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Bonazzola, Gourgoulhon, Grandclément, and Novak [Phys. Rev. D 70, 104007 (2004)] proposed a new
formulation for 3� 1 numerical relativity. Einstein equations result, according to that formalism, in a
coupled elliptic-hyperbolic system. We have carried out a preliminary analysis of the mathematical
structure of that system, in particular, focusing on the equations governing the evolution for the deviation
of a conformal metric from a flat fiducial one. The choice of a Dirac gauge for the spatial coordinates
guarantees the mathematical characterization of that system as a (strongly) hyperbolic system of
conservation laws. In the presence of boundaries, this characterization also depends on the boundary
conditions for the shift vector in the elliptic subsystem. This interplay between the hyperbolic and elliptic
parts of the complete evolution system is used to assess the prescription of inner boundary conditions for
the hyperbolic part when using an excision approach to black hole space-time evolutions.
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I. A FULLY-CONSTRAINED EVOLUTION SCHEME

A second-order, fully constrained, evolution formalism
for the Einstein equations has been proposed in Ref. [1].
This evolution scheme, which will be referred to in the
following as the fully constrained formulation (FCF), is
based on a conformal 3� 1 formulation of general rela-
tivity and makes use of an elliptic condition for the choice
of spatial coordinates, a generalized Dirac gauge, and a
maximal condition for the slicing. The enforcement of the
constraints along the evolution, together with the elliptic
nature of the employed gauge conditions, translates the
FCF formalism into a mixed elliptic-hyperbolic partial
differential equation (PDE) system, consisting in five qua-
silinear elliptic equations coupled with a tensorial second
order in time and in space evolution equation for the
conformal metric. In this article, we aim at gaining insight
on some mathematical issues associated with this PDE
system and, in particular, assessing the hyperbolicity of
the tensorial evolution part. A good understanding of the
mathematical structure of the system will be crucial in the
context of full 3D numerical relativity simulations, since
the choice of state-of-the-art numerical tools will be
adapted to the specific structures of the whole system
governing the evolution of matter fields in a dynamical
space-time: spectral methods for the elliptic subsystem [2],
and modern high-resolution shock-capturing techniques
for the hyperbolic part [3,4]. The implementation of the
scheme in [1] will naturally extend previous works—fol-
lowing the conformal flatness condition (CFC) approach of

Isenberg-Wilson-Mathews [5,6]—devoted to the study of
some relevant astrophysical sources of gravitational radia-
tion [7–10].

A. Gauge reduction, PDE evolution systems, and
well-posedness

The gauge character of general relativity (GR) strongly
conditions any attempt of finding a solution by solving a
PDE problem. In its standard formulation through the
Einstein equation

 R�� �
1
2Rg�� � 8�T��; (1)

solutions are given in terms of space-time geometries
�M; g���, i.e. classes of Lorentzian metrics g�� equivalent
under diffeomorphisms of M, rather than by specific 4-
metrics in some particular coordinate system. As a conse-
quence of this, any attempt to cast (1) as a standard PDE
system necessarily must go through a gauge reduction
process. This fixing of the gauge involves four different
(differential) systems: (i) the reduced system, whose solu-
tion provides the metric in a given coordinate system,
(ii) the constraint system, consequence of the gauge char-
acter of the theory and that characterizes the solution
manifold, (iii) the gauge system, which fixes the coordinate
chart and permits one to write the reduced system as a
standard PDE problem, and (iv) the subsidiary system,
guaranteeing the overall consistency along the evolution
and, in particular, between the reduced and gauge systems.
The mathematical consistency of the evolution formalism
involves two aspects. First, one must assess the analytic
well-posedness of the PDE system that is actually solved
during the evolution, which we will refer to in the follow-
ing as the evolution PDE system that includes the reduced
system but possibly other additional PDEs. Second, one
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must guarantee the fulfillment of the subsidiary system
during the evolution.

As in other evolution formalisms based on the initial
value problem for the Einstein equation [11], the con-
strained system in the FCF scheme follows from the
Gauss-Codazzi-Ricci conditions
 

�3�R� KijK
ij � K2 � 16��;

Dj�K
ij � �ijK� � 8�Ji;

(2)

i.e. the Hamiltonian and momentum constraints in the 3�
1 formulation (� is the energy density and Ji the current
vector) which are elliptic in nature. The currently most
successful numerical evolution formalisms are free
schemes in which the constraint system (2) is not enforced
during the evolution. This is the case of certain generalized
harmonic formalisms [12,13] and the 3� 1 BSSN (from
Baumgarte, Shapiro, Shibata, and Nakamura; see
Refs. [14,15]) used in recent binary black hole break-
throughs [16–19] and in fully 3D evolution of binary
neutron stars (see e.g. [20]). In these free schemes, the
corresponding evolution PDE system is formed by the
respective reduced systems together with some additional
evolution equations to fix the harmonic gauge sources, in
the case of generalized harmonic schemes, or the lapse
function and shift vector, in the BSSN case. No elliptic
equation is solved during the evolution, and standard hy-
perbolic techniques can, in principle, be used to assess the
well-posedness of the evolution system (cf., in this sense,
[21] for the case of the BSSN system). In contrast, the FCF
discussed here actually incorporates the constraints to the
evolution PDE system. Moreover, the use of the above-
mentioned elliptic gauge conditions adds additional elliptic
equations during the evolution. The resulting FCF scheme
presents some interesting properties as compared with free
evolution schemes. Apart from the absence of constraint
violations (an issue under control in current BSSN and
generalized harmonic formulations), we can highlight the
following features (cf. [1] for a more complete discussion):
first, the FCF naturally generalizes (as commented above)
the successful scheme employed in the CFC approximation
to general relativity; second, it permits one to read the
gravitational waveforms directly from the metric compo-
nents; third, the scheme can be straightforwardly adapted
to the extraction of gravitational radiation at null infinity by
making use of hyperboloidal 3-slices implemented by
means of a constant mean curvature elliptic gauge condi-
tion; and fourth, it provides a well-suited framework for the
formulation of realistic (approximate) prescriptions in the
construction of quasistationary astrophysically configura-
tions [22]. However, the well-posedness analysis of such a
mixed elliptic-hyperbolic system can be a formidable prob-
lem, since part of the dynamics related to the characteristic
fields in the hyperbolic part is encoded in fields obtained
only once the elliptic part is solved. Even though analyses
of such systems exist in the GR literature (see e.g.

