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Generalized Damour-Navier-Stokes equation applied to trapping horizons
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An identity is derived from the Einstein equation for any hypersurface H which can be foliated by
spacelike two-dimensional surfaces. In the case where the hypersurface is null, this identity coincides with
the two-dimensional Navier-Stokes-like equation obtained by Damour in the membrane approach to a
black hole event horizon. In the case where H is spacelike or null and the 2-surfaces are marginally
trapped, this identity applies to Hayward’s trapping horizons and to the related dynamical horizons
recently introduced by Ashtekar and Krishnan. The identity involves a normal fundamental form (normal
connection 1-form) of the 2-surface, which can be viewed as a generalization to non-null hypersurfaces of
the Hajicek 1-form used by Damour. This 1-form is also used to define the angular momentum of the
horizon. The generalized Damour-Navier-Stokes equation leads then to a simple evolution equation for
the angular momentum.
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I. INTRODUCTION

The concept of black hole shear viscosity has been
introduced by Hawking and Hartle [1–3] when studying
the response of the event horizon to external perturbations.
It was then greatly enhanced by Damour [4–6] who
showed that a 2-dimensional spacelike section of the event
horizon can be considered as a fluid bubble endowed with
some mechanical and electromagnetic properties. More-
over, he explicitly derived from the Einstein equation a
Navier-Stokes equation, involving both shear and bulk
viscosities, for an effective momentum density of the
‘‘fluid’’ constituting the bubble. This ‘‘fluid bubble’’ point
of view led to the development of the so-called membrane
paradigm for black hole astrophysics [7,8]. An example of
recent work using the concept of black hole viscosity is the
study of tidal interaction in a binary-black-hole inspiral [9].

The membrane approach was related to the event hori-
zon of the black hole (or to the associated ‘‘stretched
horizon’’ [7,8]). However the event horizon is an extremely
global and teleological concept, which requires the knowl-
edge of the complete spacetime, including the full future of
any Cauchy surface, to be located. It can by no means be
determined from local measurements (see Sec. 2.2.2 of
Ref. [10] for an interesting example of some event horizon
which appears in a flat region of spacetime). This makes
the event horizon a not very practical representation of
black holes for studies beyond the stationary regime in
numerical relativity or quantum gravity. For this reason,
local characterizations of black holes have been introduced
in the last decade (see [10–12] for a review). Although
some local concepts, like Hawking’s apparent horizon
[13], have appeared well before, the local approach really
started with Hayward’s introduction of trapping horizons
(or more precisely future outer trapping horizons) [14].
Whereas apparent horizons are 2-dimensional surfaces
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(associated with some spacelike slicing of spacetime),
trapping horizons are 3-dimensional submanifolds of
spacetime (hypersurfaces), as event horizons. Basically a
trapping horizon is a world tube made of marginally
trapped 2-surfaces; Hayward studied the dynamics of these
objects on their own, without making any reference to any
slicing of spacetime by spacelike Cauchy surfaces. More
recently, Ashtekar and Krishnan [10,15,16] introduced the
related concept of dynamical horizons and established the
‘‘first law’’ of black hole thermodynamics for them. This
first law has been extended to trapping horizons [17,18].

A natural question which arises is then: can the fluid
bubble approach to event horizons be extended to these
local characterizations of black holes? In particular, can
one obtain an analog of Damour’s Navier-Stokes equation?
Although some viscosity aspects are already present (in the
form of dissipation terms) in the first law of dynamical
horizons established by Ashtekar, Krishnan, and Hayward,
it does not seem a priori obvious to get an equivalent of the
Navier-Stokes equation. In particular, Damour’s derivation
relied heavily on the null structure of the event horizon,
whereas the future outer trapping horizons are generically
spacelike in dynamical situations, being null only in sta-
tionary states.

We will show here that it is indeed possible to get a
Navier-Stokes-like equation, provided one introduces the
correct geometrical objects. Actually, the Navier-Stokes-
like equation derived hereafter is quite general: it applies
not only to trapping or dynamical horizons, but to any
hypersurface which can be foliated by a smooth family
of spacelike 2-surfaces. In this respect, the recent demon-
stration [19] of the uniqueness of the foliation of a given
dynamical horizon by marginally trapped surfaces is pro-
viding some motivation for the present work. Moreover,
some uniqueness theorems about dynamical and trapping
horizons have been recently established [19,20], conferring
to these objects a more solid physical status. In addition,
the recent study [21] has provided some deep insights
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about their behavior in various scenarios of gravitational
collapse.

The plan of the article is as follows. In Sec. II, we set the
basic framework of our study, namely, a hypersurface
foliated by spacelike 2-surfaces. In Sec. III we review
standard results about the extrinsic geometry of a single
spacelike 2-surface. At this stage we introduce the geo-
metrical object that shall play the role of a momentum
density in the Navier-Stokes equation, namely, a normal
fundamental form of the 2-surface. In Sec. IV other geo-
metrical objects are introduced, defined by the foliation as
a whole and not by a single 2-surface. Then we have all the
tools to derive the generalized Damour-Navier-Stokes
equation in Sec. V. An application to a general law of
angular momentum balance is given in Sec. VI. Finally
Sec. VII contains the concluding remarks.
FIG. 1 (color online). Foliation of a hypersurface H by a
family �St�t2R of spacelike 2-surfaces, and the associated evo-
lution vector h.
II. FOLIATION OF A HYPERSURFACE BY
SPACELIKE 2-SURFACES

A. General setup

We consider a spacetime �M; g�, i.e. a smooth manifold
M of dimension 4 endowed with a Lorentzian metric g, of
signature ��;�;�;��. We assume that M is time orient-
able. Let H be a hypersurface of M which is foliated by a
family �St�t2R of 2-dimensional surfaces St labeled by the
real parameter t. By foliation, it is meant that H �S
t2RSt and that for each point p 2H , there is only

one St going through p (see Fig. 1). Then, given a coor-
dinate system xa � �x2; x3� on each St, �t; x2; x3� consti-
tutes a coordinate system on H .1 We assume that all
surfaces St are spacelike and closed (i.e. compact without
boundary). In the framework of the 3� 1 formalism of
general relativity, one may think of each surface St as
being the intersection of H with a spacelike hypersurface
�t arising from some 3� 1 foliation ��t�t2R of M: St �
H \ �t. Such a viewpoint will be called hereafter a 3� 1
perspective (e.g. [12]). It will not be used in the main-
stream of this article, except for making remarks and
connections with previous works. Indeed, we will deal
only with quantities intrinsic to H and its foliation
�St�t2R. Besides, let us recall that for a dynamical horizon
the foliation �St�t2R by marginally trapped surfaces is
unique (up to a relabeling t � t0) [19].

Demanding that the 2-surface St is spacelike amounts to
saying that the metric q induced by the spacetime metric g
onto St is positive definite (i.e. Riemannian). In particular
q is not degenerate and at each point p 2 St, the following
orthogonal decomposition holds:

T p�M� � T p�St� �T p�St�
?; (2.1)
1Latin indices from the beginning of the alphabet (a, b, . . .)
run in f2; 3g; Latin indices starting from the letter i run in
f1; 2; 3g, whereas Greek indices run in f0; 1; 2; 3g.
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where T p�M� [respectively, T p�St�] denotes the space of
vectors tangent to M [respectively, to St] at the point p,
and T p�St�

? denotes the space of vectors orthogonal to St
at p. Both vector spaces T p�St� and T p�St�

? are two
dimensional. Let us then denote by ~q the orthogonal pro-
jector onto T p�St�: ~q�v� � v, v 2 T p�St� and ~q�v� �
0, v 2 T p�St�

?. In this article, we shall take a 4-
dimensional point of view on the induced metric q by
setting q�u;v� � 0 if any of the two vectors u and v in
T p�M� belongs to T p�St�

?. Then, if in a given basis, the
components of q are q��, the components of ~q are q��,
where the index � has been raised with the metric g.

