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Constrained and free evolution schemes for 341 Einstein equations

3-+1 foliation of spacetime

Spacetime (.7, g) assumed to
be globally hyperbolic: 3 a
foliation (or slicing) of the
spacetime manifold .#Z by a
family of spacelike hypersurfaces

i
L%:UL
teR
Ng = =NVt
n : unit normal to ¥,
xi = const. N : lapse function

shift vector 3: 9; = Nn + 3
Metric tensor in terms of lapse and shift :

G dz* da’ = —N2dt? + ~;;(dz’ + B'dt)(da? + Fdt)
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Constrained and free evolution schemes for 341 Einstein equations
3+1 Einstein system

Thanks to the Gauss, Codazzi and Ricci equations, the Einstein equation
4 1,
Rag - 5 Rgaﬁ = STI'TQﬁ

is equivalent to the system

0
° (815 - Eg) Vij = —2N Ky kinematical relation K = —3L,,

) (aat — £ﬁ) K” = —DiDjN + N{R” + KK” — 2KikKk;j

+47 [(S — E)vij — 254;] } dynamical part of Einstein equation

o R+ K? - K;;K" = 167E Hamiltonian constraint

° DjKji — D; K = 8mp; momentum constraint

Taﬁ = Saﬁ + NapPp + panp + Enan/i
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Constrained and free evolution schemes for 341 Einstein equations
The full PDE system

Supplementary equations:

9’°N ON
DiD;N = ——— —Tk . —
J 0xtoxI "7 Ok
j 8[(«7‘,’1 j k k j
D;K’, = D + Fjij =T j,L-K]k
0K
D;K = —
ox*
0B 9P, )
L3%ij = —— S ork B
B = i + ox’ i3
0K, op* o3k
LaKi =" S0 K o
pKij =0 Ok + Ak Ozt * 9
ark.. ark.
_ ij ik k l rk
T ok T o + 1050 =Ty
R = ’Yinij
rk  — 1 Oy | Ova _ i
R ozt OxJ ozl

Eric Gourgoulhon (LUTH)

Full constrained formulations

UIMP, Valencia, 11 Sep. 2008



Constrained and free evolution schemes for 341 Einstein equations

A few words of history about the 3+1 Einstein system

G. Darmois (1927): 3+1 Einstein equations in terms of (v;;, [;;)
with N =1 and 3 = 0 (Gaussian normal coordinates)

A. Lichnerowicz (1939) : N # 1 and 3 = 0 (normal coordinates)
Y. Choquet-Bruhat (1948) : N # 1 and 3 # 0 (general coordinates)

@ R. Arnowitt, S. Deser & C.W. Misner (1962) : Hamiltonian formulation of
GR based on a 3+1 decomposition in terms of (v;;, 7")

NB: spatial projection of Einstein tensor instead of Ricci tensor in previous
works

J. Wheeler (1964) : coined the terms /apse and shift

J.W. York (1979) : modern 3+1 decomposition based on spatial projection of
Ricci tensor

Eric Gourgoulhon (LUTH) Full constrained formulations UIMP, Valencia, 11 Sep. 2008



Constrained and free evolution schemes for 341 Einstein equations
The Cauchy problem

The first two equations of the 3+1 Einstein system can be put in the form of a

Cauchy problem:

9*vij M O 0Py
s — F’L . -1 s N P y - 1
Ot2 ("Ykl, oxm’ Ot dl‘"Lde‘"> ( )

Cauchy problem: given initial data at ¢ = 0: ;; and 8g;j, find a solution for ¢ > 0
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Constrained and free evolution schemes for 341 Einstein equations
The Cauchy problem

The first two equations of the 3+1 Einstein system can be put in the form of a
Cauchy problem:

i M O 0Py
ot? - FZJ Tkl 0.7;771" ot ’ OxrmYxm (1)

Cauchy problem: given initial data at ¢ = 0: ;; and 8&?, find a solution for ¢ > 0

But this Cauchy problem is subject to the constraints
e R+ K°— Kl;jKij = lonk Hamiltonian constraint