Refs. [23–25] and particularly Ref. [26]) they deal with
free evolution systems, in which the elliptic part follows
only from the gauge conditions. The well-posedness analy-
sis of the complete elliptic-hyperbolic system in the FCF
scheme, which in addition includes the constraints, is
beyond the scope of this work and we will mainly focus
on the hyperbolicity analysis of the tensorial evolution
equation. Before referring to the additional issues related
to the subsidiary system, we must provide some details
about the FCF formalism.

B. Brief review of the FCF scheme

Following Ref. [1], we consider a standard 3� 1 de-
composition of an asymptotically flat space-time �M; g���
in terms of a foliation by spacelike hypersurfaces ��t�. We
denote the unit timelike normal vector to the spacelike
slice �t by n�, the spatial 3-metric by ���, i.e. ��� �
g�� � n�n�, and adopt the following sign convention for
the extrinsic curvature: K�� � �

1
2Ln���. The evolution

vector t� � �@t�� is decomposed in terms of the lapse
function N and the shift vector ��, as t� � Nn� � ��.

Under this 3� 1 decomposition, the Einstein equation
(1) splits into the 3� 1 constraints in (2) and a set of
evolution equations for the extrinsic curvature that, to-
gether with the kinematical relation defining the extrinsic
curvature, constitute the 3� 1 evolution equations

 

�@t �L���ij � �2NKij�@t �L��Kij

� �DiDjN � Nf
�3�Rij � KKij � 2Ki

kKkj

� 4���S� E��ij � 2Sij�g: (3)

This is a first order in time and second order in space
evolution system for ��ij; Kij�.

The first specific element in the FCF scheme is the
introduction of a time independent fiducial flat metric fij,
which satisfies Ltfij � @tfij � 0. This rigid structure is
chosen to coincide with �ij at spatial infinity, capturing its
asymptotic Euclidean character, and permits one to work
with tensor quantities rather than with tensor densities. We
will denote by Di the Levi-Civita connection associated
with fij.

(a) Conformal decomposition.—As a step forward in
the reduction process to the PDE system in the
present FCF, we perform a conformal decomposi-
tion of the 3� 1 fields:

 �ij � �4 ~�ij; Kij � �4 ~Aij � 1
3K�

ij; (4)

where K � �ijKij, the representative ~�ij of the con-
formal class of the 3-metric is chosen to satisfy the
unimodular condition det�~�ij� � det�fij�, and the
traceless part ~Aij of the extrinsic curvature is decom-
posed as
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~A ij �
1

2N

�
~Di�j � ~Dj�i �

2

3
~Dk�k ~�ij � @t ~�ij

�
;

(5)

with ~Di the Levi-Civita connection associated with
~�ij. Finally, in the following we will denote by hij

the deviation of the conformal metric from the flat
fiducial metric, i.e.

 hij :� ~�ij � fij: (6)

Using these conformal decompositions of �ij and
Kij, the 3� 1 constraints (2) and evolution system
(3) can be expressed in terms of the basic variables
hij, �, N, �i, K. Before giving more explicit ex-
pressions, let us remove the gauge freedom.

(b) Gauge system.—Following the prescriptions in [1],
namely, maximal slicing and the so-called general-
ized Dirac gauge, we choose

 K � 0; Hi :�Dk ~�ki � 0; (7)

These gauge conditions fix the coordinates, even in
the initial slice, up to boundary terms (see e.g.
Secs. 9.3. and 9.4. in [27]). These two relations
define the gauge system in the FCF scheme. Since
the gauge system is meant to hold at all times, the
following conditions must also be satisfied:

 

_K � 0; @t�Dk ~�ki� � 0: (8)

The FCF scheme actually enforces the first of these
conditions, _K � 0, during the evolution. Taking the
trace in the second equation in (3), and using the
Hamiltonian constraint that is also enforced during
the evolution (see below), an elliptic equation for the
lapse follows,

 

~Dk
~DkN � 2 ~Dk ln� ~DkN � SN�N;�; �

i; ~�ij�: (9)

(c) Main or reduced system.—In the FCF scheme in
Ref. [1] the reduced system is a second order in time
and second order in space evolution system for the
deviation tensor hij. This is obtained by
(i) combining equations in (3) into a single second
order in time equation; (ii) inserting into it the
conformal decompositions (4) and (5), and
(iii) imposing the gauges (7). The resulting expres-
sion is formally written as (see next section for a
detailed account)
 

@2hij

@t2
�
N2

�4
~�klDkDlh

ij � 2L�
@hij

@t
�L�L�h

ij

� Sijh ; (10)

where the source Sijh does not contain second de-
rivatives of hij. Use of the Dirac gauge results in the
wavelike form of this equation, since it eliminates

certain second derivatives of the type DiDkh
kj

coming from the expression of the Ricci tensor.
(d) Constrained system. The Hamiltonian constraint in

(2) can be written as an elliptic equation for the
conformal factor �:

 

~Dk
~Dk�� 3

~R
8

� � S���; N; �i; ~�ij�: (11)

Again S���; N; �i; ~�ij� represents a nonlinear
source. The momentum constraint poses a more
subtle issue. In Ref. [1] an elliptic equation for the
shift vector is deduced using both the momentum
constraint and the preservation in time of the Dirac
gauge [second relation in (8)]:

 

~Dk
~Dk�i � 1

3
~Di ~Dk�k � 3

~Rik�
k

� Si���; N; �
i; ~�ij�: (12)

An equation for the shift could be derived from the
momentum constraint alone, but the coupling to the
tensorial equation (10) would become more compli-
cated due to the presence of a mixed time-space
second-order derivative of hij. This term is elimi-
nated by the use of a Dirac, or a similar, gauge.
Alternatively, an elliptic equation for the shift can be
drawn from the preservation of the Dirac gauge
alone, renouncing, therefore, to the fully constrained
character of the scheme—e.g. this is the strategy in
Ref. [26], but using a spatial harmonic gauge con-
dition instead of the Dirac one. At the end of the day,
the choice (12) in the FCF scheme provides an
elliptic equation for the shift that enforces the mo-
mentum constraint, as long as the Dirac gauge is
satisfied.

(e) FCF evolution PDE system.—The mixed elliptic-
hyperbolic PDE system that evolves some initial
data given on an Cauchy slice is formed by (a)
Eqs. (9), (11), and (12), the elliptic part, and (b)
Eq. (10), the wavelike tensorial equation. As we
have pointed out, we will not consider here the
well-posedness analysis of the whole system. To
give an idea of the involved difficulties, we note
that the elliptic part is very similar to the extended
conformal thin sandwich (XCTS) [28,29] employed
in the construction of initial data, though here it is
solved all along the evolution. Even the restriction to
the elliptic subsystem represents a very hard prob-
lem, as it is illustrated by the lack of the existence
results for the XCTS system and the preliminary
numerical [30] (see also [31]) and analytical
[32,33] results pointing towards a generic non-
uniqueness of the elliptic system. For these reasons,
we will focus on the study of the hyperbolicity of the
tensorial evolution equation (10), understanding this
as a necessary condition for the overall well-
posedness.
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(f) Subsidiary system.—The resolution of the PDE evo-
lution system only guarantees the consistency be-
tween the reduced and gauge systems as far as the
slicing condition is regarded, since Eq. (9) for the
lapse is indeed enforced. This is, in principle, not the
case for the Dirac gauge. More dramatically, if the
Dirac gauge is actually not satisfied, the FCF
scheme is not really fully constrained, since in that
situation Eq. (12) no longer enforces the momentum
constraint. Control of the evolution of the Dirac
gauge is therefore crucial in the scheme. A wavelike
equation for Dkhki can be obtained by taking the
divergence of the tensorial equation (10). The van-
ishing of Dkhki in the evolution would then follow
from the initial conditions Dkh

ki � 0 and
@t�Dkh

ki � 0� � 0 imposed in the construction of
the initial data, and the satisfaction of Eq. (91) in
Ref. [1] for _�i. The latter can be considered as the
subsidiary system in the FCF scheme.

C. Specific objectives and organization

Though the wave character of Eq. (10) essentially guar-
antees its hyperbolicity, we aim here at developing a more
detailed analysis. This is motivated by the need of control-
ling the characteristics in initial boundary problems and
also when trying to make use of first-order techniques
employed in matter evolutions. Our main specific goal in
this article is the development of a hyperbolicity analysis
of a first-order version of the evolution part in the FCF
formalism, where N, �, and �i are considered as fixed
parameters. In particular, we aim at obtaining explicit
expressions for the characteristic fields and speeds. As
pointed out above, this point represents a fundamental
ingredient in the study of the appropriate boundary con-
ditions if boundaries are present in the integration domain.
This constitutes only a preliminary study of the well-
posedness of the evolution system since no stability analy-

sis whatsoever will be considered. Certainly further analy-
sis is required. However, in the absence of a full treatment
and being ultimately motivated by practical numerical
implementation needs, the level of rigor and completeness
in this article is adapted to the achievement of limited but
concrete results.

On behalf of self-consistency, and in spite of the lack of
a fully rigorous treatment of the FCF subsidiary system, we
also aim at discussing certain (numerical) algorithms de-
vised to guarantee the fulfillment of the Dirac gauge along
the evolution. Though this is not a substitute for a formal
proof, it provides, on the one hand, support for the coher-
ence among the reduced, gauge and constrained systems.
On the other hand, and more importantly from a practical
point of view, the implementation of the FCF scheme is
then guaranteed to be fully constrained, even in numerical
implementations where errors can occur even if analytic
well-posedness has been established.

The article is organized as follows. Section II presents a
first-order formulation of the FCF scheme, more con-
cretely, of its reduced system. In Sec. III the characteristic
structure of the reduced system is analyzed, with a brief
application to inner boundaries in excised black hole
space-time evolutions. Section IV discusses the possibility
of writing the first-order reduced FCF system as a system
of conservation laws, by making explicit use of the Dirac
gauge. In Sec. V two different manners of enforcing the
Dirac gauge in the evolution are introduced, providing key
support for overall consistency and guaranteeing the fully
constrained character of the scheme. Finally Sec. VI con-
cludes with a discussion of the results.

