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Computer differential geometry and tensor calculus
Introduction

e Computer algebra system (CAS) started to be developed in the 1960's; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT
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Computer differential geometry and tensor calculus
Introduction

e Computer algebra system (CAS) started to be developed in the 1960's; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

@ In 1965, J.G. Fletcher developed the GEOM program, to compute the Riemann
tensor of a given metric

@ In 1969, during his PhD under Pirani supervision, Ray d'Inverno wrote ALAM
(Atlas Lisp Algebraic Manipulator) and used it to compute the
Riemann tensor of Bondi metric. The original calculations took Bondi and his
collaborators 6 months to go. The computation with ALAM took 4 minutes
and yielded to the discovery of 6 errors in the original paper [J.EF. Skea,
Applications of SHEEP (1994)]
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Computer differential geometry and tensor calculus
Introduction

e Computer algebra system (CAS) started to be developed in the 1960's; for
instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT

@ In 1965, J.G. Fletcher developed the GEOM program, to compute the Riemann
tensor of a given metric

@ In 1969, during his PhD under Pirani supervision, Ray d'Inverno wrote ALAM
(Atlas Lisp Algebraic Manipulator) and used it to compute the
Riemann tensor of Bondi metric. The original calculations took Bondi and his
collaborators 6 months to go. The computation with ALAM took 4 minutes
and yielded to the discovery of 6 errors in the original paper [J.EF. Skea,
Applications of SHEEP (1994)]

@ Since then, many softwares for tensor calculus have been developed...
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Computer differential geometry and tensor calculus

An example of modern software: The xAct suite

Free packages for tensor computer algebra in Mathematica, developed by José
Martin-Garcia et al. http://www.xact.es/

Spinors
"Spinor calculus in GR"
A. Garcia-Parrado and
J.M. Martin-Garcia.

Invar
"Riemann tensor Invariants"

J.M. Martin-Garcia,
R. Portugal and D. Yllanes.

SymManipulator
"Symmetrized tensor expressions"
T. Bickdahl.

[Garcia-Parrado Gémez-Lobo & Martin-Garcia, Comp

Eric Gourgoulhon (LUTH)

xCoba
"Component tensor algebra"
J.M. Martin-Garcia and
D. Yllanes.

xTensor
Abstract tensor algebra

xPerm
Permutation Group theory

xCore
Mathematica tools

The xAct system

Harmonics
"Tensor spherical harmonics"

D. Brizuela, J.M. Martin-Garcia
and G. Mena Marugan.

xPert
"Perturbation theory"
D. Brizuela, ].M. Martin-Garcia
and G. Mena Marugan.

xPrint
"Graphical front-end"
A. Stecchina.
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Computer differential geometry and tensor calculus
Software for differential geometry

Packages for general purpose computer algebra systems:

xAct free package for Mathematica [J.-M. Martin-Garcia

Ricci free package for Mathematica [J. L. Lee]

MathTensor package for Mathematica [S. M. Christensen & L. Parker|
Differential Geometry included in Maple [I. M. Anderson & E. S. Cheb-Terrab)
Atlas 2 for Maple and Mathematica

Standalone applications:

e SHEEP, Classi, STensor, based on Lisp, developed in 1970’s and 1980’s (free)
[R. d’Inverno, 1. Frick, J. Aman, J. Skea, et al.]

o Cadabra field theory (free) [K. Peeters]

@ SnapPy topology and geometry of 3-manifolds, based on Python (free) [m.
Culler, N. M. Dunfield & J. R. Weeks]

cf. the complete list at http://www.xact.es/links.html
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Computer differential geometry and tensor calculus
Sage in a few words

@ Sage (full name: SageMath) is a free open-source mathematics software
system

@ it is based on the Python programming language

@ it makes use of many pre-existing open-sources packages, among which

Maxima (symbolic calculations, since 1968!)
GAP (group theory)

PARI/GP (number theory)

Singular (polynomial computations)

e matplotlib (high quality 2D figures)

and provides a uniform interface to them

o William Stein (Univ. of Washington) created Sage in 2005; since then, ~100
developers (mostly mathematicians) have joined the Sage team

@ Sage is now supported by European Union via the Horizon 2020 project
OpenDreamKit (2015-2019)