° DjKji — D;K = 87p; momentum constraint

Preservation of the constraints

Thanks to the Bianchi identities, it can be shown that if the constraints are
satisfied at ¢t = 0, they are preserved by the evolution system (1), provided that
VTP = 0 is maintained
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Constrained and free evolution schemes for 341 Einstein equations

Existence and uniqueness of solutions

Question:
Given a set (Xo,7, K, E,p), where

Yo is a three-dimensional manifold,

~ a Riemannian metric on X,

K a symmetric bilinear form field on X,

E a scalar field on ¥

p a 1-form field on g,
which obeys the constraint equations, does there exist a spacetime (.#,g,T)
such that (g, T") fulfills Einstein equation and X can be embedded as an
hypersurface of .# with induced metric v and extrinsic curvature K ?
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Constrained and free evolution schemes for 341 Einstein equations

Existence and uniqueness of solutions

Question:
Given a set (Xo,7, K, E,p), where

Yo is a three-dimensional manifold,

~ a Riemannian metric on X,

K a symmetric bilinear form field on X,

E a scalar field on ¥

p a 1-form field on g,
which obeys the constraint equations, does there exist a spacetime (.#,g,T)
such that (g, T") fulfills Einstein equation and X can be embedded as an
hypersurface of .# with induced metric v and extrinsic curvature K ?

Answer:

@ the solution exists and is unique in a vicinity of X for analytic initial data
(Cauchy-Kovalevskaya theorem) [Darmois (1927)], [Lichnerowicz (1939)]

@ the solution exists and is unique in a vicinity of X for generic (i.e. smooth)
initial data [Choquet-Bruhat (1952)]

@ there exists a unique maximal solution [Choquet-Bruhat & Geroch (1969)]
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Constrained and free evolution schemes for 341 Einstein equations

Free vs. constrained evolution schemes

Taking into account the constraint preservation property, various schemes can be
contemplated®:

o free evolution scheme: the constraints are not solved during the evolution
(they are employed only to get valid initial data or to monitor the solution);
example: BSSN scheme

@ partially constrained scheme: some of the constraints are solved along
with the evolution equation

o fully constrained scheme: the four constraints are solved at each step of
the evolution

Lfor a review see [Jaramillo, Valiente Kroon & Gourgoulhon, CQG-25, 093001 (2008)]
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Constrained and free evolution schemes for 341 Einstein equations

Free vs. constrained evolution schemes

Taking into account the constraint preservation property, various schemes can be
contemplated®:
o free evolution scheme: the constraints are not solved during the evolution
(they are employed only to get valid initial data or to monitor the solution);
example: BSSN scheme

@ partially constrained scheme: some of the constraints are solved along
with the evolution equation

o fully constrained scheme: the four constraints are solved at each step of
the evolution

NB: the constraint preservation is a property of the exact mathematical system: it
may not hold in actual numerical implementations of free schemes, due to the
appearance of unstable constraint-violating modes

cf. Miguel Alcubierre’s talk

Lfor a review see [Jaramillo, Valiente Kroon & Gourgoulhon, CQG-25, 093001 (2008)]
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Constrained and free evolution schemes for 341 Einstein equations

Constrained schemes

2D (axisymmetric) codes:
e partially constrained (Hamiltonian constraint enforced):
@ [Bardeen & Piran (1983)], [Stark & Piran (1985)], [Evans (1986)] : gravitational collapse
of a stellar core
@ [Abrahams & Evans (1993)], [Garfinkle & Duncan, PRD 63, 044011 (2001)] : evolution of
Brill waves
o fully constrained:
@ [Evans (1989)], [Shapiro & Teukolsky (1992)], [Abrahams, Cook, Shapiro & Teukolsky (1994)] :
gravitational collapse
@ [Choptuik, Hirschmann, Liebling & Pretorius, CQG 20, 1857 (2003)] : critical collapse
@ [Rinne, CQG 25, 135009 (2008)] : gravitational collapse of of Brill waves
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Constrained and free evolution schemes for 341 Einstein equations