II. FIRST-ORDER REDUCTION OF THE REDUCED
SYSTEM IN THE FCF

Equations governing the evolution of hij in the FCF are

 

@2hij

@t2
�
N2

 4
~�klDkDlhij � 2L�

@hij

@t
�L�L�hij � L _�h

ij �
4

3
Dk�k

�
@
@t
�L�

�
hij �

N

 6
DkQ�Dihjk �Djhik �Dkhij�

�

��
@
@t
�L�

�
lnN

���
@
@t
�L�

�
hij �

2

3
Dk�khij � �L��ij

�

�
2

3

��
@
@t
�L�

�
Dk�

k �
2

3
�Dk�

k�2
�
hij �

�
@
@t
�L�

�
�L��ij

�
2

3
Dk�k�L��ij � 2N �4Zij

� �2N�2
�

~�klA
ikAjl � 4�

�
 4Sij �

1

3
S~�ij

��

� 2N �6

�
~�ik ~�jlDkDlQ�

1

2
�hikDlhlj � hjkDkhil � hklDkhij�

	DlQ�
1

3
~�ij ~�klDkDlQ

�
; (13)
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where Sij and S are, respectively, the spatial components of
the stress tensor S�� :� ������T��, associated with the
matter energy-momentum tensor T��, and its trace.
�L��ij is the conformal Killing operator associated with
the flat metric fij acting on the vector field �i:

 �L��ij :�Di�j �Dj�i � 2
3Dk�kfij; (14)

and the auxiliary quantities Q and Zij are

 Q :� N 2; (15)

 

Zij � N� ~Rij
 � 8 �2�~�ikDk ��~�
jlDl ��

� 4 �1�~�ikDk ��~�
jlDlN�

� 4 �1�~�jkDk ��~�ilDlN�

� 1
3N�

~R
 � 8 �2Dk �~�klDl ��~�ij

� 8
3 
�1Dk �~�klDkN�~�ij: (16)

The symmetric tensor ~Rij
 is defined by

 

~R ij

 :� 1

2��Dlh
ikDkh

jl � ~�kl ~�
mnDmh

ikDnh
jl

� ~�nlDkhmn�~�ikDmhjl � ~�jkDmhil��

� 1
4 ~�ik ~�jlDkhmnDl ~�mn; (17)

and the scalar ~R
 is

 

~R 
 :� 1
4 ~�klDkh

mnDl ~�mn �
1
2 ~�klDkh

mnDn ~�mn: (18)

Let us write Eq. (13) as a first-order system, by introducing
the following auxiliary variables:

 uij :�
@hij

@t
; (19)

 wijk :�Dkh
ij: (20)

With these new variables the system for hij can be cast into
the form

 

@uij

@t
�
N2

 4
~�klDkw

ij
l � 2�kDkuij � �k�lDkw

ij
l

� �ij��k; N;  ; @��
k; @�N; @� ; h

ij; uij; wijk �; (21)

where �ij are source terms which do not contain partial
derivatives of uij or wijk . From definition (20) we obtain

 

@wijk
@t
�Dkuij; (22)

where we have taken into account that @tfij � 0. In terms
of the above new auxiliary variables, the system of
Eqs. (19), (21), and (22) can be written as

 

@�v
@t
�AlDl �v � g��k; N;  ; @��k; @�N; @� ; hij; uij; w

ij
k �;

(23)

where the vector �v is

 

�v �
�hij�
�uij�
�wijk �

0
B@

1
CA; (24)

and the source g is

 g ��k; N;  ; @��k; @�N; @� ; hij; uij; w
ij
k � �

�uij�
��ij�

�0�

0
@

1
A:
(25)

In these equations, �v and g are vectors of dimension 30, as
it results from the symmetry properties of hij, uij, and wijk .
Let us note that, besides the above symmetry properties,
the following algebraic constraints have to be satisfied:
(i) det ~�ij � detfij; and (ii) wiji � 0, which is equivalent
to Dirac’s gauge. In order to write the matrices of the
system in a simple way, the following auxiliary quantities
are defined:

 qij :� �i�j � N2 �4 ~�ij; (26)

 Qi :� q1i q2i q3i
� �

; (27)

 � 	i :�
�	i1
�	i2
�	i3

0
B@

1
CA: (28)

Then, the explicit form of the matrices Al is
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III. CHARACTERISTIC STRUCTURE OF THE
REDUCED SYSTEM

Let us present here a preliminary analysis of the mathe-
matical structure of system (23).

First, we give the explicit expressions of the character-
istic speeds in terms of the functions  , N, �i, and ~�ij.

Lemma 1.—Let us consider the evolution vector @t,
whose components are 
� � �1; 0; 0; 0�, and a generic
spacelike covector of components �� � �0; �i� orthogonal
to the evolution vector. The associated eigenvalue problem
(see, e.g., Ref. [34]),

 �Al�l � �I�X� � 0; (30)
where � denotes the eigenvalue and X� the corresponding
eigenvector, has the following solution:
 

�0 � 0;

����� � ��
��� �

N

 2 �~�
�������1=2

� ����� � N��
����

1=2;

(31)

where �0 has multiplicity 18, and each ����� has multiplicity
6.

Imposing Dirac’s gauge in (7) indeed guarantees the real
character of the eigenvalues corresponding to matrices Ai,
and therefore the hyperbolicity of the evolution system.
Even though this is not a prerogative of the Dirac gauge,
other prescriptions for Hi in condition (7) lead to a more

complicated structure of the resulting sources. As men-
tioned after Eq. (12), a more important point is the fact that
other choices of Hi will generally introduce time deriva-
tives of hij in the elliptic subsystem, complicating further
the complete PDE system. Of course, if no gauge is im-
posed at all, one can check that the Al matrices admit
complex eigenvalues. This reflects the property that
Einstein equations by themselves do not have a definite
type, without the specification of a gauge. We conclude
that when imposing Dirac’s gauge the eigenvalues of the
linear combination Al�l are real.

Lemma 2.—Dirac’s gauge is a sufficient condition for
the hyperbolicity of system (23).

In the above eigenvalue problem, the first 6 eigenvec-
tors, with 0 eigenvalue and associated with the hij compo-
nents of �v in (24), completely decouple from the other
eigenvectors. Therefore, the rest of the eigenvectors can
be studied independently. For the sake of clarity in the
notation, let us define some auxiliary quantities before
writing the matrix of (right) eigenvectors:

 C 1 :�
��iqi2 ��iqi3

�iq
i1 0

0 �iq
i1

0
@

1
A; C2 :�

�1

�2

�3

0
@

1
A: (32)

The matrix of (right) eigenvectors, R���, associated with
the eigenvalue problem described in the above Lemma 1 is
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If the determinant of this matrix vanishes, the set of eigen-
values is not complete. This happens in the following
cases:

Case 1: ����� � ����� . Since

 ����� � ����� ) N2 �4�i�j ~�ij � N2�i�
i � 0; (34)

and �i�i does not vanish (�i is a spatial vector different
from zero), noncompleteness only occurs if the lapse N
vanishes.