Given a generic tensorA on T p�M� of covariance type
�m; n�, we define a new tensor ~q�A of the same covariance
type thanks to the projector ~q:

� ~q�A��1����m
�1����n

:� q�1
�1
� � � q�m�m

q�1
�1
� � � q�n�nA

�1����m
�1����n : (2.2)

Note that for a vector, ~q�v � ~q�v� and for a 1-form, ~q�! �
! 	 ~q. Note also that for multilinear forms intrinsic to the
2-dimensional manifold St, ~q� can be viewed as the ‘‘push-
forward’’ operator which transforms them to multilinear
forms acting on the 4-dimensional space T p�M� (for
vectors and more generally contravariant tensors, the
push-forward operator is canonically provided by the em-
-2



GENERALIZED DAMOUR-NAVIER-STOKES EQUATION . . . PHYSICAL REVIEW D 72, 104007 (2005)
bedding of St in M). A tensor A on M will be said
tangent to St if ~q�A � A.

B. Evolution vector

Let us denote by h the vector field on H such that (see
Fig. 1) (i) h is tangent to H , (ii) at any point in H , h is
orthogonal to the surface St going through this point, (iii)
the length of h is associated with the parameter t labeling
the surfaces �St� by

L ht � 1; (2.3)

where Lh denotes the Lie derivative along h. In the present
case (scalar field t), we have of course Lht � h�@�t �
hdt;hi, where brackets are used to denote the action of 1-
forms on vectors. Given the foliation �St�t2R, the condi-
tions (i), (ii), and (iii) define h uniquely. Note however, that
if the leaves St are relabeled by a new parameter t0 � F�t�
(where F: R! R is a smooth one-to-one map), then h is
transformed into

h 0 � 
F0�t���1h (2.4)

so that Lh0t0 � 1.
An immediate consequence of Eq. (2.3) is that the 2-

surfaces St are Lie dragged by the vector field h: given an
infinitesimal parameter �t, the image of the surface St by
the displacement of each of its points by the vector �th is
the surface St��t (cf. Fig. 1). For this reason, h is the
natural vector field to describe the ‘‘evolution’’ of quanti-
ties across the foliation of H . In particular, we will con-
sider the Lie derivative along h, Lh as the ‘‘evolution
operator’’2 along H . Since h Lie drags the surfaces �St�,
it transports any vector tangent to St to a vector tangent to
St��t. In other words,

8 v 2 T �St�; Lhv 2 T �St�; (2.5)

where T �St� denotes the space of vector fields defined on
H and which are tangent to St. Although the vector field h
is not tangent to St, we can use property (2.5) to extend the
definition of Lh to 1-forms ! acting in T �St� (i.e. 2-
dimensional 1-forms associated with the manifold struc-
ture of St), by setting

8 v 2 T �St�; hLh!;vi :� Lhh!;vi � h!;Lhvi:

(2.6)

Note that the right-hand side of this equation is well
defined thanks to Eq. (2.5). The definition of Lh is then
extended immediately to any tensor field on St via tensor
products and Leibniz’ rule, e.g. Lh�!1 �!2� :� Lh!1 �
!2 �!1 � Lh!2. Given a multilinear form field A on St,
we then denote by SLhA the push forward (via the projec-
2The term evolution stands for ‘‘variation as t increases’’ and
can be made more concrete as one adopts the 3� 1 perspective
mentioned in Sec. II A.
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tor ~q) of the derivative LhA defined above:

SLhA :� ~q�LhA: (2.7)

One can then show that (see Appendix A of Ref. [12] for
details)

SLhA � ~q�Lh ~q
�A; (2.8)

where the Lie derivative in the right-hand side is the
standard Lie derivative along h within the manifold M.

Owing to the fundamental property (2.3) and the result-
ing Lie dragging of the surfaces �St�, it is not surprising
that the vector h has been introduced by many authors
when studying foliation of hypersurfaces, in various con-
texts: h and Lh were denoted, respectively, ‘ and D=dt by
Damour [4–6] in his black hole mechanics (H was then
taken to be an event horizon); h was denoted @�n�t by
Eardley [22] in his study of black hole boundary conditions
for 3� 1 numerical relativity, since it was then viewed as
the part of the evolution vector @=@t which is normal to St
in a coordinate system adapted to H . Similarly, h is
denoted ~� by Cook [23] when searching for boundary
conditions for initial data representing quasistationary
black holes. More recently, in the context of trapping and
dynamical horizons, h has been denoted Va by Ashtekar
and Krishnan [16], V by Booth and Fairhurst [24,25] and
� by Hayward [17,18].

Let C be the scalar field defined on H as half the scalar
square of h:

C :� 1
2h � h; (2.9)

where a dot is used to denote the scalar product taken with
the metric g. Since h is normal to St, an orthogonal vector
basis of T p�H � is �h; e2; e3�, where �e2; e3� is an ortho-
normal basis of T p�St�. In this basis, the matrix of the
metric induced by g on H is diag�2C; 1; 1�. We then
conclude that

H is spacelike , C> 0, h is spacelike;

H is null , C � 0, h is null;

H is timelike , C< 0, h is timelike:

(2.10)
III. EXTRINSIC GEOMETRY OF A SPACELIKE
2-SURFACE

In this section, we review some basic results about the
extrinsic geometry of a single spacelike 2-surface—not
necessarily a member of a foliation. For future purposes,
we take care to provide rather general definitions, for
instance not limiting the definition of expansion and shear
to null vectors, as usually done, nor limiting the definition
of the normal fundamental forms to some privileged nor-
mal frame.
-3



FIG. 2 (color online). Vector plane T p�St�
? normal to St at a

given point p, with some orthonormal frame �n; s� and some null
frame �‘; k�. The directions of ‘ and k are uniquely defined as
the intersections of T p�St�

? with the light cone emanating from
p, whereas the directions of n and s can be changed by an
arbitrary boost in a direction normal to St.
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A. Expansion and shear along normal vectors

Let us consider a fixed 2-surface St. We denote by
T �St�

? the space of vector fields v which are defined on
St and everywhere normal to St: 8 p 2 St, v�p� 2
T p�St�

?. For any v 2 T �St�
?, we define the deformation

tensor of St along v as the bilinear form

��v� :� ~q�rv 
or ��v��� :� r�v�q
�
�q

�
��; (3.1)

where r is the affine connection associated with the space-
time metric g and the underlining is used to denote in an
index-free way the 1-form v canonically associated to the
vector field v by the metric g. Note that thanks to the
projector ~q in Eq. (3.1), ��v� is independent of the values of
v away from St (some extension of v in an open neighbor-
hood of St being required for the spacetime covariant
derivative rv to be well defined). It is easy to see that
the bilinear form ��v� is symmetric, as the consequence of
v being normal to the surface St (Weingarten property).

