $P_{\rm min}=0.634\,B_{60}^{-1/2}~{\rm ms}$

Écorce solide des étoiles de quarks



Équation d'état: $B=56~{\rm MeV\,fm^{-3}}$, $\alpha_{\rm s}=0.2$, $m_{\rm s}=200~{\rm MeV\,c^{-2}}$ étoile: $M_{\rm B}=1.63\,M_{\odot}$, $f=1210~{\rm Hz}$.

[Zdunik, Haensel & Gourgoulhon, A&A 372, 535 (2001)]

3

Étoiles relativistes triaxiales et systèmes binaires: Espaces-temps hélicoïdaux

3.1 La symétrie hélicoïdale

Symétrie hélicoïdale

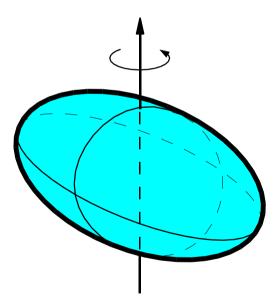
Motivation: en théorie newtonienne ∃ configurations

- non-stationnaires par rapport à un référentiel inertiel
- stationnaires par rapport à un référentiel tournant

Exemple 1:

Système binaire

Exemple 2:



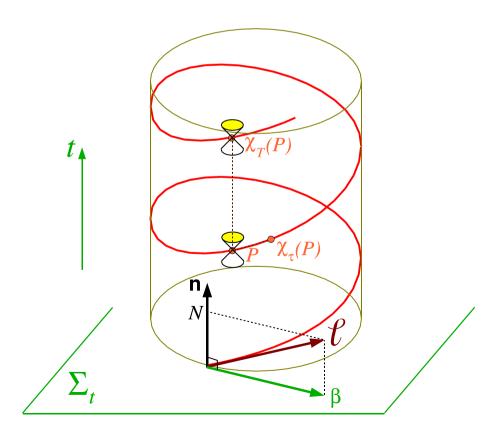
Étoile triaxiale en rotation rigide (ellipsoïde de Jacobi)

Ces systèmes sont de très bons émetteurs d'ondes gravitationnelles

Symétrie hélicoïdale en relativité générale

Émission d'ondes gravitationnelles \Longrightarrow perte d'énergie et de moment cinétique \Longrightarrow pas de solution stationnaires, même dans le référentiel tournant, pour les systèmes binaires ou triaxiaux en relativité générale

Néanmoins $\tau_{
m réact.~OG} \gg au_{
m dyn} \Longrightarrow$ "presque" stationnaire dans le référentiel tournant



 \implies symétrie approchée de l'espace-temps: vecteur de Killing hélicoïdal ℓ :

Action du groupe de symétrie sur un point P (transport de P le long des lignes de champ de $\ell \longrightarrow \chi_{\tau}(P)$):

au delà d'une certaine distance, il existe un plus petit T>0 tel que l'intervalle entre P et $\chi_T(P)$ soit du genre temps

[Bonazzola, Gourgoulhon & Marck, PRD **56**, 7740 (1997)] [Friedman, Uryu & Shibata, PRD **65**, 064035 (2002)]

Coordonnées adaptées à la symétrie hélicoïdale

 (t,x^i) adaptées à la symétrie hélicoïdale \iff $\mathbf{e}_t = \boldsymbol{\ell}$

Dans le cadre du formalisme 3+1: cela équivaut à ce que le vecteur shift β des coordonnées spatiales (x^i) soit égal à la projection orthogonale du vecteur de Killing hélicoïdal ℓ sur l'hypersurface Σ_t :

$$\ell = N\mathbf{n} + \boldsymbol{\beta}$$

Dans ce qui suit, on choisit de plus un feuilletage maximal: K=0

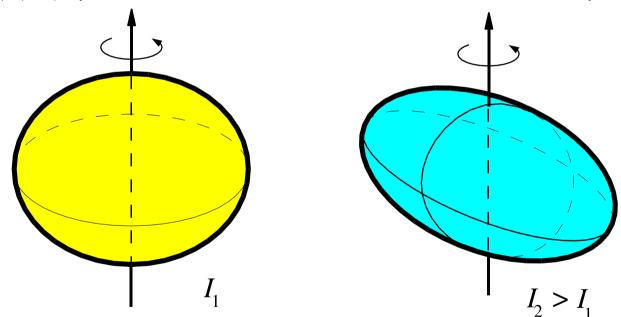
3.2 Étoiles triaxiales

Instabilité triaxiale des étoiles à neutrons en rotation rapide

Mécanisme de brisure spontanée de symétrie d'un corps fluide autogravitant en rotation rigide:

$$E = E_{\rm kin} + E_{\rm grav} + E_{\rm int}$$

avec $E_{\rm kin} = J^2/(2I)$ (rotation rigide de moment cinétique total J)