Constrained schemes

2D (axisymmetric) codes:
e partially constrained (Hamiltonian constraint enforced):
@ [Bardeen & Piran (1983)], [Stark & Piran (1985)], [Evans (1986)] : gravitational collapse
of a stellar core
@ [Abrahams & Evans (1993)], [Garfinkle & Duncan, PRD 63, 044011 (2001)] : evolution of
Brill waves
o fully constrained:
@ [Evans (1989)], [Shapiro & Teukolsky (1992)], [Abrahams, Cook, Shapiro & Teukolsky (1994)] :
gravitational collapse
@ [Choptuik, Hirschmann, Liebling & Pretorius, CQG 20, 1857 (2003)] : critical collapse
@ [Rinne, CQG 25, 135009 (2008)] : gravitational collapse of of Brill waves
3D codes: fully constrained schemes:
o Isenberg-Wilson-Mathews approximation to GR: CFC
[Isenberg (1978)], [Wilson & Mathews (1989)]
o full GR:
@ [Anderson & Matzner, Found. Phys. 35, 1477 (2005)] : evolution of a black hole
@ [Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)],
[Cordero-Carrién, Ibafiez, Gourgoulhon, Jaramillo & Novak, PRD 77, 084007 (2008)]

[Cordero-Carrién, Cerdd-Durdn, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, arXiv:0809...]:

the Meudon-Valencia FCF scheme
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The Meudon-Valencia FCF scheme

Original formulation

Constrained scheme built upon maximal slicing and Dirac gauge

[Bonazzola, Gourgoulhon, Grandclément & Novak, PRD 70, 104007 (2004)]

Motivations

@ to maximize the number of elliptic equations and minimize that of hyperbolic
equations (elliptic equations usually more stable)

@ no constraint-violating mode by construction

@ recover at the steady-state limit, the equations describing stationary
spacetimes
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The Meudon-Valencia FCF scheme
Conformal metric and dynamics of the gravitational field

Dynamical degrees of freedom of the gravitational field:

York (1972) : they are carried by the conformal “metric”
g = 7% A with v := dety;;

4i; = tensor density of weight —2/3

To work with tensor fields only, introduce an extra structure on X;: a flat metric

Ofi; - .
f such that % =0 and v;; ~ f;; at spatial infinity (asymptotic flatness)
o ) o N2 ,
Define 5;; := W *~,; or v;; = W*5,; with W := (%) , = det fi;

¥i; is invariant under any conformal transformation of v;; and verifies det¥;; = f

Notations: %"+ inverse conformal metric : 5;;, 5"/ = 5,7

D; : covariant derivative associated with 7;;, D' := 57 D;
D; : covariant derivative associated with f;;, D" := f"“D;
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The Meudon-Valencia FCF scheme
Dirac gauge: definition

Conformal decomposition of the metric 7;; of the spacelike hypersurfaces >;:

Yij =: U, with FY = f9 4 Y

where f;; is a flat metric on ¥, K"/ a symmetric tensor and V a scalar field
1/12
) det ~, .
defined by V := L
det fi;
Dirac gauge (Dirac, 1959) = divergence-free condition on %*:

D5 = D;jh" =0

where D; denotes the covariant derivative with respect to the flat metric f;;.
Compare

e minimal distortion (Smarr & York 1978) : D; (95" /ot) =0
e pseudo-minimal distortion (Nakamura 1994) : D’ (05" /0t) =0

Notice: Dirac gauge <= BSSN connection functions vanish: [’ = 0
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The Meudon-Valencia FCF scheme
Dirac gauge: motivation

Expressing the Ricci tensor of conformal metric as a second order operator:
In terms of the covariant derivative D, associated with the flat metric f:

N —

with H' == D;h" = D;3% = —3MAY = 5T, T )

and Q(4, D7) is quadratic in first order derivatives Dh

Dirac gauge: H' = 0 = Ricci tensor becomes an elliptic operator for k%
Similar property as harmonic coordinates for the 4-dimensional Ricci tensor:
1

8
4 yng 3 G
E( = ——=( —— (a3 + uadratlc terms
3 2J ozt Oxv Jap q
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The Meudon-Valencia FCF scheme