Let us consider the metric ~q induced by g on the 2-
surfaces deduced from St by Lie dragging along v (recall
that q is a priori defined only on St; we have of course

~q�
St
q). Taking into account the symmetry of ��v� and

expressing the Lie derivative in terms of r yields ~q�Lv~q �
~q�rv~q� 2��v�. Now, from the idempotent character of ~q,
it is easy to see that ~q�rv~q � 0, so that finally one ends
with

��v� � 1
2
~q�Lv~q: (3.2)

This equality justifies the name deformation tensor given to
��v�: ��v� measures the variation of the metric in St when
this surface is Lie dragged along the vector v.
Decomposing ��v� into a trace part and a traceless part
results in the definition of the expansion rate of St along v:

��v� :� q����v��� � Lv ln
���
~q

p
; (3.3)

and the shear tensor of St along v:

� �v� :� ��v� � 1
2�
�v�q: (3.4)

In Eq. (3.3) the second equality results from Eq. (3.2), ~q
being the determinant of the components ~qab with respect
to a coordinate system xa � �x2; x3� of the induced metric
on the surface obtained from St by Lie drag along v. Since���
q
p

is related to the surface element S� of St by S� ����
q
p

dx2 ^ dx3, we see by considering coordinates xa con-
stant along v field lines that ��v� is nothing but the relative
rate of change of the area of a surface element Lie dragged
by v from St:

L v
S� � ��v�S�; (3.5)

hence the name expansion rate given to ��v�.
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B. Normal frames

From the decomposition (2.1) and the spacelike charac-
ter of St, we see that the restriction of the metric g to the
vector plane T p�St�

? orthogonal to St must be of signa-
ture ��;��. There are then two natural choices of pairs of
vectors for generating this plane: (i) an orthonormal basis
�n; s�, i.e. a timelike vector n and a spacelike vector s
satisfying

n � n � �1; s � s � 1; n � s � 0; (3.6)

(ii) a pair of linearly independent future-directed null
vectors �‘; k�; this choice is permissible since the signature
��;�� implies that T p�St�

? contains two null directions,
which are actually the intersections of the null cone ema-
nating from p with T p�St�

? (cf. Fig. 2):

‘ � ‘ � 0; k � k � 0; ‘ � k �: �e�; (3.7)

where ‘ � k is negative (hence written as minus some
exponential) as a result of both ‘ and k being future
directed.

In both cases, there is not a unique choice: in case (i), the
timelike and spacelike directions can be changed by a
boost in an arbitrary direction normal to St, leading to a
new pair of basis vectors:

n 0 � cosh	n� sinh	s; (3.8)

s 0 � sinh	n� cosh	s; (3.9)

where 	 2 R is the boost parameter. The choice �n; s� can
be made unique by invoking some extra structure like the
-4
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global foliation ��t�t2R of M arising from the 3� 1
perspective mentioned in Sec. II A, n being then the
future-directed unit normal to �t and s one of the two
unit normals to St which are tangent to �t. Another definite
choice of �n; s� can be performed when H is spacelike
(respectively, timelike), by demanding that n (respectively,
s) is normal to H ; s (respectively, n) is then collinear to
the evolution vector h, and, in particular, lies in H . This is
the choice adopted by Ashtekar and Krishnan [10,15,16]
for dynamical horizons, which are always spacelike (see
the Appendix).

In case (ii), the two null directions are unique, but the
vectors ‘ and k can be rescaled arbitrarily by

‘ 0 � 
‘; 
 > 0; (3.10)

k 0 � �k; � > 0; (3.11)

where the positive sign of 
 and� is chosen to preserve the
future orientation. One may reduce the arbitrariness by
fixing the scalar product ‘ � k to �1 [choice � � 0 in
Eq. (3.7)], but this determines only � as being 
�1 and
leaves the degree of freedom on 
. We will see in Sec. IV B
that, when considering not a single St, but the whole
foliation �St�t2R, this ambiguity can be fixed in a natural
way, leading to a unique choice of �‘; k�.

Note that for the choice (i), the orthogonal projector ~q on
St is expressible as

~q � 1� hn; :in� hs; :is (3.12)

(equivalently q � g� n � n� s � s), whereas for the
choice (ii)

~q � 1� e��hk; :i‘� e��h‘; :ik (3.13)

(equivalently q � g� e��k � ‘� e��‘ � k).
St is called a trapped surface if, in addition to being

spacelike and closed, it satisfies ��‘� < 0 and ��k� < 0, and
a marginally trapped surface if ��‘� � 0 and ��k� < 0, or
��‘� < 0 and ��k� � 0 [26]. If one of the two null directions,
‘ say, can be selected as being ‘‘outgoing,’’ St is called an
outer trapped surface if ��‘� < 0 (irrespectively of the sign
of ��k�) [13]. It is called a marginally outer trapped surface
if ��‘� � 0. Notice that all these definitions are unaffected
by the rescaling (3.10) and (3.11) of the null vectors ‘ and
k.
C. Second fundamental tensor

As for any non-null submanifold of �M; g�, the second
fundamental tensor of St (also called extrinsic imbedding
curvature tensor [27] or shape tensor [28]) is defined as the
tensor K of type �1; 2� relating the covariant derivative of a
vector tangent to St taken with the spacetime connection r
to that taken with the connection in St compatible with the
induced metric q, hereafter denoted by D:
104007
8 �u;v� 2 T �St�
2; ruv �Duv�K�u;v�:

(3.14)

From the fundamental relation

DA � ~q�rA; (3.15)

valid for any tensorial field A tangent to St, it is easy to
express K in terms of the derivative of ~q:

K �
�� � r�q

�
�q��q

�
�: (3.16)

Let �n; s� be an orthonormal frame of T �St�
?; inserting

expression (3.12) for q�� in the above relation and making
use of definition (3.1) leads to

K �
�� � n���n��� � s

���s���: (3.17)

Similarly, if one uses instead a null frame �‘; k� for
T �St�

?, expression (3.13) for q�� leads to

K �
�� � e���k���‘��� � ‘

���k����: (3.18)

It is clear on formulas (3.17) and (3.18) that the second
fundamental tensor is orthogonal to St in its first index, and
symmetric and tangent to St in its second and third indices.
The reader more familiar with the hypersurface case
should note that the second fundamental tensor for a hyper-
surface writes, instead of Eq. (3.17), K�

�� � �n
�K��,

where n� is the normal to the hypersurface and K�� its
second fundamental form or extrinsic curvature tensor.