Case 2: �i�jqij � 0. From the definition of qij, it follows
that

 �i�j��
i�j � N2 �4 ~�ij� � 0, ��i�

i�2 � N2��i�
i�: (35)

One can see that the previous equality depends only on the
direction of the vector �i (i.e. �i�i � 1). From now until the
end of the study of the different cases, the vector �i will be
considered to be unitary. So (35) leads to

 �i�j��i�j � N2 �4 ~�ij� � 0, ��i�i�2 � N2: (36)

Decomposing �i into components parallel and normal to
�i, we write �i � ��k��i � ��?�i, where ��k� � �i�

i and
�i��

?�i � 0. From (36), we conclude

 �i�jqij � 0, ��k�2 � N2: (37)

Note that this case is independent of the choice of �i, since
it corresponds to ��k�i��k�i, i.e. j�i�ij2. Therefore, non-
completeness occurs if j�kj � N.

Case 3: �iqij � 0, 8j � 1, 2, 3. This is a stronger case
than the previous one. Again, from the definition of qij, we
have

 �i��i�j � N2 �4 ~�ij� � 0, ��i�i��j � N2�j: (38)

From this, and the decomposition �i � ��k��i � ��?�i, it
follows that

 �iqij � 0, ��?�i � 0 and ��k�2 � N2: (39)

This is just a stronger version of the second case above.
As a consequence of the above analysis we can set up the

following lemma.
Lemma 3.—The (right) eigenvectors associated with the

matrix Al�l define a complete system iff (i) the lapse N
does not vanish, and (ii) the projection of the evolution

vector onto the plane spanned by n� and ��, i.e. �tk�� �
Nn� � b���, is non-null, i.e. ��k�2 � N2.

In the eigenvalue problem (30), �i stands for an arbitrary
spatial vector. In particular, we can always choose �i � �i.
In that case, the degeneracy condition in cases 2 and 3
above reduces to �i�i � N2. This happens if the vector t�

becomes null. Moreover, if the vector t� is spacelike then
we are in case 2, since then there exists a vector �i (in fact,
a cone obtained by the rotation of the nonvanishing �i by
an appropriate angle) such that the projection of �i onto
that �i, referred to as ��k�i, satisfies ��k�i��k�i �
��i�

i�2 � N2. We conclude as follows.
Proposition 1.—The system (23) is strongly hyperbolic

if t� is timelike, i.e. if N � 0 and N2 � �i�i > 0.
In some particular cases, degeneracy in the eigenvalues

can occur. In particular, it could happen that one of the
eigenvalues �� or �� coincides with �0. These degener-
acies can appear where

 ����� �
���
� � 0, ������

2 � N2������: (40)

Again, one can consider �i to be unitary. Hence, either ��
or �� vanishes when ��k�2 � N2. As seen in (36), in this
case the system of eigenvectors is incomplete.

Another relevant property is the following.
Proposition 2.—All the characteristic fields associated

with the eigenvalue problem (30) are linearly degenerate;
i.e., they satisfy the following condition:

 D�p� �v� � rp� �v� � 0; (41)

where rp is the eigenvector associated to the eigenvalue �p,
and the operator D is defined in the space of the variables of
the system.

This shows the good behavior of the Dirac gauge since,
in the language from fluid dynamics, it means that no
shocks can be propagated along these curves, in particular,
gauge shocks. Hence, if there were discontinuities, they
would have to be contact discontinuities.

Regarding the characteristics speeds ����� , we have the
following.

Corollary 1.—The nonzero eigenvalues associated with
�i correspond to the coordinate velocity of light.

This feature, which is an expected result, can be shown
by considering a unitary �i and a curve whose spatial part
points in the �i direction: dxi

dt � j
dxi
dt j�

i. Using the 3� 1
expression of the metric, the vanishing of the line element
of the curve, where the component of �i in the �i direction
is considered, is imposed. It follows, using the expression
for ���� in (31), that ���� � j dxdt j.

Application to inner boundary conditions

The explicit expressions (31) for the characteristic
speeds are especially useful in the assessment of the
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boundary conditions to be imposed on a given border. We
illustrate this by considering inner boundaries in the con-
text of excised black hole space-times. Before doing so, let
us underline that the FCF can be employed in combination
with any of the standard techniques dealing with the black
hole singularity in numerical evolutions of black hole
space-times, namely, excision, punctures, or stuffed black
holes. However, the excision technique is favored if (the
elliptic subsystem of) the FCF is implemented by means of
spectral methods. Focusing on the excision approach, let us
denote by St the inner sphere employed as an inner bound-
ary at a given spacelike slice �t, and by H the world-tube
hypersurface generated along the evolution by piling up the
different St. A natural expectation is that no inner bound-
ary conditions should be prescribed for radiation fields on
inner superluminal (growing) inner boundaries. This would
avoid the need to incorporate boundary conditions in the
well-posedness analysis of the associated initial boundary
value problem. For this reason, spacelike inner hypersur-
faces H are good candidates for inner boundary condi-
tions. However, this general idea must be assessed in the
context of every specific evolution scheme. In our particu-
lar case, we must check that characteristic speeds (31) are
outgoing (with respect to the integration domain). The
tangent vector h� to H , which is normal to each St and
transports St into St�	t, can be written as

 h� � Nn� � hss
�; (42)

where s� is the normal vector to St, lying on �t and
pointing toward spatial infinity. Then, since the norm of
h� is given by h�h� � �N2 � h2

s , it follows that H is
spacelike as long as b > N. Choosing a coordinate system
adapted to H , i.e. where all the spheres St stay at the same
coordinate position—say r � const � ro—it follows that
hs � �isi � �?. In this case, H is spacelike as long as
�? >N. Evaluating expression (31) for �i � si, it follows
that

 ��s�� � ��
? � N : (43)

From this we get the following.
Corollary 2.—For a coordinate system adapted to a

spacelike inner world tube H , where �? >N, no ingoing
radiative modes flow into the integration domain �t at the
excision surface.