Eric Gourgoulhon (LUTH) SageManifolds Strong Gravity, Lisbon, 12 June 2015 7/57


http://opendreamkit.org/

Computer differential geometry and tensor calculus
Some advantages of Sage

Freedom means

@ everybody can use it, by downloading the software from
http://sagemath.org

@ everybody can examine the source code and improve it

vy

Sage is based on Python

@ no need to learn any specific syntax to use it

@ easy access for students

o Python is a very powerful object oriented language, with a neat syntax

Sage is developing and spreading fast

...sustained by an enthusiast community of developers
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The SageManifolds project

geManifolds project

http://sagemanifolds.obspm.fr/

Implement real smooth manifolds of arbitrary dimension in Sage and tensor
calculus on them

In particular:
@ one should be able to introduce an arbitrary number of coordinate charts on
a given manifold, with the relevant transition maps

@ tensor fields must be manipulated as such and not through their components
with respect to a specific (possibly coordinate) vector frame
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The SageManifolds project

geManifolds project

http://sagemanifolds.obspm.fr/

Implement real smooth manifolds of arbitrary dimension in Sage and tensor
calculus on them

In particular:
@ one should be able to introduce an arbitrary number of coordinate charts on
a given manifold, with the relevant transition maps
@ tensor fields must be manipulated as such and not through their components
with respect to a specific (possibly coordinate) vector frame

Concretely, the project amounts to creating new Python classes, such as
Manifold, Chart, TensorField or Metric, within Sage's Parent/Element
framework.
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The SageManifolds project
Implementing coordinate charts

Given a (topological) manifold M of dimension n > 1, a coordinate chart is a
homeomorphism ¢ : U — V', where U is an open subset of M and V is an open
subset of R".
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homeomorphism ¢ : U — V', where U is an open subset of M and V is an open
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In general, more than one chart is required to cover the entire manifold:

@ at least 2 charts are necessary to cover the n-dimensional sphere S (n > 1)
and the torus T

@ at least 3 charts are necessary to cover the real projective plane RIP?
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The SageManifolds project
Implementing coordinate charts

Given a (topological) manifold M of dimension n > 1, a coordinate chart is a
homeomorphism ¢ : U — V', where U is an open subset of M and V is an open
subset of R".

In general, more than one chart is required to cover the entire manifold:

@ at least 2 charts are necessary to cover the n-dimensional sphere S (n > 1)
and the torus T

@ at least 3 charts are necessary to cover the real projective plane RIP?

In SageManifolds, an arbitrary number of charts can be introduced )

To fully specify the manifold, one shall also provide the transition maps on
overlapping chart domains (SageManifolds class CoordChange)

Eric Gourgoulhon (LUTH) SageManifolds Strong Gravity, Lisbon, 12 June 2015 11 / 57



The SageManifolds project
Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f: UcM — R
p —  f(p)

where U is an open subset of M.
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The SageManifolds project
Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f: UcM — R
p —  f(p)

where U is an open subset of M.
A scalar field maps points, not coordinates, to real numbers

= an object f in the ScalarField class has different coordinate
representations in different charts defined on U.
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The SageManifolds project
Implementing scalar fields

A scalar field on manifold M is a smooth mapping

f: UcM — R
p —  f(p)

where U is an open subset of M.

A scalar field maps points, not coordinates, to real numbers
= an object f in the ScalarField class has different coordinate
representations in different charts defined on U.

The various coordinate representations F/, F, .. of f are stored as a Python
dictionary whose keys are the charts C', C, ...

with f(p)=F(z!,...,2" ) =F(&',...,2") =
~~ ———— ———
point coord. of p coord. of p
in chart C in chart ¢
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The SageManifolds project
The scalar field algebra

Given an open subset U C M, the set C°°(U) of scalar fields defined on U has
naturally the structure of a commutative algebra over R:

@ it is clearly a vector space over R

@ it is endowed with a commutative ring structure by pointwise multiplication:

Vf,g € C*U), YpeU, (f9)p) :=/rfpgp)

The algebra C°°(U) is implemented in SageManifolds via the class
ScalarFieldAlgebra.
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The SageManifolds project

Classes for scalar fields

UniqueRepresentation Parent CommutativeAlgebraElement
A
category: CommutativeAlgebras(SR)
ScalarFieldAlgebra ScalarField
ring: SR [parent: ScalarFieldAlgebra]

element: ScalarField

|:| Native Sage class

C) SageManifolds class
(differential part)
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The SageManifolds project
Vector field modules

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°(U).
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The SageManifolds project
Vector field modules

Given an open subset U C M, the set X'(U) of smooth vector fields defined on U
has naturally the structure of a module over the scalar field algebra C°(U).