D. Normal fundamental forms

Contrary to the case of a hypersurface, the extrinsic
geometry of the 2-surface St is not entirely specified by
the second fundamental tensor K . Indeed, because it in-
volves only the deformation tensors ���� of the normals to
St [cf. Eqs. (3.17) and (3.18)], K encodes only the part of
the variation of St’s normals which is parallel to St. It does
not encode the variation of the two normals with respect to
each other. The latter is devoted to the normal fundamental
forms which are the 1-forms defined by (cf. e.g. [14] or
[29])

��n� :� s � r ~qn 
or ��n�� :� s�r�n�q���; (3.19)

��s� :� n � r ~qs 
or ��s�� :� n�r�s�q��� (3.20)

if one considers an orthonormal frame �n; s� of T �St�
?

and by

��‘� :�
1

k � ‘
k � r ~q‘ 
or ��‘�� :�

1

k�‘
� k�r�‘

�q���;

(3.21)

��k� :�
1

k � ‘
‘ � r ~qk 
or ��k�� :�

1

k�‘
� ‘�r�k

�q���

(3.22)
-5
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if a null frame �‘; k� of T �St�? is considered instead. Note
that, thanks to the projector ~q, the definition of the normal
fundamental forms does not depend upon the values of the
normal fields n, s, ‘, and k away from the 2-surface St.
Note also that thanks to the division by k � ‘, the value of
��‘� does not depend on the choice of the null vector k
complementary to ‘. From the orthogonality relations (3.6)
and (3.7), we have the immediate properties:

��s� � ���n�; (3.23)

��k� � ���‘� �D�: (3.24)

We can also relate the �‘;k�-type normal fundamental
forms to the �n; s�-type ones by choosing the canonical
null frame associated with a given orthonormal frame
�n; s�, namely, ‘ � n� s and k � n� s. Then

��‘� � ��n� 
‘ � n� s�; (3.25)

��k� � ���n� 
k � n� s�: (3.26)

Note that, if one considers a non-null hypersurface instead
of a 2-surface, the analog of definition (3.19) would be
��n� :� n � r ~qn, since there is only one normal n. But this
expression vanishes identically by virtue of the normaliza-
tion of n (n � n � 1 for a timelike hypersurface, and �1
for a spacelike one). Consequently, the extrinsic curvature
of a non-null hypersurface is entirely characterized by the
second fundamental form K. For a null hypersurface, with
normal ‘, the orthogonal projector ~q is not defined (as a
result of q being degenerate). The relevant quantity is then
the 1-form ��‘� defined by Eq. (3.21) but with ~q substituted
with the orthogonal projector to some spacelike 2-surface
embedded in the hypersurface and k substituted with a
transverse null vector. It is then called the Hajicek 1-form
[30,31] (see also [12]).

The normal fundamental forms can be interpreted in
terms of the connection 1-forms associated with respect
to some tetrad. Indeed let e� � �n; s; e2; e3� be an ortho-
normal tetrad [�e2; e3� is then an orthonormal basis of
T p�St�]. The connection 1-forms associated with this
tetrad are the 1-forms !�

� such that for any vector field
v on M, rve� � h!�

�;vie�. Then, from Eq. (3.19),

��n� � ~q�!1
0: (3.27)

An equivalent phrasing of this is saying that the two non-
trivial components of ��n� with respect to the dual frame
�e��, namely, ��n�a (a � 2; 3), are identical to some of the
connection coefficients ���� associated with the tetrad
�e��:

��n�a � �1
0a: (3.28)

Relations (3.27) and (3.28) justify the alternative names
external rotation coefficients [27] and connection on the
104007
normal bundle [25,29,32] given to the normal fundamental
forms.

The normal fundamental forms depend on the normal
frame. Indeed a change of normal frame �n; s�� �n0; s0�
according to Eqs. (3.8) and (3.9) leads to

��n
0� � ��n� �D	; (3.29)

whereas a change of null normal frame �‘; k�� �‘0; k0�
according to Eqs. (3.10) and (3.11) leads to

��‘
0� � ��‘� �D ln
: (3.30)

On the contrary, the second fundamental tensor K intro-
duced in the previous section does not depend on the
choice of the normal frame: this is obvious from
Eq. (3.16) which involves only the projector ~q, and this
can be checked easily from the expressions in terms of the
normal frames [Eqs. (3.17) and (3.18)], by substituting the
transformation laws (3.8) and (3.9) and (3.10) and (3.11).
We refer the reader to Carter’s article [27] for an extended
discussion of this dependence of the normal fundamental
forms with respect to the normal frames.

IV. EXTRINSIC GEOMETRY OF THE FOLIATION

Section III introduced quantities relative to a single 2-
surface St. Here we investigate quantities defined with
respect to the family �St�t2R foliating H .

A. Dual-null description of the foliation �St�t2R
A very convenient way to study the foliation �St�t2R is to

employ the dual-null formalism of Hayward [14,33,34]
(see also [35,36]), which we recall here, adapting the
notations to our purpose (see Table I for the correspon-
dence with Hayward’s notations).

Let us consider, in the neighborhood of H , two families
of null hypersurfaces, �Uu�u2R and �V v�v2R, which in-
tersect in spatial 2-surfaces such that each 2-surface St is
one of these intersections, i.e. for each t 2 R, there exists a
value of u, u0�t� say, and a value of v, v0�t� say, such that
St is the intersection between Uu0�t� and V v0�t�:

8 t 2 R; St �Uu0�t� \V v0�t�: (4.1)

Such a dual-null foliation always exists, Uu0�t� (respec-
tively, V v0�t�) being nothing but the hypersurface gener-
ated by light rays outgoing (respectively, ingoing)
orthogonally from St. Moreover, if H is spacelike or
timelike, the dual-null foliation is unique. If H is null,
then H coincides with Uu0�t� and u0�t� � const; there is
then the degree of freedom of choosing the foliation �Uu�
outside of H .

Let ~‘ and ~k be the null normal vectors to, respectively,
Uu and V v and dual (up to a sign) to the gradient 1-forms
du and dv:

~‘ :� �du and ~k :� �dv: (4.2)
-6



TABLE I. Correspondence between our notations and those of
Hayward.

This work Hayward [14] Hayward [17,18,34]

q h h
D D D
u 
� x�

v 
� x�
~‘ N� g�1�n��
~k N� g�1�n��
~‘ n� n�
~k n� n�

f f f
‘̂ u� � r� � e�fN� l�
k̂ u� � r� � e�fN� l�
$ ! !
��

~‘� �e�f�� ����
��

~k� �e�f�� ����
��‘̂� e�f�� �����
��k̂� e�f�� �����
h 

B 1=
�

C=A �
�

m �

GENERALIZED DAMOUR-NAVIER-STOKES EQUATION . . . PHYSICAL REVIEW D 72, 104007 (2005)
Since St belongs to both Uu0�t� and V v0�t�, both ~‘ and ~k are
normal to St, and therefore constitute a null frame of
T �St�

?, similar to those considered in Sec. III B. Let us
denote f the scalar field � associated to the scalar product
of ~‘ and ~k by Eq. (3.7):

~‘ � ~k �: �ef: (4.3)

From the definition (4.2), the 1-forms ~‘ and ~k are closed:

d ~‘ � 0 and d ~k � 0: (4.4)

The vectors ~‘ and ~k being null, it follows immediately from
Eq. (4.4) that

r ~‘
~‘ � 0 and r~k

~k � 0; (4.5)

i.e. the field lines of ~‘ and ~k are geodesics: they are the light
rays emanating orthogonally from St. Hayward
[14,17,18,33,34] introduces another pair of null vectors
by setting

‘̂ :� e�f~‘ and k̂ :� e�f ~k: (4.6)

These vectors have the fundamental property of Lie drag-
ging the hypersurfaces V v and Uu, respectively, i.e. they
obey

L ‘̂v � 1 and Lk̂u � 1; (4.7)

but contrary to ~‘ and ~k, the 1-forms ‘̂ and k̂ are not closed,
since we deduce from Eq. (4.4) that

d ‘̂ � �df ^ ‘̂ and dk̂ � �df ^ k̂: (4.8)
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Besides,

‘̂ � k̂ � �e�f: (4.9)

The anholonomicity 1-form, also called twist 1-form, is
defined by [cf. Appendix B of Ref. [14], in conjunction
with our definitions (3.21) and (3.22)]

$ :� 1
2��

�~k� ���
~‘��: (4.10)