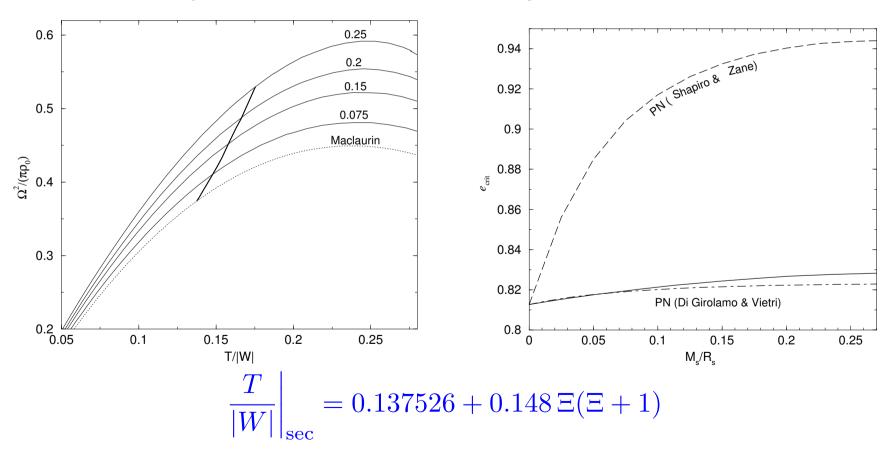


Minimisation de E à J fixé \Longrightarrow configuration triaxiale pour les grands J

Mécanisme physique de dissipation de E à J fixé: viscosité \Longrightarrow source astrophysique d'ondes gravitationnelles

Recherche du point d'instabilité dans le cas relativiste

Étude numérique dans le cadre de la symétrie hélicoïdale Fluide incompressible: généralisation relativiste de la bifurcation ellipsoïde de Maclaurin → ellipsoïde de Jacobi

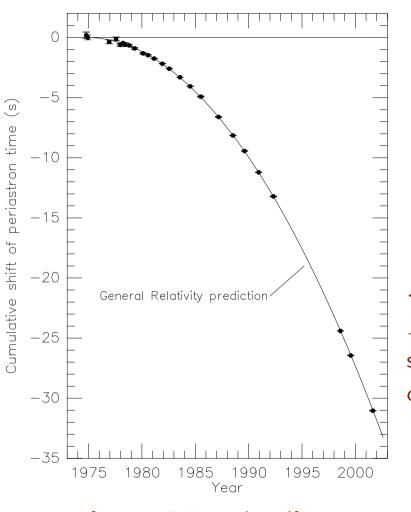


[Gondek-Rosińska & Gourgoulhon, PRD 66, 044021 (2002)]

3.3 Systèmes binaires

Systèmes binaires d'étoiles à neutrons dans l'Univers

Pulsars binaires avec $M_1>1.3\,M_\odot$ et $M_2>1.3\,M_\odot$:

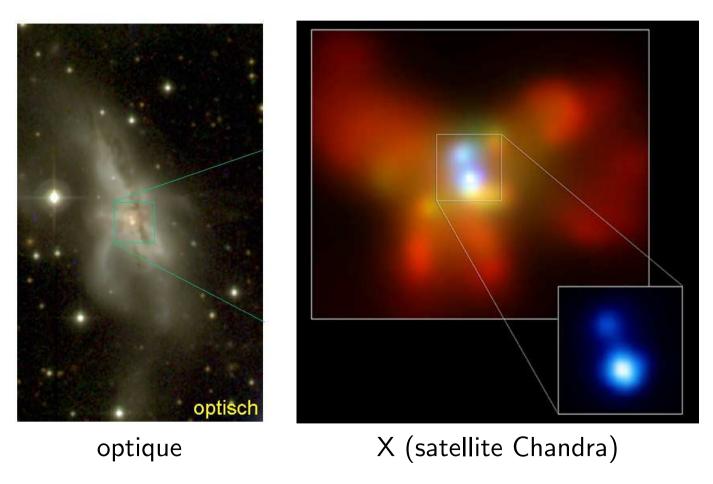


 \leftarrow Décroissance observée de la période orbitale $P=7\,\mathrm{h}\,45\,\mathrm{min}$ du pulsar binaire PSR B1913+16 sous l'effet de la réaction au rayonnement gravitationnel \Longrightarrow coalescence dans 140 millions d'années.

[Weisber & Taylor (2002)]

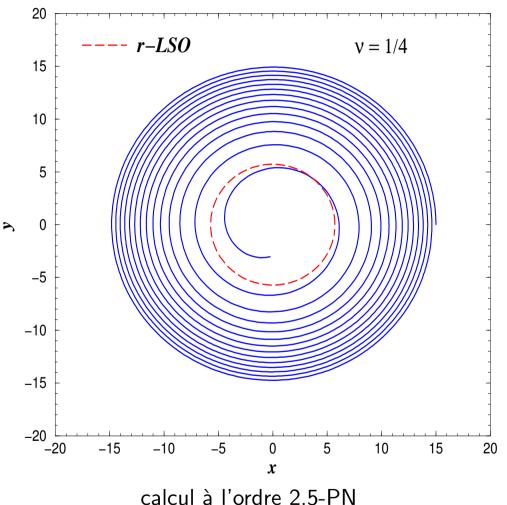
Systèmes binaires de trous noirs dans l'Univers

Noyau double de la galaxie NGC 6240



[Komossa et al., ApJ **582**, L15 (2003)]