Reminder from linear algebra

A module is ~ vector space, except that it is based on a ring (here C>°(U))
instead of a field (usually R or C in physics)

An importance difference: a vector space always has a basis, while a module does
not necessarily have any

— A module with a basis is called a free module
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The SageManifolds project
Vector field modules

X(U) is a free module <= U admits a global vector frame (e,)1<q<n:
Yvoe X(U), v=uv%,, withv®eC®({)

At any point p € U, the above translates into an identity in the tangent vector
space T, M:
v(p) = v*(p) eq(p), with v*(p) € R

If U is the domain of a coordinate chart (2%)1<4<n, X(U) is a free module of
rank n over C°°(U), a basis of it being the coordinate frame (9/0x%)1<q<p.-
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The SageManifolds project
Parallelizable manifolds

M is a parallelizable manifold <= M admits a global vector frame
< X(M) is a free module
<=  M'’s tangent bundle is trivial:
TM ~ M x R"
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The SageManifolds project
Parallelizable manifolds

M is a parallelizable manifold <= M admits a global vector frame
< X(M) is a free module
<=  M'’s tangent bundle is trivial:
TM ~ M x R"

4

Examples of parallelizable manifolds

@ R" (global coordinate charts = global vector frames)

the circle S* (NB: no global coordinate chart)
the torus T? = S' x S!

the 3-sphere S* ~ SU(2), as any Lie group
the 7-sphere S”

any orientable 3-manifold (Steenrod theorem)
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The SageManifolds project
Parallelizable manifolds

M is a parallelizable manifold <= M admits a global vector frame
< X(M) is a free module
<=  M'’s tangent bundle is trivial:
TM ~ M x R"

Examples of parallelizable manifolds

@ R" (global coordinate charts = global vector frames)

the circle S* (NB: no global coordinate chart)
the torus T? = §* x §*

the 3-sphere S* ~ SU(2), as any Lie group
the 7-sphere S”

any orientable 3-manifold (Steenrod theorem)

Examples of non-parallelizable manifolds

o the sphere S? (hairy ball theorem!) and any n-sphere S™ with n & {1,3,7}
o the real projective plane RP?
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The SageManifolds project
Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, we assume that it can be covered by a
finite number N of parallelizable open subsets U; (1 <1i < N) (OK for M
compact). We then consider restrictions of vector fields to these domains:
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The SageManifolds project
Implementing vector fields

Ultimately, in SageManifolds, vector fields are to be described by their
components w.r.t. various vector frames.

If the manifold M is not parallelizable, we assume that it can be covered by a
finite number N of parallelizable open subsets U; (1 <1i < N) (OK for M
compact). We then consider restrictions of vector fields to these domains:

For each i, X(U;) is a free module of rank n = dim M and is implemented in
SageManifolds as an instance of VectorFieldFreelModule, which is a subclass of
FiniteRankFreeModule.

Each vector field v € X(U;) has different set of components (v*)1<q<y, in
different vector frames (e,)1<q<, introduced on U,. They are stored as a Python
dictionary whose keys are the vector frames:

(%), ...}

v._components = {(e) : (v*), (&)
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The SageManifolds project

Tensor field storage

TensorField
T

dictionary TensorField. restrictions

domain 1: | TensorFieldParal - domain 2:
Uy T|U1 = Tabca ® el = TEBE,*,, ® b= ... U,

s~

AN

dictionary TensorFieldParal. components

frame 1: | Components frame 2: | Components
(ea) |T%)1<ab<n| (€a)  |(T%)1<a,5<n

AN
dictionary Components._comp
ScalarField ScalarField
(1,1): Tt (1,2) : 71
=
AY
dictionary ScalarField. express
chart 1: Fu{xctiolnchart chart 2: Fu{lcti(inchart
@ [T | e | T )
T T
Expression Expression
2! cos 22 (yl + y2) cos (yl - y2)
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Some examples

© Some examples
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Some examples

Object-oriented notation in Python

(in order to understand what follows...)

As an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation (same in C++, Java, etc.):

result = object.function(arguments)

In a procedural language, this would be written as

result = function(object,arguments)
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Some examples

Object-oriented notation in Python

(in order to understand what follows...)