From Eq. (3.24) with � � f, we get

$ � ���
~‘� � 1

2Df � ��
~k� � 1

2Df: (4.11)

According to the scaling law (3.30) with 
 � e�f [cf.
Eq. (4.6)], we can reexpress the anholonomicity 1-form
in terms of the normal fundamental forms associated with ‘̂
and k̂:

$ � ���‘̂� � 1
2Df � ��k̂� � 1

2Df: (4.12)

Thanks to Eq. (4.4), we can easily reexpress$ in terms of
the commutator of ~k and ~‘, as well as that of k̂ and ‘̂:

$ �
e�f

2
q � 
~k; ~‘� �

ef

2
q � 
k̂; ‘̂� (4.13)

�
or $� �

e�f

2
q��
~k; ~‘�� �

ef

2
q��
k̂; ‘̂��

�
: (4.14)

This justifies the terms anholonomicity and twist given to
$: according to the Frobenius theorem, the 2-planes
T p�St�

? are integrable in 2-surfaces when t varies, if,
and only if, the commutator of two generating vectors,
e.g. ~k and ~‘, satisfies 
~k; ~‘� 2 T p�St�

?; from Eq. (4.13),
this is equivalent to $ � 0.

B. Normal null frame associated with the evolution
vector h

The evolution vector h introduced in Sec. II B belongs to
the plane orthogonal to St. Following Booth and Fairhurst
[24,25], we notice that there exists a unique pair of null
vectors �‘; k� in that plane such that (see Fig. 3)

h � ‘� Ck and ‘ � k � �1; (4.15)

where C is related to the scalar square of h by Eq. (2.9).
Thus we may say that the foliation �St�t2R entirely fixes,
via its evolution vector h, the ambiguities in the choice of
the null normal frame �‘; k� discussed in Sec. III B.

The vectors ‘ and k are necessarily collinear to, respec-
tively, the vectors ~‘ and ~k associated with the dual-null
foliation introduced above, i.e. there exists two positive
scalar fields, A and B, such that

‘ � A~‘ and k � B~k: (4.16)

Actually, we will use Eq. (4.16) to define ‘ and k away
from H , Eq. (4.15) defining them only on H . However,
all the results presented here are independent of the values
-7



FIG. 3 (color online). Null vectors �‘;k� associated with the
evolution vector h by h � ‘� Ck; the plane of the figure is the
plane T p�St�

?, so that St is reduced to a point.
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of A and B away from H . The normalization ‘ � k � �1,
combined with Eq. (4.3) relates the product AB to f:

AB � e�f or f � � ln�AB�: (4.17)

Then, from Eqs. (4.6) and (4.16),

‘ � B�1‘̂ and k � A�1k̂; (4.18)

which implies

h �
H
B�1‘̂� CA�1k̂: (4.19)

Consequently, taking into account Eqs. (4.2), (4.6), and
(4.7),

L hu�
H
�CA�1 and Lhv�

H
B�1: (4.20)

On the other side, since u�
H
u0�t� and v�

H
v0�t�, Lhu�

H
u00�t�

and Lhv�
H
v00�t�, where we have used the fundamental

property Lht � 1 defining h [Eq. (2.3)]. We then conclude
that

B�
H

1=v00�t� and C=A�
H
�u00�t�: (4.21)

This implies that, on H , the fields B and C=A are func-
tions of t only; in particular, they are constant on each 2-
surface St:

DB�
H

0 and D�C=A� �
H

0: (4.22)

Using Eqs. (4.4) and (4.16), we get

d ‘ � d lnA ^ ‘ and dk � d lnB ^ k; (4.23)

from which we obtain

r ‘‘ � ��‘�‘ with ��‘� :� L‘ lnA; (4.24)
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r kk � ��k�k with ��k� :� Lk lnB: (4.25)

��‘� and ��k� are the inaffinity parameters of the null vector
fields ‘ and k. Using the definitions (3.1), (3.21), and
(3.22), we then get an expression for the spacetime gra-
dients of ‘ and k:

r ‘ � ��‘� � ‘ ���‘� � ��‘�‘ � k� rk‘ � ‘; (4.26)

r k � ��k� � k ���‘� � ��k�k � ‘� r‘k � k; (4.27)

where we have used Eq. (3.24) with � � 0 to set ��k� �
���‘�. Besides, from Eqs. (4.22) and (4.23), we get useful
identities:

~q �rk‘ � ���‘� �D lnA; (4.28)

~q �r‘k � ��‘�: (4.29)
C. ‘‘Surface-gravity’’ 1-forms

Let us define the 1-form

� �‘� :�
1

k � ‘
k � r

~q
?‘

�
or ��‘�� :�

1

k�‘
� k�r�‘

�q
?�

�

�
;

(4.30)

where ~q
?

denotes the orthogonal projector on the vector

plane T p�St�
?, i.e. the complementary of ~q: 1 � ~q� ~q

?

.
The definition (4.30) is similar to the definition (3.21) of

��‘�, except for ~q replaced by ~q
?

. Hence, whereas ��‘� was
defined for a single 2-surface St, ��‘� requires the knowl-
edge of the null normal ‘ in directions normal to St. From
Eqs. (4.24) and (4.25), the inaffinity parameters ��‘� and
��k� are recovered by applying the 1-form ��‘� to, respec-
tively, ‘ and �k:

h��‘�; ‘i � ��‘� and h��‘�; ki � ���k�: (4.31)

A useful relation is then

h��‘�;hi � ��‘� � C��k�: (4.32)
D. Trapping horizons and dynamical horizons

Let us recall here the various definitions involved in the
local characterizations of black holes mentioned in the
Introduction. The hypersurface H equipped with the
spacelike foliation �St�t2R is called a marginally outer
trapped tube (MOTT) [11] if each leaf St is a marginal
outer trapped surface (cf. Sec. III B), i.e. if �‘ � 0 at any
point in H . Following Hayward [14] a trapping horizon is
a MOTT on which ��k� � 0 and Lk��‘� � 0, being qualified
as a future trapping horizon if ��k� < 0 and a future outer
trapping horizon if ��k� < 0 and Lk��‘� < 0, the latter sub-
-8
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case being the one relevant for black holes (see Ref. [11]
for a discussion). The dynamical horizons introduced by
Ashtekar and Krishnan [10,15,16] are MOTT such that (i)
H is spacelike and (ii) ��k� < 0. In particular, a spacelike
future trapping horizon is a dynamical horizon. When it is
null, a MOTT is called a nonexpanding horizon [30,31,37].
It corresponds to a black hole in equilibrium.
FIG. 4 (color online). Same as Fig. 3 but with in addition the
vector m normal to the hypersurface H .
V. THE GENERALIZED DAMOUR-NAVIER-
STOKES EQUATION

A. Original Damour-Navier-Stokes equation

In the case where the hypersurface H is null, and, in
particular, when H is the event horizon of a black hole,
h � ‘ and the Damour-Navier-Stokes equation [5,6,12,38]
writes

SL‘�
�‘� � ��‘���‘� �D��‘� �D � ~��‘� � 1

2D��‘�

� 8�~q�T � ‘: (5.1)

This equation is derived from the Einstein equation, as the
presence of the stress-energy tensor T testifies.3 It has
exactly the same structure as a 2-dimensional Navier-
Stokes equation: dividing Eq. (5.1) by 8�, ���‘�=�8�� is
interpreted by Damour [5,6] as a momentum surface den-
sity, ��‘�=�8�� as a fluid pressure, 1=�16�� as a shear
viscosity (��‘� being the shear tensor), �1=�16�� in front
of D��‘� as a bulk viscosity, and ~q�T � ‘ as a force surface
density. The reader is referred to Chapter VI of Ref. [8] for
an extended discussion of this ‘‘viscous fluid’’ viewpoint.