Mouvement en spirale des binaires d'objets compacts



L'évolution des systèmes binaires d'étoiles à neutrons ou de trous noirs est entièrement due à

la réaction au rayonnement gravitationnel

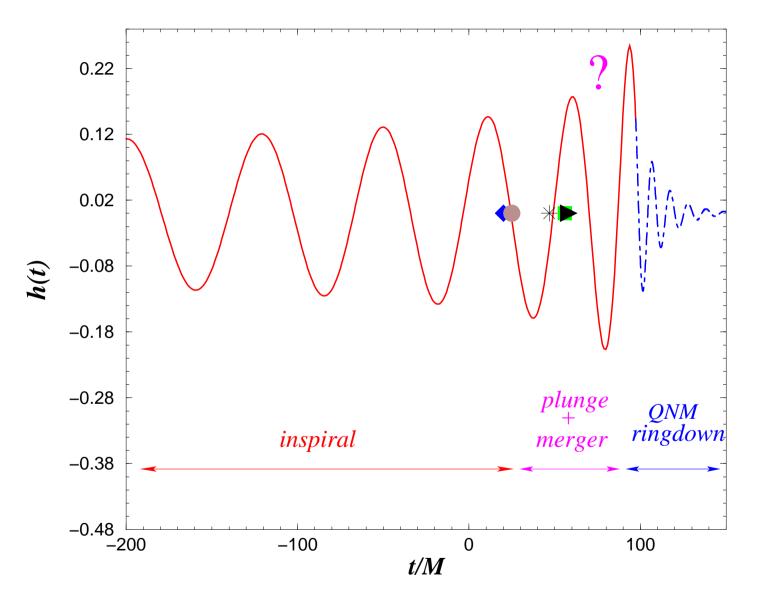
Un autre effet de l'émission d'ondes gravitationnelles:

circularisation des orbites: $e \rightarrow 0$

 \Longrightarrow espace-temps \sim hélicoïdal

[Buonanno & Damour, PRD 62, 064015 (2000)]]

Ondes gravitationnelles émises



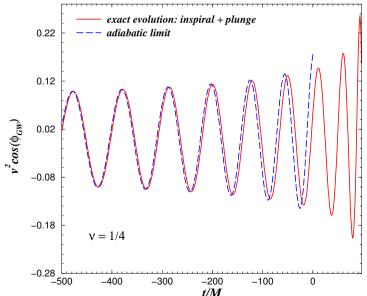
[adapté de Buonanno & Damour, PRD 62, 064015 (2000)]

Fin de la phase de spirale: dernière orbite stable

• $M_1/M_2 \ll 1$ (espace-temps de Schwarzschild) : il existe une $derni\`ere$ orbite circulaire stable (ISCO) :

$$R_{\rm ISCO}^{\rm Schw} = 6M$$
 $\Omega_{\rm ISCO}^{\rm Schw} = 6^{-3/2}M^{-1} \Rightarrow f(\rm GW)_{\rm ISCO}^{\rm Schw} = 440\left(\frac{10\,M_{\odot}}{M}\right) \, \mathrm{Hz}$

• $M_1/M_2 = 1$: dissipation par rayonnement gravitationnel \Longrightarrow des orbites exactement circulaires n'existent pas



L'ISCO est alors définie d'après la partie conservative des équations du mouvement, qui donne lieu à des orbites circulaires (approximation adiabatique). En considérant une séquence d'orbites circulaires de rayon décroissant, l'ISCO est définie par le *minimum* de l'énergie de liaison.

← [Buonanno & Damour, PRD **62**, 064015 (2000)]

Calcul de configurations d'équilibre de binaires d'objets compacts

Dernières orbites de la phase de spirale

- Motivation première: obtenir des données initiales pour le calcul numérique de la phase de plongeon et de fusion
- Mais ces configurations sont intéressantes par elles-mêmes: elles conduisent à la détermination de l'ISCO adiabatique, qui
 - * marque la fin du signal de stridulation dans les ondes gravitationnelles détectées, et pourrait être un paramètre important de l'analyse du signal de VIRGO / LIGO
 - * permet de comparer plusieurs méthodes de calculs, analytiques et numériques, entre elles

approximation de quasi-équilibre \iff espace-temps hélicoïdal

Symétrie hélicoïdale: l'ISCO correspond à un minimum de la masse ADM le long d'une séquence à nombre baryonique constant (étoiles à neutrons) et aire des horizons constante (trous noirs) [Friedman, Uryu & Shibata, PRD 65, 064035 (2002)]

Équations d'Einstein pour les binaires dans l'approximation hélicoïdale

Approximation d'Isenberg-Wilson-Mathews: 3-métrique conformément plate:

$$oldsymbol{\gamma} = \Psi^4 oldsymbol{f}$$

$$\Rightarrow$$
 métrique d'espace-temps : $g_{\mu\nu}dx^{\mu}dx^{\nu}=-N^2dt^2+\Psi^4f_{ij}(dx^i+\beta^i dt)(dx^j+\beta^j dt)$