Under these conditions no inner boundary conditions
whatsoever must be prescribed for the hyperbolic part.
Of course, it is not obvious how to choose dynamically
an inner boundary H that is guaranteed to be spacelike
during the evolution. A proposal in this line has been
presented in [35] in the context of the dynamical trapping

horizon framework (see e.g. Ref. [36]). Quasilocal ap-
proaches to black hole horizons aim at modeling the
boundary of a black hole region as world tubes of apparent
horizons �St�. Dynamical horizons provide a geometric
prescription for H that is guaranteed to be spacelike, as
long as the black hole is dynamical, and remain inside the
event horizon, if cosmic censorship holds. The correspond-
ing geometric dynamical horizon characterization is en-
forced as an inner boundary condition on the elliptic part of
the FCF, in particular, on the shift equation (12). This
shows the key interplay between elliptic and hyperbolic
modes in the coupled fully constrained PDE evolution
system. Note however that, according to Proposition 1,
the hyperbolic evolution system ceases to be strongly
hyperbolic. In fact, the evolution vector t�, tangent to H
in the adapted coordinate system, becomes spacelike in a
finite region. This can be bypassed by adopting a coordi-
nate system in which the coordinate radii of the St slices
grow in time: r � r�t� � 0, where r�t� is appropriately
chosen. In this case, hs � �? holds no longer, and this
relation is rather substituted by �? � hs � �r�t� � ro�.
This condition is again under control through the appro-
priate boundary condition on the elliptic equation for �i.
Note that in this case the characteristics are still outgoing
from the integration domain though, in this case with a
coordinate growing excision sphere, this feature is no
longer characterized by the negativity of the characteristics
speeds ��s�� . The outgoing character is guaranteed by the
characterization of ��s�� as the coordinate velocity of light in
Corollary 1, together with the spacelike character of H .

IV. DIRAC GAUGE AND SYSTEM OF
CONSERVATION LAWS

A hyperbolic system of conservation laws, without
sources, is

 @tu� Difi�u� � 0: (44)

In this system we can identify the set of unknowns, i.e., the
vector of conserved quantities u, and their corresponding
fluxes f�u�.

The choice of Dirac’s gauge allows us to find the follow-
ing set of l vector fluxes fl (l � 1, 2, 3), of dimension 30:

 f l :�
�06�

��2uij�l � wijk ��
k�l � N2 �4 ~�kl��

��uij	lk�

0
B@

1
CA (45)

in terms of which system (23) can be rewritten as a hyper-
bolic system of conservation laws (with sources). The
Jacobian matrices associated to the fluxes fl, �A
�l are
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where

 Eij;l :� wij1 	
l
1 wij

�1	
l
2� wij

�1	
l
3� wij2 	

l
2 wij

�2	
l
3� wij3 	

l
3

� �
; El :�

E11;l

E12;l

E13;l

E22;l

E23;l

E33;l

0
BBBBBBBB@

1
CCCCCCCCA
; (47)

and the parentheses in the subindices represent a symmet-
ric sum, e.g., wij

�1	
l
2� � wij1 	

l
2 � w

ij
2 	

l
1.

These matrices have the same eigenvalues as the matri-
ces Al. The corresponding eigenvectors are different but
they keep the same fundamental properties as the ones
associated to the matrices Al; namely, they define a com-
plete system. Hence, the following lemma is in order.

Proposition 3.—Taking advantage of Dirac’s gauge, it is
possible to convert the hyperbolic part of the coupled
elliptic-hyperbolic system of the FCF formalism into a
(strongly) hyperbolic system of conservation laws (with
sources).

V. PRESERVATION OF THE DIRAC GAUGE IN THE
EVOLUTION: THE DIRAC SYSTEM

The importance of the enforcement of the Dirac gauge
during the evolution in time has already been stressed in
the Introduction. In this section we give a brief description
of some numerical algorithms that can be used to fulfill the
Dirac gauge, when solving the reduced system (10). In
particular, we do not intend to provide a formal proof of the
consistency of the method. Because of the unimodularity
of the conformal metric ~�ij, the symmetric tensor hij has
only 5 degrees of freedom. For simplicity, here we shall
illustrate the scheme by considering the case where the
trace h � fijhij � 0. The unimodular condition would be
satisfied by an iteration on the value of the trace, as
described in [1]. We consider the particular case of the
spherical polar coordinate system �r; 
; ’�, and note by �

the flat Laplace operator, i.e.