Dirac gauge: motivation (con't)

@ spatial harmonic coordinates: D;

1/2
b il _
(7) 71 ’

= makes the Ricci tensor R;; (associated with the physical 3-metric ;)
an elliptic operator for 7"/ [Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]

/3
@ Dirac gauge: D; [(;) A/ZJ] -0

= makes the Ricci tensor 17;; (associated with the conformal 3-metric 7;;)
an elliptic operator for 5/
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The Meudon-Valencia FCF scheme
Dirac gauge: discussion

@ introduced by Dirac (1959) in order to fix the coordinates in some
Hamiltonian formulation of general relativity; originally defined for Cartesian

0
coordinates only: 907 (71/3 7”) =0

but trivially extended by us to more general type of coordinates (e.g.
spherical) thanks to the introduction of the flat metric f;;:

D; (/1)) =0
o first discussed in the context of numerical relativity by Smarr & York (1978),
as a candidate for a radiation gauge, but disregarded for not being covariant

under coordinate transformation (z?) — (2%) in the hypersurface ¥,
contrary to the minimal distortion gauge proposed by them

o fully specifies (up to some boundary conditions) the coordinates in each
hypersurface ¥, including the initial one = allows for the search for
stationary solutions

@ Shibata, Uryu & Friedman [PRD 70, 044044 (2004)] propose to use Dirac gauge to
compute quasiequilibrium configurations of binary neutron stars beyond the
IWM approximation
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The Meudon-Valencia FCF scheme

Dirac gauge: discussion (con't)

Dirac gauge

leads asymptotically to transverse-traceless (TT) coordinates (same as
minimal distortion gauge). Both gauges are analogous to Coulomb gauge in
electrodynamics

turns the Ricci tensor of conformal metric %;; into an elliptic operator for h%/
= the dynamical Einstein equations become a wave equation for h*’
insures that the Ricci scalar 2 (arising in the Hamiltonian constraint) does
not contain any second order derivative of h*’

results in a vector elliptic equation for the shift: vector 3

is fulfilled by conformally flat initial data : 4,; = fi; = h% = 0: this allows
for the direct use of many currently available initial data sets
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The Meudon-Valencia FCF scheme
Maximal slicing + Dirac gauge

Our choice of coordinates to solve numerically the Cauchy problem:
@ choice of ¥; foliation: maximal slicing: K :=tr K =0

e choice of (x') coordinates within ¥;: Dirac gauge: D;h" =

Note: the Cauchy problem has been shown to be locally strongly well posed for a
similar coordinate system, namely constant mean curvature (K = t) and spatial
harmonic coordinates (Dj [('y/f)l/2 7’7} = 0)

[Andersson & Moncrief, Ann. Henri Poincaré 4, 1 (2003)]
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The Meudon-Valencia FCF scheme
Decomposition of the extrinsic curvature

‘K” =V 4% | (K =0) (Lichnerowicz rescaling)

A = (LW)¥ 4 AY_ | (York longitudinal /transverse decomposition)

(LW :=D'W’ + DW* — ngka” (conformal Killing operator)

fijA% =0and DAY =0  (TT tensor)

NB: expression of A% in terms of the shift vector 3%

O I . S R
A = [(L@)w gt] (LB)7 = D'@ + DIp' = SDu3*5”

2N
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The Meudon-Valencia FCF scheme
Rescaled matter quantities

@ From the energy-momentum tensor:

E.=VvoE Pi = Wop; S:=wls| .= 'y/'l’JSij

@ Baryon number:

n : proper number density of baryons
- n I = Nu° : fluid Lorentz factor w.r.t Eulerian observer

Equation of state: | P = P(n,¢€)
Perfect fluid:
E=T%*+P)-P

P R
S =3P+ (E + P)U;U", with U":N<(Z +3) (E + P) yiip;

r=Q1-uu)?
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The Meudon-Valencia FCF scheme
Part 1 of FCF scheme: evolution equations

[Cordero-Carrién, Cerdd-Duran, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, arXiv:0809...]