Il n'y a alors que 5 équations d'Einstein à résoudre:

$$\underline{\Delta}\Psi = -\Psi^5 \left(2\pi E + \frac{1}{8} \hat{A}_{ij} \hat{A}^{ij} \right) \qquad (contrainte hamiltonienne)$$

$$\underline{\Delta}\beta^i + \frac{1}{3} \bar{\nabla}^i \bar{\nabla}_j \beta^j = 16\pi N \Psi^4 J^i + 2\hat{A}^{ij} \left(\bar{\nabla}_j N - 6N \bar{\nabla}_j \ln \Psi \right) \qquad (contrainte impulsionnelle)$$

$$\underline{\Delta}N = N \Psi^4 \left[4\pi (E + S) + \hat{A}_{ij} \hat{A}^{ij} \right] - 2\bar{\nabla}_j \ln \Psi \, \bar{\nabla}^j N \qquad (trace de \frac{\partial K_{ij}}{\partial t} = \cdots)$$

avec
$$\hat{A}_{ij} := \Psi^{-4} K_{ij}$$
 et $\hat{A}^{ij} := \Psi^4 K^{ij}$

$$\hat{A}^{ij} = \frac{1}{2N} (\bar{L}\beta)^{ij} \text{ avec } (\bar{L}\beta)^{ij} := \bar{\nabla}^i \beta^j + \bar{\nabla}^j \beta^i - \frac{2}{3} \bar{\nabla}_k \beta^k f^{ij} \qquad \text{(partie sans trace de } K^{ij}\text{)}$$

$$\bar{\nabla}_i \beta^i = -6\beta^i \bar{\nabla}_i \ln \Psi \qquad \qquad \text{(trace } K = 0\text{)}$$

Équations pour la partie fluide

Étoiles à neutrons = fluide parfait : $\mathbf{T} = (e + p)\mathbf{u} \otimes \mathbf{u} + p\mathbf{g}$.

Équation du mouvement de Carter-Lichnerowicz pour un fluide à température nulle:

$$\nabla \cdot \mathbf{T} = 0 \Longleftrightarrow \begin{cases} \mathbf{u} \cdot \mathbf{dw} = 0 & \mathbf{(1)} \\ \nabla \cdot (n\mathbf{u}) = 0 & \mathbf{(2)} \end{cases} \qquad \mathbf{w} := h\mathbf{u} : 1 \text{-forme d'impulsion}$$

$$\mathbf{dw} : 2 \text{-form de vorticit\'e}$$

 $n = \text{densit\'e baryonique}, \ h = (e + p)/(m_B n) = \text{enthalpie sp\'ecifique}$

Identité de Cartan: ℓ vecteur de Killing $\Longrightarrow \pounds_{\ell} \mathbf{w} = 0 = \ell \cdot \mathbf{dw} + \mathbf{d}(\ell \cdot \mathbf{w})$ (3)

Deux cas avec intégrale première : $\ell \cdot \mathbf{w} = \text{const}$ (4)

- Mouvement rigide: $\mathbf{u} = \lambda \boldsymbol{\ell}$: (3) + (1) \Leftrightarrow (4); (2) automatiquement vérifiée
- Mouvement irrotationnel: $\mathbf{dw} = 0 \Leftrightarrow \mathbf{w} = \nabla \Psi : (3) \Leftrightarrow (4) ; (1)$ automatiquement vérifiée

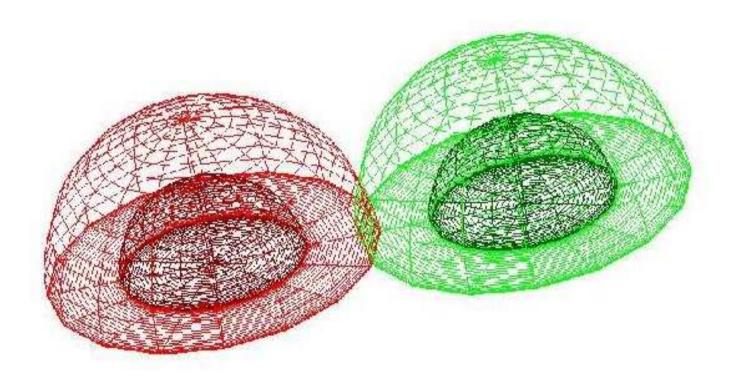
(2)
$$\Leftrightarrow \frac{n}{h} \nabla \cdot \nabla \Psi + \nabla \left(\frac{n}{h}\right) \cdot \nabla \Psi = 0$$

Méthodes numériques développées à Meudon

S.Bonazzola, P. Grandclément, J.-A. Marck, J. Novak et E.G.