As an object-oriented language, Python (and hence Sage) makes use of the
following postfix notation (same in C++, Java, etc.):

result = object.function(arguments)

In a procedural language, this would be written as

result = function(object,arguments)

1. riem = g.riemann()
2. liet.v = t.lie der(v)

NB: no argument in example 1
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Some examples
The 2-sphere example

1.1
Stereographic coordinates on the
2-sphere J
0.0 - :’;J'_ A YL} ) Two charts:
[ . \ . j .. ‘Xl: S2\{N}4)R2
NS ® Xo: S*\{S} = R?
T 1.0 < picture obtained via function
. v Chart.plot()
0.0 0.0
1.1 -1.1

See the worksheet at

http://sagemanifolds.obspm.fr/examples/html/SM_sphere_S2.html
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Some examples
The 2-sphere example

Vector frame associated
with the stereographic
coordinates (z,y) from the
North pole

< picture obtained via
function
VectorField.plot()
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Some examples

Charts on Schwarzschild spacetime

The Carter-Penrose diagram

Two charts of standard Schwarzschild-Droste coordinates (, 7,0, ¢) plotted in
terms of compactified coordinates (7', X, 6, ¢)

See the worksheet at
http://sagemanifolds.obspm.fr/examples/html/SM_Carter-Penrose_diag.html
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Some examples

5D Lifshitz spacetime example

e # localhost ~ @] [ Reche + B ®-o B- =
ZJupyter swm_Lishitz_5D wosmea
Fle Edt View Inset Cell Kemel Help Sage6.7 O
+ % @ B 4 ¥ > B C Maon | CellToobar: none 4

5-dimensional Lifshitz spacetimes

A fu | I exam ple W|t h S a ge —|— This worksheet illustrates some features of SagelManifolds (v0.8) on computations regarding
Lifshitz spacetimes.
SageManifolds running in a i e o o lwing s
© I. Ya. Arefeva & A. A. Golubtsova, JHEP 2015(04). 011 (2015)
J u pyte r note bOO k ® I. Ya. Arefeva, A. A. Golubtsova & E. Gourgoulhon, in preparation

First we set up the notebook to display mathematical objects using LaTeX formatting:

In [1]: “display latex

Spacetime and metric tensor

Let us declare the spacetime M as a 5-dimensional manifold:
In [2]: M = Manifold(5, 'M')
print M
5-dimensional manifold 'M*
Get/read the worksheet at

http://nbviewer.ipython.org/github/sagemanifolds/SageManifolds/blob/
master/Worksheets/v0.8/SM_Lifshitz_5D.ipynb
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Some examples

5-dimensional Lifshitz spacetimes

This worksheet illustrates some features of SageManifolds (v0.8) on computations regarding
Lifshitz spacetimes.

It is based on the following articles:

® |. Ya. Arefleva & A. A. Golubtsova, JHEP 2015(04), 011 (2015)
® |. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon, in preparation

First we set up the notebook to display mathematical objects using LaTeX formatting:

In [1]: %display latex

Spacetime and metric tensor

Let us declare the spacetime M as a 5-dimensional manifold:

In [2]: M = Manifold(5, 'M')
print M

5-dimensional manifold 'M'
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We introduce a first coordinate system on M:
In [3]: §g.<t,x,y1,y2,R> = M.chart('t x yl:y 1 y2:y 2 R:(0,+00)")
out[3]1: (M, (r,x,y1,y2. R))
Let us consider the following Lifshitz-symmetric metric, parametrized by some real number L

In [4]: g = M.lorentz _metric('g"')
var('nu’, latex_name=r'\nu', domain='real')

g[0,0] = -R*(2*nu)
g[1,1] = R*(2*nu)
g[2,2] = R™2
gl[3,3] = R*2
gl4,4] = 1/R"2

g.display()

out[4]: , . , , 1
uttal g=-R*dr @dr+ R*dr ® dv+ Ridy) ® dy, + Ry, ® dy, + R ® dR
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Some examples

A matrix view of the metric compoenents:

In [5]: gl:]
Out[5]: (—R2¥ 0o 0 0 0
0 R 0 0 0
0 0 R 0 o0
0 0 0 R o0
0 0 0 0 R_'