o Fluid equations (conservation of baryon number and energy-momentum):
U OF s u—(bEp) — D B p
at (9177 - T b 7]77, ! 1p'l,

o Dynamical Einstein equations :

Oh' 2N .
21V Aij
ar _we T
oA N \Il2
EEAAYNYY
a1 -

Constraints:
o det(f” + h') = det f” (unimodular) and D;h" =0 (Dirac gauge)
o fi;AY =0 and D;AY =8r57p; — A", A" (momentum constraint)
— (h¥, A" have only 2 degrees of freedom
= solve only for the TT part of the above system

— this involves two scalar potentials Aand B [Novak et al., in preparation],
from which one can reconstruct 27 (= 4%7) and A
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The Meudon-Valencia FCF scheme
Part 2 of FCF scheme: elliptic equations

[Cordero-Carrién, Cerdd-Durdn, Dimmelmeier, Jaramillo, Novak & Gourgoulhon, arXiv:0809...]
@ Momentum constraint?:
AW + gDipjwj + AL (WM = 8r5p; — AT, ARY
= Wi= A= (LW)7 + A%,
@ Hamiltonian constraint : o .
E A5 AmA Wi
~kl Wl fgm
DDV = 2p— - 2™ 4
TR v guT | 8
@ Maximal slicing condition (+ Ham. constraint) :
T3 im Al Al R)

2mWU2(E +28 R e W
™ (+S)+< s +8

— V=P =3

ARDLDY(NW) = NV

— NV —= N
@ Preservation of Dirac gauge in time (+ momentum constraint) :

, Ll N » ; N
VDRD + S DEDS = 5 (16m T — 2AklA“) +2A9D; (w)
=

2N Kl T F Kl r Kl = M (DAt + DiFim — DmAkt) /2
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The Meudon-Valencia FCF scheme

Mathematical analysis of the evolution part of the FCF

system

If — is timelike and A"/ obeys to the Dirac gauge, then the evolution equations

ot
Oh 2N

_ 2N pii
ar _we T
0AY  Nw?2

— N
ot g St

form a strongly hyperbolic system
[Cordero-Carrién, Ibafiez, Gourgoulhon, Jaramillo & Novak, PRD 77, 084007 (2008)]
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Extended CFC approximation
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© Extended CFC approximation
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Conformally flat limit of the FCF scheme

Hypotheses
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Conformally flat limit of the FCF scheme

Hypotheses

6
® Jij = fij (< hY =0) :>fv‘j: hd (Lﬁ)

o/iiTjTZO

— evolution equations only for matter quantities = D, F, ;
For the gravitational field, the elliptic FCF equations reduce to
. 1 . . .. . ~. .
o (XCFCO) AW" + gDIDjWJ =87 [, = W' = AY= (LW)¥
o E fz',lfjmﬁlmﬁij
o (XCFC1l) AV = 27r\ll au7

o (XCFC2) A(NW) = [27W2(E +28) +

—V=P=3

7filfjmzzllmz‘iij

S (NV) = NV

o (XCFC3) AB + DDﬁl N e (167f9p;) + 249D, (376) = 3
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Conformally flat limit of the FCF scheme

Hypotheses

6
® Jij = fij (< hY =0) :>fv‘j: hd (Lﬁ)

o/iiTjTZO

— evolution equations only for matter quantities = D, F, ;
For the gravitational field, the elliptic FCF equations reduce to
) 1 . ) .. . ~. -
o (XCFCO) AW" + gDIDjW'J =87 [, = W' = AY= (LW)¥
o E fz',lfjmﬁlmﬁij
o (XCFC1l) AV = 27r\ll au7

o (XCFC2) A(NW) = [27W2(E +28) +

—V=P=3

7f’il fijlmAij

S (NV) = NV

o (XCFC3) AB + DDJZ N e (167f9p;) + 249D, (376) = 3

Except for the rescaling of matter quantities, similar to Shibata & Uryu’s system
devised to compute BH-NS binary initial data [PRD 74, 121503(R) (2006)] J