- Méthodes spectrales multi-domaines 3D
- Coordonnées de type sphérique (r, θ, φ)
- Fonctions de base: r : polynômes de Tchebyshev; θ : cosinus/sinus ou fonction de Legendre associées; φ : séries de Fourier
- Domaines = coquilles sphériques + 1 noyau (contenant r = 0)
- L'espace entier (\mathbb{R}^3) est couvert: compactification de la coquille la plus externe
- Coordonnées adaptatives: décomposition de domaine avec topologie sphérique
- Implémentation numérique: codes C++ basés sur LORENE (http://www.lorene.obspm.fr)

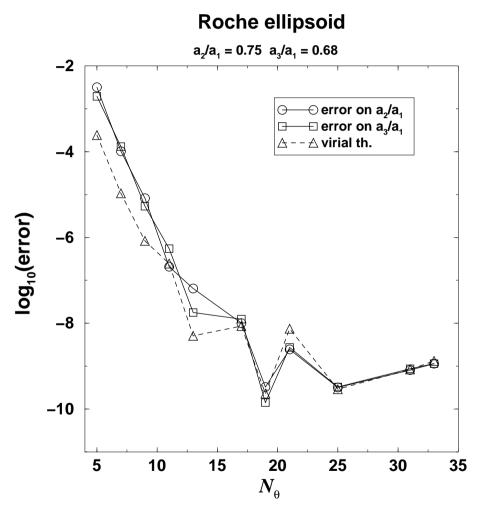
Traitement des systèmes binaires



2 jeux de domaines: un centré sur chaque objet

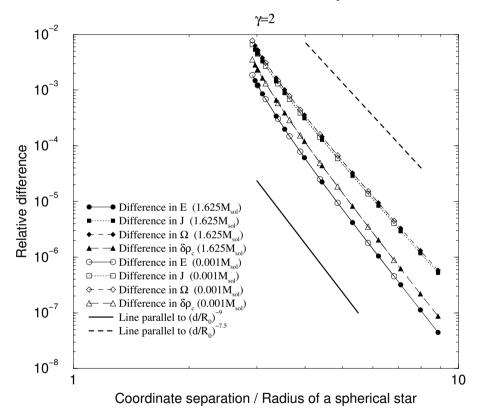
Exemples de tests pour les étoiles à neutrons binaires

Comparaison avec des solutions analytiques



Écart par rapport à la solution de Roche [Bonazzola, Gourgoulhon & Marck, PRD **58**, 104020 (1998)]

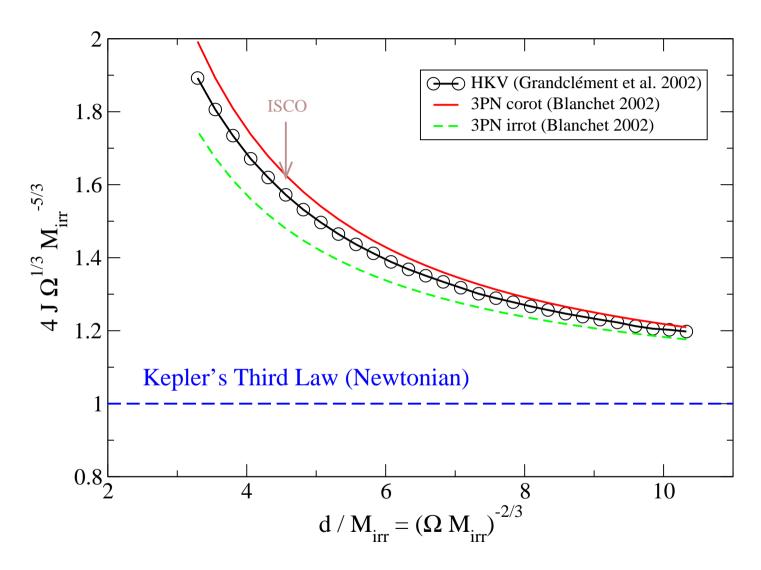
Relative difference from analytic solution



Écart par rapport à la solution de Taniguchi & Nakamura

[Gourgoulhon, Grandclément, Taniguchi, Marck & Bonazzola, PRD **63**, 064029 (2001)]

Exemple de test pour les trous noirs binaires



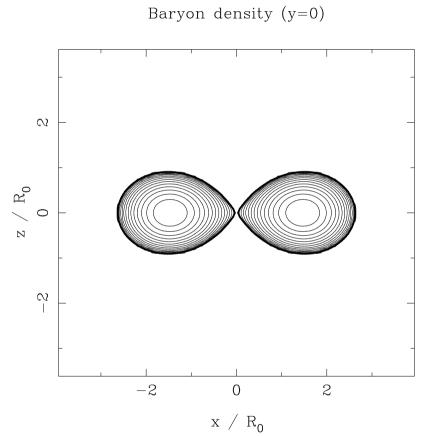
Comparaison avec des solutions analytiques post-newtoniennes et convergence vers la Troisième loi de Kepler à grande séparation

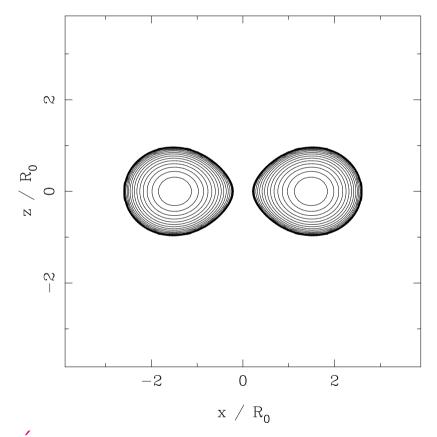
Résultats pour les étoiles binaires newtoniennes

Séquences d'équilibre à masse fixée

Détermination du point de plus faible approche (fin des séquences d'équilibre)

Baryon density (y=0)





Étoiles synchronisées:

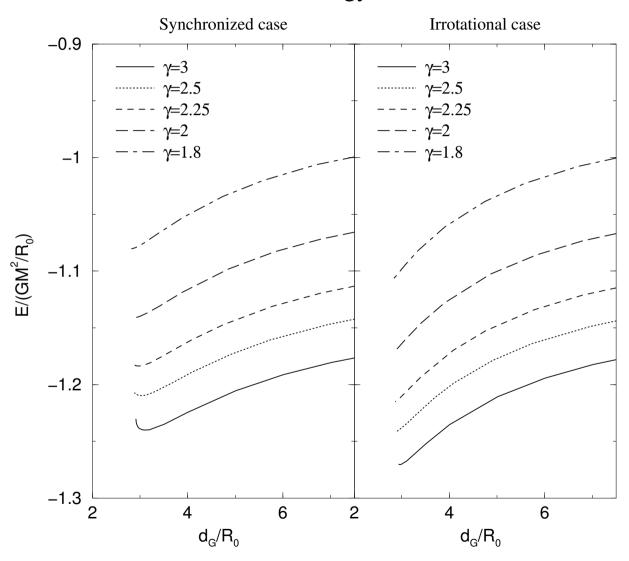
contact entre les deux étoiles

Étoiles irrotationnelles: configuration détachée (perte de matière)

[Taniguchi, Gourgoulhon & Bonazzola, PRD 64, 064012 (2001)]

Dernière orbite stable en régime newtonien

Total energy



Dernière orbite stable (ISCO):

minimum de l'énergie totale le long de la séquence

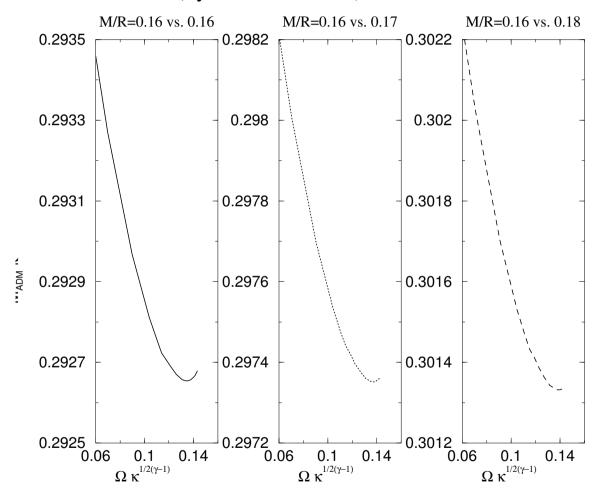
Pour des binaires irrotationnelles: l'ISCO existe avant la fin de la séquence seulement pour $\gamma \gtrsim 2.3$

[Taniguchi, Gourgoulhon & Bonazzola, PRD 64, 064012 (2001)]

Résultats pour les étoiles binaires relativistes

Séquences à nombre baryonique constant

ADM mass (Synchronized case)



 $\begin{array}{lll} \mbox{Configurations} & \gamma & = & 2 \\ \mbox{synchronisées} & \mbox{avec} & \mbox{différents} \\ \mbox{rapport de masse} & \end{array}$

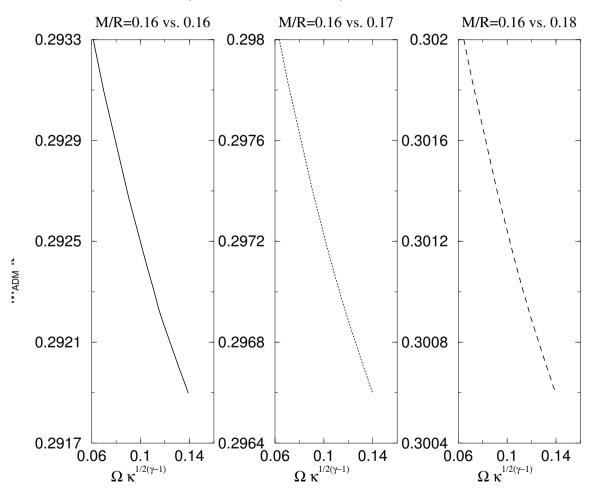
⇒ l'ISCO apparaît plus tôt pour des étoiles identiques

[Taniguchi & Gourgoulhon, PRD **66**, 104019 (2002)]

Résultats pour les étoiles binaires relativistes (suite)

Séquences à nombre baryonique constant

ADM mass (Irrotational case)



 $\begin{array}{lll} \mbox{Configurations} & \gamma & = & 2 \\ \mbox{irrotationnelles} & \mbox{avec} & \mbox{diff\'erents} \\ \mbox{rapport de masse} & \end{array}$

⇒ pas d'ISCO avant la fin des séquences d'équilibre (dislocation de l'étoile la plus légère)

[Taniguchi & Gourgoulhon, PRD **66**, 104019 (2002)]

Résultats pour les trous noirs

Séquences à aire des horizons constante

Choix de l'état de rotation des trous noirs: rotation synchrone avec le mouvement orbital (système binaire en corotation)