This metric is invariant under the Lifshitz scaling
R
(t,x. 1,52, R) — (l"r, Ax, Ayi, Ay, 7)
® If v = | the scaling is isotropic and we recognize the metric of AdSs in Poincaré
coordinates
® [f L # |, the scaling is anisotropic
Let us introduce a second coordinate system on M:

In [6]: X.<t,x,yl,y2,r> = M.chart('t x yl:y 1 y2:y 2 r:(0,+00)")
X

Qut[6]: M, (t, X, y1.¥2. 7))

Eric Gourgoulhon (LUTH) SageManifolds Strong Gravity, Lisbon, 12 June 2015 28 / 57



Some examples

and relate It to the previous one by the transformation r = In R:

In [7]: X0 _to X = X0.transition map(X, [t, x, yl, y2, Wn(R)])
X0 to X.display()

Qut([7]: f = 1
X = X
A4 = ¥
Y2 = »n
r = log(R)

The inverse coordinate transition is computed by means of the method inverse():

In [8]: X to X0 = X0 to X.inverse()
X_to _X0.display()

out[8]: [« = 1
X = x
Y= W
y = »
R = ¢
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Some examples

In [9]:
Qut[9]:

In [10]:
out[10]:

In [11]:
Out[11]:

At this stage, the manifold's atlas defined by the user is

M.atlas()
[(M'! (f, X, V1. Y2, R)) b (M-: (f, X, V1. Y2, r))]

and the list of defined vector frames defined is

M. frames()

[0 (G 5 3 3 ae))- (00 (G o))
The expression of the metric in terms of the new coordinates is

g.display(X.frame(), X)
g=—-e"dt @ dr 4+ ¥ dx ® dx + €2 "dy, ® dy, + € "dy, ® dy, +dr @ dr

¥
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Some examples

In [12]:
Out[12]:

In [13]:
out[13]:

In [14]:
out[14]:

or, in matrix view:

g[X.frame(),:,X]

—e2n) 0 0 00
0 2 0 0 0
0 0 2?7 0 0
0 0 0 €27 0
0 0 0 0 1

To access to a particular component, we have to specify (i) the frame w.r.t. which it is defined
and (ii) the coordinates in which the component is expressed:

g[X.frame(),0,0,X]

2 ur
—e2en

g[X.frame(),0,0] # the default chart is used
_ng
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Some examples

In [15]:

In [16]:
Out[16]:

In [17]:
Out[17]:

In [18]:
out[18]:

From now on, let us consider the coordinates X = (1, x, Vi, ¥z, ) as the default ones on the
manifold M':

M.set _default chart(X)
M.set default frame(X.frame())

Then

g.display()
g=—-—"dr@dr+ e dx ® dx + e "dy, ® dy, + ¥ dy, @ dy, + dr @ dr

v

gl:]
-2 0 0 0 0
0 2 0 0 0
0 0 2”7 0 o
0 0 0 %7 0
0 0 0 0 1
gle,e]
_8[2 vr)
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Some examples

In [19]: g.display comp()

0ut[19]: g, = —elw
gxx = €@
8.“1 Y = 6[2 g
g.“: ¥z = 8(2 g
g, = 1
Curvature

The Riemann tensor is

In [20]: Riem = g.riemann()
print Riem

tensor field 'Riem(g)' of type (1,3) on the 5-dimensional manifold 'M'
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Some examples

In [21]
Out[21]

Riem.display_comp(only_nonredundant=True)

Riem(g) ',
Riem(g) ', .,
Riem(g) ", ;.
Riem(g)’,,,
Riem(g)*,,,
Riem(g) "y, vy,
Riem(g) o V2 x 3,
Riem(g)*, .,
Riem(g) ", .
Riem(g) ™" 1.y,
Riem(g) "'y, 5, 5,
Riem(g) ™ ,y, ,
Riem(g) ™,
Riem(g) L. v
Riem(g) ™, y, y,
Riem(g) T2 .
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Some examples

Riem(g)",,, = 2
Riem(g) ", ., = 1P
Riem(g) "y, y,» = @7
Riem(g)",,,,, = €27

The Ricci tensor:
In [22]: Ric = g.ricci()
print Ric
field of symmetric bilinear forms 'Ric(g)' on the 5-dimensional manifol
d M
In [23]: Ric.display()
Out[23]: Ric(g) =2 (b?‘ +b)e(1”)dr ®@dt—2 (b?‘ + u)eu”)dx® de — 2 (v + 1) dy,
®dy; -2 + e dy @ dyy + (207 —2) dr @ dr
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In [24]: Ric.display comp()
out[24]: Ric(g) .y = 2 (yz +£/)eu vr)