 � :�DiD
i �

@2

@r2 �
2

r
@
@r
�

1

r2 �
’; (48)

where �
’ involves only angular derivatives. Thus, the
problem to be solved can be written as a wave equation
with constraints

 

�
@2

@t2
� �

�
hij � Sij; (49)

 D jhij � 0; (50)

 h � 0; (51)

where the source Sij gathers all the other terms of Eq. (13),
including the shift terms in the differential operator. The
structure of the differential operator in the left-hand side is
simplified here with respect to the full evolution one of
Sec. II, in order to focus on the propagation aspects, which
are already contained in the simple wave operator. The full
evolution operator can also be handled with a similar
technique, but involving more technical justifications.
The system (49)–(51) can be seen as the evolution of
two scalar fields, two dynamical degrees of freedom,
from which one recovers the full tensor hij using the trace
and divergence-free conditions. To gain insight, it is help-
ful to decompose the tensor on a basis of Mathews-Zerilli
[37,38] tensorial spherical harmonics. We use the basis of
six families of pure-spin tensor harmonics as referred to by
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Thorne [39], with the same notations: TL0;‘m, TE1;‘m,
TB1;‘m, TE2;‘m, TB2;‘m, TT0;‘m. If we note the coefficients
of hij in this basis (cL0;‘m; cE1;‘m; cB1;‘m; cE2;‘m;
cB2;‘m; cT0;‘m), we can define for any rank 2 symmetric
tensor the following six scalar fields:
 

L0 :�
X
‘;m

cL0;‘mY‘m � hrr; � :�
X
‘
1;m

cE1;‘mY‘m;

� :�
X
‘
1;m

cB1;‘mY‘m; W :�
X
‘
2;m

cE2;‘mY‘m;

X :�
X
‘
2;m

cB2;‘mY‘m; T0 :�
X
‘;m

cT0;‘mY‘m; (52)

where Y‘m�
;’� are the scalar spherical harmonics, which
are eigenfunctions of the angular Laplace operator
�
’Y‘m � �‘�‘� 1�Y‘m. Note that there is a one-to-one
relation between the six components of hij and these six
scalar fields. The trace condition (51) simply turns into
T0 � h

rr � 0; therefore we shall replace T0 with �hrr in
all forthcoming expressions. The divergence-free condi-
tions (50) turn into

 

@hrr

@r
�

3hrr

r
�

1

r
�
’� � 0; (53)

 

@�
@r
�

3�
r
� ��
’ � 2�

W

r
�
hrr

2r
� 0; (54)

 

@�
@r
�

3�
r
� ��
’ � 2�

X

r
� 0; (55)

where all the angular derivatives are expressed in terms of
�
’, introduced in Eq. (48).

A first way to solve the system (49)–(51) has been
described in Ref. [1] and uses evolution equations for hrr

and �, from which other scalar fields are deduced through
the gauge equations (53)–(55) as solutions of the angular
Laplace operator, with radial derivatives as sources.
However, this method has the great disadvantage of requir-
ing the computation of two radial derivatives to get hij,
when the source Sij already contains second-order radial
derivatives of hij. This fourth-order derivation introduces a
great amount of numerical noise, which has been observed
to rapidly spoil the numerical integration. An alternative
way is to evolve two other scalar fields and then to integrate
(or solve PDEs coming from) the Dirac gauge condition to
obtain the others. Unfortunately, this is not possible using
only the six scalar fields (52), but one can devise the
following procedure in a similar spirit.

Any rank 2 symmetric tensor Tij can be split into two
pieces:

 Tij � �L̂V�ij � ~Tij �DiVj �DjVi � ~Tij; (56)

with Dj
~Tij � 0. For a given Tij the divergence of Eq. (56)

allows for the determination of the vector Vi through the
elliptic PDE

 D kDkV
i �DiDjV

j �DjT
ij; (57)

where Vi is fixed up to isometries of fij, which are set by
the choice of boundary conditions. If we now return to the
case Tij � hij and consider only the asymptotically flat
spatial metric defined on R3 —no holes—the Dirac gauge
condition (50) is equivalent to having Vi � 0, since there
are no Euclidean symmetries vanishing at infinity. If one
similarly seeks three scalar fields �A;B;C� such that

 A � B � C � 0, ~Tij � 0; (58)

one can check that a solution is

 A �
@X
@r
�
�
r
; (59)

 B �
@W
@r
�

�
’W

2r
�
�
r
�
hrr

4r
; (60)

 C �
@hrr

@r
�

3hrr

r
� 2�
’

�
@W
@r
�

W

r

�
: (61)

In the present case where the trace (or the determinant) is
given, B and C are actually coupled and it is sufficient to
consider
 

~B �
X
‘;m

~B‘mY‘m; with

~B‘m � �‘� 2�
�
@W
@r
� ‘

W

r

�
�

2�
r

�
1

2�‘� 1�

�
@hrr

@r
� �‘� 4�

hrr

r

�
; (62)

to recover B andC using the trace. A nice property of A and
~B is that, when expressed in terms of these potentials
related to hij, the tensor Poisson equation, with Fij being
a symmetric tensor representing a source,

 �hij � Fij; (63)

has a rather simple form. Namely, if we define FA and F ~B

as the scalar potentials similar to A and ~B, but deduced
from Fij, a consequence of Eq. (63) is

 �A � FA; ~� ~B � F ~B; (64)

with
 

~� :�
@2

@r2 �
2

r
@
@r
�

1

r2
~�
’ and

~�
’Y‘m :� �‘�‘� 1�Y‘m:
(65)

Obviously, a very similar property holds for the wave
equation (49). Therefore, a way of solving numerically
the constrained system of Eqs. (49)–(51), by making use
of the potentials A and B, is the following. With the source
Sij and hij known at the initial hypersurface, it is possible
to deduce the potentials SA and S ~B of the source and thus
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to advance the potentials A and ~B of hij to the next time
step through the evolution equations

 

�
@2

@t2
��

�
A � SA;

�
@2

@t2
� ~�

�
~B � S ~B: (66)

Then the six scalar fields (52) can be computed by solving
the PDE system formed by the following five elliptic
equations: the definitions of A and ~B, i.e. Eqs. (59) and
(62), together with the Dirac gauge conditions (53)–(55)
plus the trace-free condition (51)—used to get T0. All the
components of hij can be finally recovered by taking
angular derivatives of the scalar fields defined in
Eqs. (52). With this algorithm, only two scalar potentials,
A and ~B, are evolved in time. The whole tensor is deduced
from these potentials and the gauge and trace conditions.
Note that, when decomposing all the scalar fields onto a
spherical harmonics function basis, the elliptic system of
five PDEs described above reduces to a system of coupled
ordinary differential equations in the radial coordinate r.