Justifications: •

- le seul état de rotation strictement compatible avec la symétrie hélicoïdale [Friedman, Uryu & Shibata, PRD 65, 064035 (2002)]
- pour des systèmes serrés, la "viscosité effective" des trous noirs pourrait être suffisamment efficace pour assurer la synchronisation [e.g. Price & Whelan, PRL 87, 231101 (2001)]

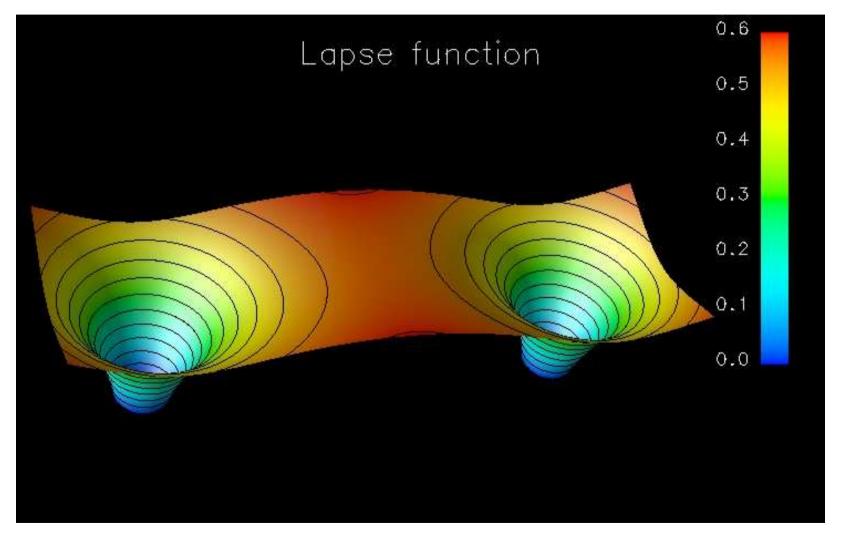
Traduction géométrique: les deux horizons sont des horizons de Killing associés au vecteur de Killing hélicoïdal ℓ :

$$|\boldsymbol{\ell} \cdot \boldsymbol{\ell}|_{\mathcal{H}_1} = 0$$
 and $|\boldsymbol{\ell} \cdot \boldsymbol{\ell}|_{\mathcal{H}_2} = 0$.

[Gourgoulhon, Grandclément & Bonazzola, PRD **65**, 044020 (2002)] [Grandclément, Gourgoulhon & Bonazzola, PRD **65**, 044021 (2002)]

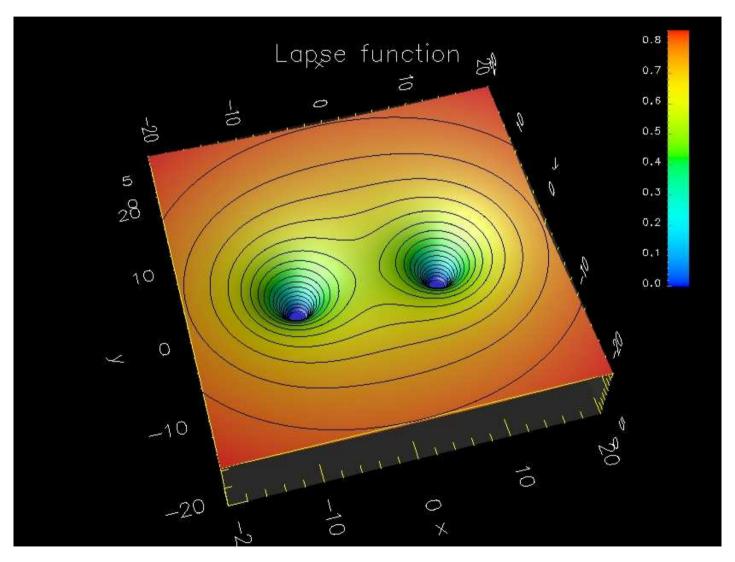
Configuration à la dernière orbite stable

Valeur de la fonction lapse N dans le plan équatorial



[Grandclément, Gourgoulhon, Bonazzola, PRD 65, 044021 (2002)]

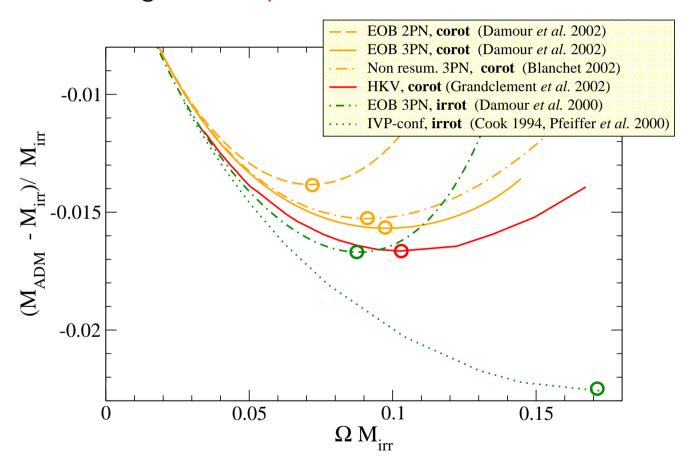
Zoom arrière



[Grandclément, Gourgoulhon, Bonazzola, PRD 65, 044021 (2002)]