Ric(g),, = -2(2+v)e?
Ric(g)y,,, = =2+ e
Ric(g)y,y, = -2+ 1e?”
Ric(g),, = =21v2-2

The Ricci scalar:
In [25]: Rscal = g.ricci scalar()
print Rscal

scalar field 'r(g)' on the 5-dimensional manifold 'M'

In [26]: Rscal.display()

Out[26]): r(g): M - R
tx,y1,m.R) +— -6 —-8v—-6
(X, Y1, 02.7) +— =612 —8v—6

We note that the Ricci scalar is constant.
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Some examples

In [27]:

out[27]:

Source model

Let us consider a model based on the following action, involving a dilaton scalar field ¢» and a
Maxwell 2-form F:

S= /(R(g)JrA— %vmqavmq:»— ?lle’l‘ﬁFm,,F'"”) N (D

The dilaton scalar field
We consider the following ansatz for the dilaton scalar field ¢h:
1
= I(4—r +1nu),
where A and j are two constants.
var('mu', latex_name=r'‘mu')
var('lamb', latex_name=r'\lambda')
phi = M.scalar_field({X: (4*r + ln(mu))/lamb},

name='phi', latex_name=r'\phi')
phi.display()

p: M — R
4 log(R)+]
(. X, y1,¥2. R) 2 log®p+osn :Jrogw
4+l
(t, X, y1, ¥2, 1) Arieew

A
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The 1-form d¢ is
In [28]: dphi = phi.differential()
print dphi

1-form 'dphi' on the 5-dimensional manifold 'M'

In [29]: dphi.display()
Qut[29]: 4
[29] d¢p = —dr
A
In [30]: dphi[:] # all the components in the default frame

Out[30]: 4
[0, 0,0,0, I]

The 2-form field
We consider the following ansatz for F
1
F = Eqcly[ A dya,

where ¢ is a constant.
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Some examples

Let us first get the 1-forms dy; and dya:

In [31]: X.coframe()
Qut[31]: (M, (dt, dx, dy;, dys, dr))

In [32]: dyl = X.coframe()[2]
dy2 = X.coframe()[3]
print dyl
print dy2
dyl, dy2

1-form 'dyl' on the 5-dimensional manifold 'M®
1-form 'dy2' on the 5-dimensional manifold 'M®

out[32]: (dy,,dy,)
We can then form F according to the above ansatz:

In [33]: var('qg")
F = q/2 * dyl.wedge(dy2)
F.set_name('F")
print F
F.display()

2-form 'F' on the 5-dimensional manifold 'M'

Out[33]: 1
utis3l F:Eqdylf\dyz
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Some examples

By construction, the 2-farm [ is closed (since g is constant):

In [34]: print xder(F)

3-form 'dF' on the 5-dimensional manifold 'M®

In [35]: xder(F).display()
0ut[35]: dF =0

Let us evaluate the square F,,, F"™ of F:

In [36]: Fu = F.up(g)
print Fu
Fu.display()

tensor field of type (2,0) on the 5-dimensional manifold 'M'
out[36]: 1 d 1 d 7}

d
_ et—4 n_- ® _ _ e(—il- r) ® o
27 dyp  dyx 2 dy: — dy)

Eric Gourgoulhon (LUTH) SageManifolds Strong Gravity, Lisbon, 12 June 2015 40 /



Some examples

In [37]: F2 = F[' {mn}']*Fu['~{mn}'] # using LaTeX notations to denote contracti
print F2
F2.display()

scalar field on the 5-dimensional manifold 'M®

OQut[37]: M — R
txy,y2,.R — zq_;
@ xy1,y27) 5 qret

We shall also need the tensor Fy, = FmpF”p:

In [38]: FF = F[' mp'] * F.up(g,1)['"p n']
print FF
FF.display()

tensor field of type (0,2) on the 5-dimensional manifold 'M'

out[38]: 1 , _,, 1 5 o,
777y @ dy + 5 ey, @ dy,
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Some examples

The tensor field F is symmetric:

In [39]: FF == FF.symmetrize()
Uut[39]: True

Therefore, from now on, we set

In [40]: FF = FF.symmetrize()