B. Derivation of the generalized equation

First of all, it must be noted that in the Damour-Navier-
Stokes equation (5.1), the vector field ‘ plays two different
roles: it is both the evolution vector along H (obviously in
a term like SL‘) and the normal to H (in a term like ~q�T �
‘). When H is no longer null, these two roles have to be
taken by two different vectors. We have already seen that
the privileged evolution vector along H is the vector h
associated with the foliation �St�t2R. Regarding the normal
vector, it is natural to consider

m :� ‘� Ck: (5.2)

Indeed this vector is normal to H , since by construction
m 2 T p�St�

? andm � h � 0, and in the limit where H is
null, it reduces to ‘. It can be viewed as the unique normal
vector to H whose projection onto H along the ingoing
null direction k is h (see Fig. 4). Note that the scalar square
of m is the negative of that of h:

m �m � �2C � �h � h: (5.3)
3We are using geometrized units, in which both the speed of
light c and the gravitation constant G are set to 1.
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A generalization of the Damour-Navier-Stokes equation
to the non-null case should contain the term ~q�T �m,
instead of ~q�T � ‘, in the right-hand side. By virtue of the
Einstein equation and the fact that ~q�m� � 0, 8�~q�T �
m � ~q�R �m, where R is the Ricci tensor associated
with the spacetime metric g. The starting point for getting
the generalized Damour-Navier-Stokes equation will be
then the contracted Ricci identity applied to the vector m
and projected onto St:

�r�r�m� �r�r�m��q�� � R��m�q��: (5.4)

Now, by combining definition (5.2) with expressions (4.26)
and (4.27),

r�m
� � ��m��� ���‘�� h� � ��‘�k�‘

� � C��k�‘�k
�

� ‘�k�r�‘� � Ck�‘�r�k� �r�Ck�:

(5.5)

Substituting Eq. (5.5) for r�m� and r�m� in Eq. (5.4),
expanding and making use of identities (4.28), (4.29), and
(4.32) yields, after some rearrangements,

R��m�q�� � q��r���m��� � q��h�r���‘��

���h��� ��‘�� � ��h��
�‘�
� �D����m�

� h��‘�;hi� ���‘��� D� lnA���k��� D�C

� ��k�D�C� ��k��D�C� CD� lnA�|���������������{z���������������}
�0

;

(5.6)

where the ‘‘� 0’’ results from Eq. (4.22). Now, from the
relation (3.15) between the derivatives D and r, one has
[making use of identities (4.28) and (4.29)]

q��r���m��� �D���m��� ���m��� D� lnA: (5.7)
-9
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Besides, expressing the Lie derivative in terms of r gives

q��Lh��‘�� � q��h�r���‘�� ���h��� ��‘�� : (5.8)

Thanks to Eqs. (5.7) and (5.8), Eq. (5.6) reduces to

R��m
�q�� �D���m��� � q��Lh��‘�� � ��h��

�‘�
�

�D���
�m� � h��‘�;hi� � ��k�D�C; (5.9)

where Eq. (4.22) has been used to set to zero the term ��k���

(CD� lnA�D�C) which had appeared. Now, from
Eq. (2.8) and the property ~q���‘� � ��‘�, the term
~q�Lh��‘� which appears in the above equation is nothing
but SLh��‘�. Reexpressing ��m� in terms of the shear
tensor ��m� and the expansion scalar ��m� via Eq. (3.4)
and taking account the Einstein equation then leads to

SLh��‘� � ��h���‘� �Dh��‘�;hi �D � ~��m� � 1
2D��m�

� ��k�DC� 8�~q�T �m: (5.10)

This is the generalization of Damour-Navier-Stokes equa-
tion to the case where the foliated hypersurface H is not
necessarily null. In the null limit, C � 0, h � m � ‘ and
we recover Damour’s original version, i.e. Eq. (5.1). In the
non-null case, it is worth noticing that the obtained equa-
tion is not much more complicated than Eq. (5.1): apart
from substitutions of ‘ by either h or m, as discussed
above, it contains only one extra term: ��k�DC.

C. Change of normal fundamental form

Let us rewrite the generalized Damour-Navier-Stokes
equation in terms of the normal fundamental form ��‘

0�

associated with a generic null vector ‘0, instead of ‘.
Setting ‘0 � 
‘, with 
 > 0, ��‘

0� is related to ��‘� by
Eq. (3.30), from which we deduce

SLh��‘
0� � ��h���‘

0� � SLh��‘� � ��h���‘� �D�Lh ln
�

� ��h�D ln
; (5.11)

where we have used SLhD ln
 �D�Lh ln
�. Besides, we
note that the 1-form ��‘� transforms as follows:

� �‘
0� � ��‘� � r

~q
? ln
; (5.12)

from which

D h��‘
0�;hi �Dh��‘�;hi �D�Lh ln
�: (5.13)

Combining Eqs. (5.10), (5.11), and (5.13), and using ��h� �
��‘� � C��k� yields

SLh��‘
0� � ��h���‘

0� �Dh��‘
0�;hi �D � ~��m� � 1

2D��m�

� ��‘�D ln


� ��k��DC� CD ln
�

� 8�~q�T �m: (5.14)
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If we chose 
 � A�1, then by virtue of Eq. (4.22), the term
DC� CD ln
 vanishes identically. Since 
 � A�1 corre-
sponds to ‘0 � ~‘ [cf. Eq. (4.16)], Eq. (5.14) reduces then to

SLh��
~‘� � ��h���~‘� �Dh��

~‘�;hi �D � ~��m� � 1
2D��m�

� ��‘�D lnA� 8�~q�T �m:

(5.15)

In the case where H is not null (C � 0), another way to set
to zero the term DC� CD ln
 in Eq. (5.14) is to choose


 � F�t�=jCj; (5.16)

where F�t� is an arbitrary function of t, since then DC�
CD ln
 � CD ln�
jCj� � CD lnF�t� � 0. The simplest
choice F�t� � 1 corresponds to the following decomposi-
tion of the evolution vector: h � 
�C‘0 � k0� (with 

corresponding to C> 0 and C< 0, respectively), to be
contrasted with the decomposition (4.15). Actually this
amounts simply to swapping the vectors ‘ and k.

D. Application to trapping horizons

If H is a trapping horizon (or more generally a MOTT,
cf. Sec. IV D), then ��‘� � 0 and Eq. (5.15) becomes

SLh��
~‘� � ��h���~‘� �Dh��

~‘�;hi �D � ~��m� � 1
2D��m�

� 8�~q�T �m: (5.17)

This equation is structurally identical to the original
Damour-Navier-Stokes equation [Eq. (5.1)]: apart from
substitutions of ‘ by either h or m, it does not contain
any extra term. The differences are that the original
Damour-Navier-Stokes equation applies to a null H but
with ��‘� not necessarily zero, whereas Eq. (5.17) is valid
for both H null or spacelike, but assumes ��‘� � 0.
VI. ANGULAR MOMENTUM

Traditionally the concept of angular momentum is a
global one and requires the evaluation of a Komar integral
at spatial infinity, assuming M to be asymptotically flat
and endowed with an axisymmetric Killing vector (cf. e.g.
Ref. [39]). However, by means of some Hamiltonian analy-
sis, the concept of angular momentum can be made quasi-
local, as a quantity associated with the interior of the
spacetime region delimited by the hypersurface H . The
prototype of such a quasilocal formulation is the Brown-
York analysis [40] which will be taken as the starting point
for our discussion.