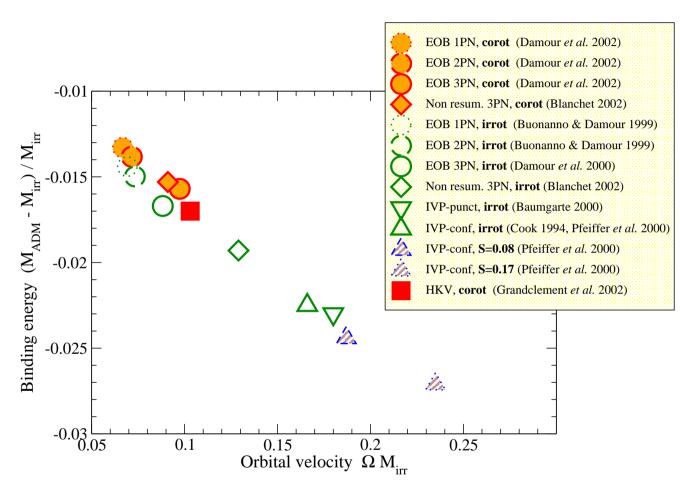
Comparaison avec les calculs post-newtoniens

Énergie de liaison le long d'une séquence d'évolution de deux trous noirs identiques



[Damour, Gourgoulhon, Grandclément, PRD 66, 024007 (2002)]

Localisation de la dernière orbite stable



Fréquence des ondes gravitationnelles:

$$f = 320 \ \frac{\Omega M_{\mathrm{ir}}}{0.1} \ \frac{20 \ M_{\odot}}{M_{\mathrm{ir}}} \ \mathrm{Hz}$$

[Damour, Gourgoulhon, Grandclément, PRD 66, 024007 (2002)]

Conclusions et perspectives

Ce dont je n'ai pas parlé...

- Espaces-temps axisymétriques stationnaires non circulaires [Gourgoulhon & Bonazzola, PRD 48, 2635 (1993)]
- Une identité du viriel 2-D (GRV2) [Bonazzola & Gourgoulhon, CQG 11, 1775 (1994)]
- La comparaison détaillée de différents codes numériques pour les étoiles à neutrons en rotation rapide [Nozawa, Stergioulas, Gourgoulhon & Eriguchi, A&AS 132, 431 (1998)]
- Des modèles d'étoiles de quarks étranges très compactes [Gondek-Rosińska, Bulik, Zdunik, Gourgoulhon, Ray,
 Dey & Dey, A&A 363, 1005 (2000)]
- De l'ISCO autour des étoiles de quarks étranges et des observations d'oscillations quasi-périodiques dans les binaires X [Zdunik, Haensel, Gondek-Rosińska & Gourgoulhon, A&A 356, 612 (2000)] [Gondek-Rosińska, Stergioulas, Bulik, Kluźniak & Gourgoulhon, A&A 380, 190 (2001)]
- De l'existence d'une ISCO autour des étoiles de quarks étranges de faible masse (régime newtonien)
 [Zdunik & Gourgoulhon, PRD 63, 087501 (2001)]
- De l'accélération par accrétion des étoiles de quarks étranges [Zdunik, Haensel & Gourgoulhon, A&A 381, 933 (2002)]
- Du fond d'ondes gravitationnelles émises par les étoiles à neutrons de la Galaxie [Giazotto, Bonazzola & Gourgoulhon, PRD 55, 2014 (1997)]
- Des premiers travaux sur l'instabilité triaxiale des étoiles en rotation rapide, générée par la viscosité
 [Bonazzola, Frieben & Gourgoulhon, ApJ 460, 379 (1996)] [Bonazzola, Frieben & Gourgoulhon, A&A 331, 280 (1998)]
- Des systèmes binaires newtoniens de masses différentes [Taniguchi & Gourgoulhon, PRD 65, 044027 (2002)]
- De la stabilité des étoiles à neutrons en système binaire vis-à-vis de l'effondrement gravitationnel en trou noir [Bonazzola, Gourgoulhon & Marck, PRL 82, 892 (1999)]
- De la méthode spectrale multi-domaine pour résoudre les équations de Poisson scalaires et vectorielles [Grandclément, Bonazzola, Gourgoulhon & Marck, JCP 170, 231 (2001)]

Perspectives

Dernières orbites des systèmes binaires :

- * calculs avec des équations d'état récentes issues de la physique nucléaire
- ★ binaires d'étoiles de quarks étranges
- * binaires trou noir étoile à neutrons
- ★ au delà de l'approximation IWM

Dynamique du champ gravitationnel:

- * évolution temporelle en jauge de Dirac
- * fusion des trous noirs binaires
- * modèles d'hypernova

Merci à mes collaborateurs

Marc Bocquet, Silvano Bonazzola, Tomek Bulik, Thibault Damour, Yoshiharu Eriguchi, Adalberto Giazotto, Dorota Gondek-Rosińska, Philippe Grandclément, Paweł Haensel, Włodek Kluźniak, Richard Livine, Jean-Alain Marck, Jérôme Novak, Tetsuo Nozawa, Ewa Paluch, Nick Stergioulas, Keisuke Taniguchi, Leszek Zdunik