Field equations

Einstein equation

Let us first introduce the cosmological constant:

In [41]: var('Lamb', latex name=r'\Lambda')
Oout[41]: A
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Some examples

In [42]:

In [43]:
out[43]:

From the action (1), the field equation for the metric g is

A 1 1, 1 .
R + 3 8~ 2 @O — EemepFnP + Ee’“ﬁF”F'S &mn =0

We write it as

EE ==
with EE defined by
EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) - 1/2*exp(lamb*phi)*FF \

+ 1/12*exp(lamb*phi)*F2*g

EE.set name('E')
print EE

field of symmetric bilinear forms 'E' on the 5-dimensional manifold 'M'

EE.display comp{only nonredundant=True)

E, = —o (pg® — 4812 + 8 A —481)e”
E\-‘- = %( “—481/ +8A 481;) (2 vr)
Eyy, = -1 (ug =4\ +24v +24)@"
Eyy, = -1 (ug — 4N +24v +24)@"
E, = X BE8A6P-19

242
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Some examples

We note that EE==0 leads to only 3 independent equations:

In [44]: eql = (EE[0,0]/exp(2*nu*r)).expr()

eql

out[44]: I, , 1
—— g +2v- == A+2
24,uq + v 3 + v

In [45]: eq2 = (EE[2,2]/exp(2*r}).expr()
eqz2

out[45]: 1 , 1
——ug +=-A-2v-2
Rt v

In [46]: eq3 = EE[4,4].expr().expand()
eq3

outf[46]: 1 2, 1 8

=2+ - A—-— =2

AT Tt 2
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Some examples

In [47]:

Out[47]:

In [48]:

Out[48]:

Dilaton field equation

First we evaluate V,,, V" ¢:

nab = g.connection()
print nab
nab

Levi-Civita connection 'nabla g' associated with the Lorentzian metric
'g"' on the 5-dimensional manifold 'M'

Ve

box_phi = nab(nab(phi).up(g)).trace()
print box phi
box_phi.display()

scalar field on the 5-dimensional manifold 'M'

M — R
(t,x,y,y,R) +— B(TU
(t.xy.y2.1) +— w
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Some examples

From the action (1), the field equation for ¢ is
Va V"¢ = %ew FpnF™
We write it as
DE ==

with DE defined by

In [49]: DE = box phi - lamb/4*exp(lamb*phi) * F2
print DE

scalar field on the 5-dimensional manifold 'M'

In [50]: DE.display()

out[s0]: M — R
gt —64 v—64
(% y1,y2, R) s —HCEAS
P —64 1-64
txyynr) — -7
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Some examples

Hence the dilaton field equation provides a fourth equation:

In [51]: eg4 = DE.expr().expand()

eqd
Out[51]: 1/1 2+8f/+8
g T

Maxwell equation

From the action (1), the field equation for F i§
Vo (e”F™) =0
We write it as
ME ==

with ME defined by
In [52]: ME = nab(exp(lamb*phi)*Fu).trace(0,2)

print ME

ME.display()

vector field on the 5-dimensional manifold 'M'
out[52]: o
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Some examples

In [53]:
Out[53]:

We get identically zero; indeed the tensor VP(EWF'"") has a vanishing trace, as we can check:

nab(exp(lamb*phi)*Fu).display()

a 1
® — @dr+ =
ay

6®6®d 1 (3,)6®6®d' d
ﬂqa}—__] K r =5 Hqe " —— o V2 — H4—— 3

2 oy} )
en 9 o9 1 end

2 @dy + =
oy, 8o it gHae s

d ] 1 (3,)6 d )
®E®d}'2-§ﬂ‘qe 5®E®d}l
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Some examples

Summary

We have 4 equations involving the constants A, M, vV, g and A:

In [54]: eql ==
out[54]: 1 n a 1
——ug  +2r  —=A4+2v =0
24;14' +2v 3 +2v
In [55]: eq2 ==

Out[55]: _%yq2+_:15}\_2y_2:0

In [56]: eq3 == 0

Out[56]: 1 5 , 1 8
—ug =2+ =-A-—=-2=0
wpH T T3 T

In [57]: egd == 0

Qut[57]: 1 ., 8v 8

g+ S0
g M T T
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Some examples

In [58]:

In [59]:
Out[59]:

In [60]:
Out[60]:

Solution for v = 1 (AdSs)

eqs = [eql, eq2, eq3, eqd]
neqs = [eq.subs(nu=1) for eq in eqs]

[eq == @ for eq in neqs]
[ | | 1 | | 1 8

~ 3 AHA= 0 + 3 A=d =0, +3A-——d=0,
i ATt 3 7h 2

1 16
5 A +T_0

solve([eq == @ for eq in neqs], lamb, mu, Lamb, q)

1

Hence there is no solution for AdSs with the above ansatz.

