(Numerical and) symbolic general relativity

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université de Paris
Université Paris Sciences et Lettres
92190 Meudon, France

https://luth.obspm.fr/~luthier/gourgoulhon/

Journée Thématique *Ondes Gravitationnelles à Lyon*ENS Lyon
17 October 2019

Computational tools developed at LUTH

• LORENE: library for solving PDE equations with spectral methods in spherical coordinates

```
https://lorene.obspm.fr/ [C++]
```

- CoCoNut: GR-hydro code for 3D gravitational collapse [with U. Valencia] https://www.uv.es/coconut/ [C++]
- Kadath: library for solving PDE equations with spectral methods (generic coordinates)

```
https://kadath.obspm.fr/ [C++]
```

- Gyoto: code for geodesic computation (ray-tracing) [with LESIA]
 https://gyoto.obspm.fr/ [C++, Python]
- CompOSE: Data base of nuclear matter equations of state https://compose.obspm.fr/
- SageManifolds: differential geometry and tensor calculus with SageMath https://sagemanifolds.obspm.fr/ [Python]

All these tools are free software (GPL)

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by downloading the software from http://sagemath.org
- everybody can examine the source code and improve it

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by downloading the software from http://sagemath.org
- everybody can examine the source code and improve it

SageMath is based on Python

- no need to learn any specific syntax to use it
- Python is a powerful object oriented language, with a neat syntax
- SageMath benefits from the Python ecosystem (e.g. Jupyter notebook)

SageMath (nickname: Sage) is a free open-source computer algebra system

SageMath is free (GPL v2)

Freedom means

- everybody can use it, by downloading the software from http://sagemath.org
- everybody can examine the source code and improve it

SageMath is based on Python

- no need to learn any specific syntax to use it
- Python is a powerful object oriented language, with a neat syntax
- SageMath benefits from the Python ecosystem (e.g. Jupyter notebook)

SageMath is developed by an enthusiastic community

- mostly composed of mathematicians
- welcoming newcomers

Tensor calculus with SageMath

SageManifolds project: extends SageMath towards differential geometry and tensor calculus

Stereographic-coordinate frame on \mathbb{S}^2

- https://sagemanifolds.obspm.fr
- fully included in SageMath (after review process)
- ~ 15 contributors (developers and reviewers)
 cf. https://sagemanifolds.obspm.fr/ authors.html
- dedicated mailing list
- help: https://ask.sagemath.org

Everybody is very welcome to contribute

⇒ visit https://sagemanifolds.obspm.fr/contrib.html

Current status

Already present (SageMath 8.9):

- differentiable manifolds: tangent spaces, vector frames, tensor fields, curves, pullback and pushforward operators, submanifolds
- standard tensor calculus (tensor product, contraction, symmetrization, etc.), even on non-parallelizable manifolds, and with all monoterm tensor symmetries taken into account
- Lie derivatives of tensor fields.
- differential forms: exterior and interior products, exterior derivative, Hodge duality
- multivector fields: exterior and interior products, Schouten-Nijenhuis bracket
- affine connections (curvature, torsion)
- pseudo-Riemannian metrics
- computation of geodesics (numerical integration)

Current status

Already present (cont'd):

- some plotting capabilities (charts, points, curves, vector fields)
- parallelization (on tensor components) of CPU demanding computations
- extrinsic geometry of pseudo-Riemannian submanifolds
- tensor series expansions

Future prospects:

- more symbolic backends (Giac, FriCAS, ...)
- more graphical outputs
- symplectic forms, fibre bundles, spinors, integrals on submanifolds, variational calculus, etc.
- connection with numerical relativity: use SageMath to explore numerically-generated spacetimes

The kerrgeodesic_gw package

kerrgeodesic_gw: SageMath package implementing computations of gravitational waveforms, energy fluxes and inspiralling time for bodies on circular orbits around a Kerr black hole, as well as SNR in LISA detector. Gravitational waves computed via the theory of perturbations of Kerr metric (Teukolsky 1973, Detweiler 1978)

kerrgeodesic_gw is

- entirely open-source:
 - https:

 $// github.com/BlackHolePerturbationToolkit/kerrgeodesic_gw$

- distributed via PyPi (Python Package Index):
 https://pypi.org/project/kerrgeodesic-gw/
 so that the installation in SageMath is very easy:
 sage -pip install kerrgeodesic_gw
- part of the Black Hole Perturbation Toolkit: http://bhptoolkit.org/

Example 1: timelike orbits in Kerr spacetime

```
https://nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/kerrgeodesic_gw/blob/master/Notebooks/geod_Kerr.ipynb
```

Example 2: gravitational waves from circular orbits around a Kerr black hole

```
https://nbviewer.jupyter.org/github/BlackHolePerturbationToolkit/kerrgeodesic_gw/blob/master/Notebooks/grav_waves_circular.ipynb
```

Application: Gravitational waves from bodies orbiting the Galactic Center black hole and their detectability by LISA

[Gourgoulhon, Le Tiec, Vincent & Warburton, A&A 627, A92 (2019)]

Time in LISA band with $SNR_{1\,yr} \ge 10$ for an inspiralling compact object

 μ : mass of the inspiralling compact object

Primordial BHs with $1M_{\oplus} \leq \mu \leq 5M_{\rm Jup}$ spend more than $10^6~{\rm yr}$ in LISA band with ${\rm SNR_{1\,yr}} \geq 10$

[Gourgoulhon, Le Tiec, Vincent & Warburton, A&A 627, A92 (2019)]

Time in LISA band $SNR_{1\,yr} \ge 10$ for brown dwarfs and main-sequence stars

Results for

- inclination angle $\theta = 0$
- BH spin a = 0 (outside parentheses) and a = 0.98M (inside parentheses)

	brown dwarf	red dwarf	Sun-type	$2.4M_{\odot}$ -star
μ/M_{\odot}	0.062	0.20	1	2.40
$ ho/ ho_{\odot}$	131.	18.8	1	0.367
$r_{0,\mathrm{max}}/M$	28.2(28.0)	35.0(34.9)	47.1(47.0)	$55.6\ (55.6)$
$f_{m=2}(r_{0,\max})$				
$[\mathrm{mHz}]$	0.105 (0.106)	$0.076 \ (0.076)$	0.049(0.049)	0.038 (0.038)
$r_{ m Roche}/M$	7.31(6.93)	13.3(13.0)	34.2(34.1)	47.6(47.5)
$T_{\text{in-band}}^{\text{ins}} [10^5 \text{ yr}]$	4.98(5.55)	3.72(3.99)	1.83 (1.89)	$0.938 \; (0.945)$

Brown dwarfs stay for $\sim 5\times 10^5~\mathrm{yr}$ in LISA band

Example 3: naked rotating wormhole

Regular (singularity-free) spacetime with wormhole topology ($\mathbb{R}^2 \times \mathbb{S}^2$), sustained by exotic matter, asymptotically close a to Kerr spacetime with a naked singularity (a>M) and surrounded by an accretion torus

zoom on the central region

- [Lamy, Gourgoulhon, Paumard & Vincent, CQG 35, 115009 (2018)]
- Derivation of the geodesic equation: SageMath
- Integration of the geodesic equation: Gyoto