A. Brown-York angular momentum

Let us assume that the hypersurface H is timelike and is
axisymmetric, with the associated Killing vector’ lying in
the 2-surfaces St. The definition of angular momentum by
Brown and York [40] is then
-10
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J :�
I
St

hj;’i S�; (6.1)

where S� is the surface element of St associated with the
induced metric q (S� �

���
q
p

dx2 ^ dx3 for any coordinate
system xa � �x2; x3� on St, with q :� detqab) and the
momentum surface density 1-form j is defined as follows.
Adopting a 3� 1 perspective (cf. Sec. II A), let �t be a
spacelike hypersurface intersecting H in St. Denoting by
� and K the induced metric and extrinsic curvature tensor
of �t, j is expressible as

j� � �
2����
�
p P��s�q��; (6.2)

where s is the unit spacelike normal to St which lies in �t
and P is the momentum canonically conjugate to �:

P�� �
1

16�
����
�
p
�K��� � K���: (6.3)

Since K is related to the gradient of the timelike unit
normal to �t, n, by K�� � �r�n�������, we get, by
inserting Eq. (6.3) in Eq. (6.2) and comparing with
Eq. (3.19),

j � �
1

8�
��n�: (6.4)

By considering the null vector ‘0 :� n� s and combining
the transformation laws (3.25) and (3.30), one gets

j � �
1

8�
���‘� �D ln
�; (6.5)

where 
 is the scale factor relating ‘ to n� s: n� s � 
‘.
Now, the Killing equation for the vector ’ and the fact that
’ 2 T �St� imply D � ’ � 0. Consequently ’ �D ln
 �
D � �ln
’� is a perfect divergence, the integral of which
over the closed surface St vanishes. Therefore substituting
Eq. (6.5) for j into Eq. (6.1) yields

J � �
1

8�

I
St

h��‘�;’i S�: (6.6)

This expression is in perfect agreement with the interpre-
tation of ���‘�=�8�� as a momentum surface density
performed in Sec. V.

B. Generalized angular momentum

It may be noticed that the timelike character of the
hypersurface H , assumed in the Brown-York Hamil-
tonian analysis [40], does not play any role in the expres-
sion (6.6) of the angular momentum. Actually the defini-
tion of angular momentum, based on Eq. (6.6), has been
extended to null hypersurfaces by Booth [41] (in a general-
ization of the Brown-York analysis) and Ashtekar et al.
[42] (in the framework of isolated horizons).

It is also worth noticing that the independence of the
integral defining J with respect to the normal fundamental
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form (i.e. ��n� or ��‘�) stems only from the divergence-
free property of the vector ’, which is a condition weaker
than that of being a Killing vector. Therefore, one may
relax the latter and follow Booth and Fairhurst’s recent
analysis [25] to introduce a generalized angular momen-
tum as follows. Let us assume that the 2-surfaces St have
the topology of S2. Let ’ be a vector field in T �St� which
(i) has closed orbits and (ii) has vanishing divergence with
respect to the induced connection D:

D �’ � 0: (6.7)

The angular momentum associated with ’ is then defined
by [25]

J�’� :� �
1

8�

I
St

h��‘�;’i S�; (6.8)

which is a formula structurally identical to formula (6.6).
The main difference is that ’ is no longer the Killing
vector reflecting the axisymmetry of St and uniquely de-
fined by the normalization of the orbit lengths to 2�, but
merely a divergence-free vector field. Consequently, J
depends on the choice of ’. However formula (6.8) shares
with formula (6.6) the independence with respect to the
choice of the normal fundamental form ��‘� , thanks to the
divergence-free character of ’. Indeed, under a change of
null normal ‘0 � 
‘, ��‘� is changed to ��‘

0� � ��‘� �
D ln
 [Eq. (3.30)] and since D �’ � 0, ’ �D ln
 �D �
�ln
’� is a perfect divergence, the integral of which on St
vanishes.

As a further justification of definition (6.8), it is shown in
the Appendix that, when H is a dynamical horizon, J�’�
agrees with the generalized angular momentum defined by
Ashtekar and Krishnan [10,16].

C. Angular momentum flux law

For any 1-form ! and vector field ’ defined on H and
both tangent to St for all t 2 R, the following identity
holds:

d
dt

I
St

h!;’i S� �
I
St

SLh
h!;’i
S��

�
I
St

hSLh!� �
�h�!;’i S�

�
I
St

h!;Lh’i S�; (6.9)

where the first equality results from the Lie transport of the
2-surfaces St by the vector field h (cf. Sec. II B) and in the
second equality the relation Lh

S� � ��h� S� has been used
[cf. Eq. (3.5)].

Applying the above identity to the 1-form! � ��‘� and
employing the generalized Damour-Navier-Stokes equa-
tion (5.10) leads to an evolution equation for the general-
ized angular momentum J�’� defined by Eq. (6.8):
-11



4If the null energy condition holds, a non-null future outer
trapping horizon is necessarily spacelike [14].
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d
dt
J�’� � �

I
St

T�m;’� S�

�
1

16�

I
St


�
/ �m�

:L’q� 2��k�’ �DC� S�

�
1

8�

I
St

h��‘�;Lh’i S�: (6.10)

The notation ‘‘:’’ stands for a complete contraction,
whereas the double arrow means that the two indices of

��m� have been raised with the metric g: �
/ �m�

:L’q �

��m�abL’qab. The integrals involving the pure gradients
Dh��‘�;hi and D��m� have been set to zero thanks to the
property D �’ � 0. Besides, we have written ’ � �D �
~��m�� �D � � ~��m� �’� � ~��m�:D’, with the integral of

the divergence D � � ~��m� �’� being zero since St is a
closed manifold and, thanks to the symmetry of the shear

tensor ��m�, 2 ~��m�:D’ � ��m�ab�Da’b �Db’a� �

�
/ �m�

:L’q.
The last integral in Eq. (6.10) occurs to take into account

a possible variation of ’ along the evolution vector h. To
make the variation of J more meaningful, it is natural to
demand that the vector field ’ is transported by h:

L h’ � 0: (6.11)

From now on, we assume that ’ obeys to both conditions
(6.7) and (6.11). Note that if ’ is a symmetry generator of
H which is tangent to St, these two conditions are sat-
isfied (in particular, Lh’ � �L’h � 0). Then Eq. (6.10)
simplifies to

d
dt
J�’� � �

I
St

T�m;’� S�

�
1

16�

I
St


�
/ �m�

:L’q� 2��k�’ �DC� S�:

(6.12)

In the case where H is a null hypersurface, then C � 0
and Eq. (6.12) reduces to

d
dt
J�’� � �

I
St

T�‘;’� S��
1

16�

I
St

�
/ �‘�

:L’q
S�:

(6.13)

We recover here Eq. (6.134) of the Membrane Paradigm
book [8], where the first term is interpreted as the variation
of J due to the flux of the angular momentum carried by
matter and the electromagnetic field at H and the second
term accounts for the shear viscosity of H .