With either of these approaches (the one described here
or that presented in Ref. [1]) it is possible to evolve two
scalar potentials using hyperbolic wavelike operators and
recover the symmetric tensor hij through an elliptic system
of PDEs obtained from the gauge conditions. A numerical
implementation of these techniques being beyond the
scope of the present article, here we have only exhibited
both algorithms in order to show that it is, in principle,
possible to build up the whole conformal metric from the
gauge conditions, while being consistent with the evolution
equations. This might inversely be linked toward the prop-
erty of the Dirac gauge system being preserved by the 3�
1 evolution system. Future numerical developments in
these directions shall certainly bring better insight into
the problem.

VI. DISCUSSION

All evolution formalisms for the resolution of Einstein
equations as an initial value boundary problem exploit the
intrinsic hyperbolicity of Eq. (1), although the associated
evolution systems are not necessarily hyperbolic from the
PDE theory point of view [40]. In the present case of the
FCF formalism [1], Einstein equations result in a coupled
elliptic-hyperbolic PDE system. The hyperbolic part of the
evolution system consists of the reduced system, governing
the evolution of the gravitational degrees of freedom,
whereas the elliptic part is formed by the constrained
system and part of the gauge system (maximal slicing
equation). In fact, in the context of the algorithms pre-
sented in Sec. V, the elliptic Dirac system, Eqs. (53)–(55),
can actually be seen as a part of the PDE evolution system.
In summary, the evolution PDE system is formed by the
reduced, constraint, and gauge systems, whereas the fulfill-
ment of the subsidiary system, represented by Eq. (91) in
Ref. [1] for _�i, can be used as a control test of the scheme
along the evolution. We have carried out a first analysis of

the mathematical structure of the PDE evolution system,
paying particular attention to the equations (10) governing
the evolution for the deviation hij of the conformal metric
from the flat fiducial one fij, i.e. hij � ~�ij � fij. Dirac’s
gauge plays an important role in getting a well-defined
hyperbolic structure. This elliptic gauge is close in spirit
and properties to other gauges employed in the literature,
like the spatial harmonic gauge in [26], the minimal dis-
tortion introduced by York & Smarr, the new minimal
distortion gauge introduced by Jantzen & York, or the
numerically motivated pseudominimal distortion gauge
by Nakamura, approximate minimal distortion by
Shibata, or the Gamma freezing (cf. Secs. 9.3. and 9.4 in
Ref. [27] for a review of them). In particular, all of them
can be written as elliptic equations on the shift vector �i.
The Dirac gauge fixes spatial coordinates in the evolution
(including on the initial data, as the spatial harmonic
gauge does) up to boundary conditions. For boundary
conditions (enforced when solving the elliptic PDE for
�i) such that the evolution vector is timelike, the Dirac
gauge provides a sufficient condition for the strong hyper-
bolicity of Eq. (10). Moreover, using this gauge it is
possible to derive a flux vector in terms of which the
first-order system of equations, equivalent to (10), has the
structure of a hyperbolic system of conservation laws (with
sources). Likewise, the analysis of the characteristics sheds
light on the prescription of inner boundary conditions on a
spacelike inner cylinder, when employing an excision ap-
proach to black hole evolutions. More generally, maximal
and Dirac gauges can be relaxed to admit more general
gauges, while preserving the hyperbolic properties of the
system but possibly complicating the structure of the
sources.

Having said this, it is clear that further analysis is
necessary. First, particular attention should be paid to the
source terms in Eq. (13). They can introduce, in the so-
called stiff case, new characteristic time scales (relaxation
times in the language of fluid dynamics) which may be
much smaller than the CFL (Courant-Friedrichs-Lewy)
numerical time step (see, e.g., [41–43]). In particular,
authors in Ref. [41] have studied general hyperbolic sys-
tems with supercharacteristic relaxations, and they show in
which conditions a source term can be damping or, on the
contrary, enforces growth of instabilities. Looking, in our
case, at the quantity Rij
 [Eq. (17)], one can notice the
presence of quadratic terms in the wijk ; it suggests that
huge spatial gradients of hjk can introduce some degree
of stiffness in the source terms. Second, nothing has been
said about the possible outer boundary conditions to be
prescribed when studying the initial boundary value prob-
lem with an outer timelike cylinder. Certainly, in this case
the well-posedness analysis is more complicated.
However, thanks to the enforcement of the constraint along
the evolution, there is no need for devising specific con-
straint preserving boundary conditions, and Sommerfeld-
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like conditions as in [44,45] can be straightforwardly em-
ployed. Third, nothing has been said about the elliptic part
and its coupling with the hyperbolic subsystem. On the one
hand, this coupling is crucial in the overall well-posedness
of the problem, as clearly illustrated in the inner boundary
conditions issue, where inner boundary conditions on the
elliptic part determine the ingoing or outgoing nature of the
characteristics in the hyperbolic part. On the other hand,
the analysis of the elliptic system by itself represents an
outstanding challenge. This is illustrated by the XCTS
elliptic system [28,29] referred to in Sec. I B, very closely
related to the FCF elliptic subsystem. We note that, in this
case, no results on existence are available, and very little is
known on uniqueness, where recent numerical [30,31] and
analytical works [32,33] point toward the essential non-
uniqueness of the system (related to a wrong sign in the
differential operator of the maximal slicing equation).
Fourth, nothing has been said about consequences on
well-posedness of coupling matter equations to the gravi-
tational degrees of freedom.

Although our analysis is far from being exhaustive, it
has the advantage of giving some clues about which nu-
merical strategies are the most convenient in order to solve
Einstein equations in the FCF formalism. In this sense, we
have attempted to obtain some limited but concrete results,
rather than remain frozen by the ‘‘nonattainability’’ of
complete and fully rigorous results.
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