Eric Gourgoulhon (LUTH) Full constrained formulations UIMP, Valencia, 11 Sep. 2008



Extended CFC approximation
Comparison with the standard CFC scheme

o AV = —27V°E — N2 fdfjm(Lﬂ)“”(Lﬁ) (CFC1)

o A(NV) = 27V*(E + 25)(NV) + Ef‘ufjm(L/f)““(Lﬁ)“ (VW)™ (CFC2)

i 1 ! ij WG ij N
o MG+ DD = 167N fp; + (LB)'D; g5 (CFC3)

[Isenberg (1978)], [Wilson & Mathews (1989)]
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Extended CFC approximation
Comparison with the standard CFC scheme

o AV = —27V°E — N2 fdfjm(w)“”(m) (CFC1)

o A(NV) = 27V*(E + 25)(NV) + ﬂf,»zfjm(L/f)““(Lﬁ)“ (VW)™ (CFC2)
° AB 4 11) ‘D3t = 167N fp; + W—G(Lﬁ)“D (j}i) (CFC3)

[Isenberg (1978)], [Wilson & Mathews (1989)]

NB: CFC = same system as the Extended Conformal Thin Sandwich (XCTS)
for quasiequilibrium initial data [Pfeiffer & York, PRD 67, 044022 (2003)]
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Extended CFC approximation

Comparison with the standard CFC scheme

o AV = 27W°F — 32N2 fZ, fim(LB)™(LB)" (CFC1)

o A(NV) =27V*(E + 28)(NV) + ﬂ fafim(LB)™(LA)Y (NW)~t (CFC2)

\IJ6 N

o AB' + 31) ‘D3 = 167N fp; + —(Lﬁ)UD (w) (CFC3)
[Isenberg (1978)], [Wilson & Mathews (1989)]
NB: CFC = same system as the Extended Conformal Thin Sandwich (XCTS)
for quasiequilibrium initial data [Pfeiffer & York, PRD 67, 044022 (2003)]
Differences between CFC/XCTS and XCFC

o CFC/XCTS = 5-components system <> XCFC = 8-components system

o CFC/XCTS = coupled system «» XCFC = hierarchically decoupled

o CFC/XCTS : A + # 0 < XCFC: Al set to zero as an additional
approximation (conS|stent with 4,; = f”)

@ XCFC involves the rescaled matter variables (E, 5*,]3,')
@ power —1 of (NV) in rhs (CFC2) <> power +1 in (XCFC2) <« a key feature
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Extended CFC approximation

Non-uniqueness issue in XCTS-like schemes

Local uniqueness theorem

Consider the elliptic equation
Au+huf =g (*)

where p € R and & and g are a smooth functions independent of w.

If , any solution of (k) is locally unique.
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Extended CFC approximation

Non-uniqueness issue in XCTS-like schemes

Local uniqueness theorem

Consider the elliptic equation
Au+huf =g (*)

where p € R and & and g are a smooth functions independent of w.
If , any solution of (k) is locally unique.

Application: Egs. (CFC2) and (XCFC2) for u = NV (all other fields fixed)
v 6
o (CFC2): h=——3 —— fafim(LB)™(LA)Y <0andp=-1= hp>0:
the theorem is not applicable: the solution may be not unique
— well known property of XCTS [Pfeiffer & York, PRL 95, 091101 (2005)],
[Baumgarte, O Murchadha & Pfeiffer, PRD 75, 044009 (2007)], [Walsh, CQG 24, 1911 (2007)]
T AmAD
gws

o (XCFC2): h <O0andp=1= hp<0:

the solution is unique !
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[llustration

M ADM [artbitrary units]
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Extended CFC approximation

of the non-uniqueness issue

Collapse of a large amplitude
Teukolsky wave computed using the
original version of the FCF scheme
(which did not introduce the vector 17*)

[Bonazzola, Gourgoulhon, Grandclément & Novak,

o PRD 70, 104007 (2004)]

0.05

1 Numerical code based on spectral
] methods (C++ library LORENE)

At t ~ 0.4, the code jumped to a second
1 solution: the black hole formation could
—wws NOt be computed
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http://link.aps.org/abstract/PRD/v70/e104007
http://link.aps.org/abstract/PRD/v70/e104007
http://www.lorene.obspm.fr

Extended CFC approximation

Unstable neutron star migration in XCFC
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Numerical computation with the XCFC version of CoCoNuT code [Dimmelmeier,
Novak, Font, Ibdfiez & Miiller, PRD 71, 064023 (2005)], [Cordero-Carrién et al. arXiv:0809...]