This is related to the positive energy theorem of AdS mentioned by Akihiro
Ishibashi in his talk: (M,g) = AdS <— E =0.
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Some examples

In [61]:

Out[61]:

In [62]:
out[62]:

Solutionforv = 2

neqs = [eq.subs(nu=2) for eq in eqs]
[eq == 0 for eq in neqs]
| I | | , 1 1 N | 8
—— g —=A+12=0,— g +=A-6=0,— g+ =A——= - 10
[24‘“1 3t it g H 3 A5
1 , 24
=0,——Aug+ —=0
- ug- + 7

solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)

Hﬂz 2= 4—§,A =30,q=r1] s [A =(=-2),u= 4—?,/\ =30,q=r;”
ri ry

Hence there are two families of solutions, each famility being parametrized by e.g. g.
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Some examples

Solutionforv = 4

In [63]: neqs = [eq.subs(nu=4) for eq in eqs]
[eq == 0 for eq in negs]
1 1

1 1 , 8
— 7/\ 40=0,— aci0=0tugr+ia-8 _x
[ 1% + Tt gk T3 AT

Out[63]:
I, 40

In [64]: solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)

0ut[64]:
HA——«./_# —. A= %q—ra] [A=——x/_y— A= 904‘—!'4]]

Hence there are two families of solutions, each family being parametrized by e.g. g.
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Conclusion and perspectives
Conclusion and perspectives

@ SageManifolds is a work in progress
~ 51,000 lines of Python code up to now (including comments and doctests)

@ A preliminary version (v0.8) is freely available (GPL) at
http://sagemanifolds.obspm.fr/
and the development version is available from the Git repository
https://github.com/sagemanifolds/sage
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Conclusion and perspectives
Current status

Already present (v0.8):

maps between manifolds, pullback operator
submanifolds, pushforward operator
curves in manifolds

standard tensor calculus (tensor product, contraction, symmetrization, etc.),
even on non-parallelizable manifolds

all monoterm tensor symmetries

exterior calculus (wedge product, exterior derivative, Hodge duality)
Lie derivatives of tensor fields

affine connections, curvature, torsion

pseudo-Riemannian metrics, Weyl tensor

some plotting capabilities (charts, points, curves, vector fields)

parallelization (on tensor components) of CPU demanding computations, via
the Python library multiprocessing
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Conclusion and perspectives

Current status

e Not implemented yet (but should be soon):

e extrinsic geometry of pseudo-Riemannian submanifolds

o computation of geodesics (numerical integration via Sage/GSL or Gyoto)
e integrals on submanifolds
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Conclusion and perspectives

Current status

e Not implemented yet (but should be soon):

e extrinsic geometry of pseudo-Riemannian submanifolds
o computation of geodesics (numerical integration via Sage/GSL or Gyoto)
e integrals on submanifolds

@ Future prospects:

e add more graphical outputs

e add more functionalities: symplectic forms, fibre bundles, spinors, variational
calculus, etc.

e connection with numerical relativity: using Sage to explore
numerically-generated spacetimes
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Conclusion and perspectives
Integration into Sage

SageManifolds is aimed to be fully integrated into Sage J

@ The algebraic part (tensors on free modules of finite rank) has been
submitted to Sage Trac as ticket #15916 and got a positive review
= integrated in Sage 6.6

@ The differential part is being split in various tickets for submission to Sage
Trac (cf. the metaticket #18528); meanwhile, one has to download it from
http://sagemanifolds.obspm.fr/

@ SageManifolds v0.8 is installed in the SageMathCloud = open a free
account and use it online: https://cloud.sagemath.com/

Acknowledgements: the SageManifolds project has benefited from many
discussions with Sage developers around the world, and especially in Paris area

Want to join the project or simply to stay tuned?

visit http://sagemanifolds.obspm.fr/
(download page, documentation, example worksheets, mailing list)
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