Due to the non-uniqueness issue, such a calculation was not possible in CFC J
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Extended CFC approximation

Gravitational collapse to a black hole in XCFC
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Numerical computation with the XCFC version of CoCoNuT code [Dimmelmeier,
Novak, Font, Ibdfiez & Miiller, PRD 71, 064023 (2005)], [Cordero-Carrién et al. arXiv:0809...]

Due to the non-uniqueness issue, such a calculation was not possible in CFC,
even in spherical symmetry
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Extended CFC approximation

Relation to previous works

@ [Shapiro & Teukolsky, ApJ 235, 199 (1980)] : full constrained code in spherical
symmetry with conformal decomposition (isotropic coordinates): could get
black formation, whereas CFC cannot !

Shapiro and Teukolsky solved the momentum constraint for WO K" = A,
as in XCFC (except that in XCFC the momentum constraint is solved for W*
first, leading to A% = (LW)#)

On the contrary, in CFC the momentum constraint is solved for the shift
vector 3, leading to the wrong sign in the equation for NV

XCFC in spherical symmetry = Shapiro & Teukolsky method
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Shapiro and Teukolsky solved the momentum constraint for WO K" = A,
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first, leading to A% = (LW)#)

On the contrary, in CFC the momentum constraint is solved for the shift
vector 3, leading to the wrong sign in the equation for NV

XCFC in spherical symmetry = Shapiro & Teukolsky method

@ [Shibata & Uryu, PRD 74, 121503(R) (2006)] : scheme for computing initial data for
BH-NS binary (mixture of CTT and XCTS)
XCFC in quasiequilibrium = Shibata & Uryu system
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Shapiro and Teukolsky solved the momentum constraint for WO K" = A,
as in XCFC (except that in XCFC the momentum constraint is solved for W*
first, leading to A% = (LW)#)

On the contrary, in CFC the momentum constraint is solved for the shift
vector 3, leading to the wrong sign in the equation for NV

XCFC in spherical symmetry = Shapiro & Teukolsky method

@ [Shibata & Uryu, PRD 74, 121503(R) (2006)] : scheme for computing initial data for
BH-NS binary (mixture of CTT and XCTS)

XCFC in quasiequilibrium = Shibata & Uryu system

@ [Rinne, CQG 25, 135009 (2008)] : fully constrained code for full GR (not conformally
flat) in axisymmetry and vacuum
Also adds a vector W’ to solve the momentum constraint, in addition to the
elliptic equations for the shift
Meudon-Valencia FCF : 3D generalisation of Rinne scheme (albeit in different
spatial gauge)
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Outline

@ Conclusion
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Conclusion
Conclusions and future prospects

@ A new fully constrained scheme, based on the Meudon (2004) one, has been
introduced to address certain non-uniqueness of the solution of the elliptic
part: the Meudon-Valencia FCF

@ The mathematical analysis of the hyperbolic part has been performed; that of
the entire scheme remains to be done

@ Assuming a conformally flat 3-metric, the new scheme gives rise to the XCFC
system, which cures the non-uniqueness issue of standard CFC in the strong
relativistic regime

@ Numerical implementation of XCFC has been performed, demonstrating its

capability to compute unstable NS migration and BH formation, contrary to
CFC
@ Numerical implementation of the complete FCF is underway:
e see P. Grandclément's talk for a new computational infrastructure
o see |. Cordero’s talk for numerical solutions of the hyperbolic part (at fixed ¥,
N, 3" and matter sources)
e see N. Vasset's talk for treatment of black holes as trapping horizons within
the FCF formulation
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