Let us consider now the case where H is either timelike
or spacelike: C � 0 and we may express ��k� in Eq. (6.12)
as ��k� � ���‘� � ��h��=C [cf. Eq. (4.15)], so that

���k�’ �DC � ���‘�’ �D lnjCj � ��h�’ �D lnjCj:

(6.14)
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Now, the properties (6.7) and (6.11) fulfilled by ’ imply
that the vector field ��h�’ is divergence free on �St; q�:

D � ���h�’� � 0: (6.15)

This follows from the identity

L hD �’� ��h�D �’ �D � �Lh’� ��h�’�; (6.16)

which can be easily established, for instance by consider-
ing a coordinate system �t; x2; x3� on H such that h �
@=@t. As a consequence of Eq. (6.15), the integral over St
of ��h�’ �D lnjCj vanishes. Taking into account
Eq. (6.14), we deduce then that Eq. (6.12) can be written

d
dt
J�’� � �

I
St

T�m;’� S�

�
1

16�

I
St


�
/ �m�

:L’q� 2��‘�’ �D lnjCj� S�:

(6.17)

We deduce immediately from this expression that if H is a
timelike or spacelike MOTT, i.e. if ��‘� � 0, the angular
momentum variation law takes a very simple form:

d
dt
J�’� � �

I
St

T�m;’� S��
1

16�

I
St

�
/ �m�

:L’q
S�:

(6.18)

In particular, the above formula holds for a spacelike future
outer trapping horizon4 and for a dynamical horizon. We
have established this relation by assuming C � 0. Now the
relation obtained in the null case, Eq. (6.13), is identical to
Eq. (6.18) since m � ‘ when C � 0. Therefore, collecting
the two results, we conclude that Eq. (6.18) holds for a
future outer trapping horizon of any kind: dynamical hori-
zon (C> 0) or nonexpanding horizon (C � 0).

It is worth noting that Eq. (6.18) has the same form as
Eq. (6.13), which has been established for generic null
hypersurfaces, not necessarily nonexpanding horizons. In
the case where H is a dynamical horizon, m is timelike
and since ’ is orthogonal to m, �T�m;’� represents a
momentum density along the spatial direction’. Therefore
we can attribute the first term on the right-hand side of
Eq. (6.18) to the flux of matter and electromagnetic angular
momentum across St. Regarding the second term, it clearly
vanishes if St is axisymmetric, with ’ as a symmetry
generator (L’q � 0).

D. Relation to previous angular momentum laws

Booth and Fairhurst [24] have obtained the angular
momentum flux law (6.18) in the case where H is a slowly
evolving horizon. A slowly evolving horizon is a future
outer trapping horizon which is close (in a sense made
-12
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precise in Ref. [24]) to an isolated horizon. Equation (6.18)
is then obtained by an expansion to second order in �,
where � ’

������
2C
p

is the small parameter which measures the
deviation from an isolated horizon.5 At this order, note that

�
/ �m� is replaced by �

/ �‘� in Booth and Fairhurst’s version
[their Eq. (14)]. Another difference with these authors is
that they did not assume that ’ is divergence free, but that
it is close to a Killing vector of �St; q�.

In the case where H is a dynamical horizon, Ashtekar
and Krishnan [16] have also derived an angular momentum
balance law, but in a time-integrated form, so that it
involves 3-dimensional integrals. Actually the relation de-
rived in Ref. [16] does not assume that H is a MOTT and
is valid for any spacelike hypersurface. It turns out that if
we integrate with respect to t the angular momentum law
(6.17), which is also valid for any spacelike H , we recover
exactly Ashtekar and Krishnan’s version. This is shown in
the Appendix.
VII. CONCLUSION

We have established, by means of the Einstein equation,
an identity valid for any hypersurface H foliated by
spacelike 2-surfaces �St�t2R. This equation has the same
form, up to some additional term, as the 2-dimensional
Navier-Stokes equation obtained by Damour [5,6] for de-
scribing the dynamics of event horizons. The evolution
vector, giving the time derivative of the effective momen-
tum surface density is the vector h tangent to H , orthogo-
nal to the leaves St and which transports them into each
other (Lie dragging). The role of the momentum surface
density is played by the normal fundamental form ��‘� of
St associated with the outgoing null normal ‘ whose
projection along the ingoing null direction is h. The pres-
sure term involves both vectors ‘ and h, as it is the surface-
gravity 1-form of ‘ acting on h. The vector defining the
shear and the expansion involved in the viscous terms is the
vector m normal to H and whose projection onto H
along the ingoing normal null direction is h. The vector
m gives also the external force exercised by matter and
electromagnetic fields, if any.

It must be noted that another outgoing null vector can be
selected instead of ‘, such as a tangent ~‘ to the hyper-
surfaces of outgoing light rays emanating orthogonally
from St, the dual 1-form of which is closed: d~‘ � 0. The
key point is that all normal fundamental forms and surface-
gravity 1-forms differ only by a gradient and their inter-
change alters only slightly the generalized Damour-
Navier-Stokes equation.

If the hypersurface H is null, the three vectors ‘, h, and
m coincide and the equation obtained here reduces to the
original Damour-Navier-Stokes equation [5,6]. If H is a
5Note that the definition of angular momentum in Ref. [24] has
the opposite sign from ours.
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marginally outer trapped tube, and, in particular, if it is a
dynamical horizon or a future outer trapping horizon, the
obtained equation, written in terms of ~‘, is as simple as the
original Damour-Navier-Stokes equation, the generic addi-
tional term vanishing in this case.

The generalized Damour-Navier-Stokes equation has
been used to derive a balance law for the angular momen-
tum associated with each of the leaves St and a generic
divergence-free vector. When H is a dynamical horizon,
this law is a time differential form of the law obtained by
Ashtekar and Krishnan [10,16]. When H is a slowly
evolving horizon, we recover the angular momentum flux
law obtained by Booth and Fairhurst [24].
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APPENDIX: LINK WITH THE 3� 1 DESCRIPTION
OF DYNAMICAL HORIZONS

1. Basic relations

When H is a dynamical horizon, it is a spacelike
hypersurface and Ashtekar and Krishnan [10,16] have
made use of the standard 3� 1 formalism to describe it,
by introducing its unit timelike future-directed normal �n,
its positive definite induced metric ��, and its extrinsic
curvature tensor �K. Here we have put bars on the symbols
denoting them to stress that these objects are relative to H
itself and not to some spacelike hypersurface � intersect-
ing H in a 2-surface (as in the 3� 1 perspective men-
tioned in Sec. II A). Note that our sign convention for the
extrinsic curvature is the opposite of that of Ashtekar and
Krishnan and that we are using �n for the unit normal
denoted �̂ by Ashtekar and Krishnan. We also denote by
�s the unit spacelike normal to St lying in H . � �n; �s� con-
stitutes then an orthonormal frame normal to St. �s is
denoted by r̂ by Ashtekar and Krishnan, but we use here
notations consistent with those introduced in Sec. III B.
The correspondence between both sets of notations is given
in Table II.

The normal �n is necessarily collinear tom. Similarly �s is
necessarily collinear to h. From the norm of m [Eq. (5.3)]
and h [Eq. (2.9)], we deduce

�n �
1������
2C
p m and �s �

1������
2C
p h: (A1)

Let us recall that C> 0 for a dynamical horizon. Ashtekar
and Krishnan [10,16] consider the following null normal
frame (see Table II):

�‘ :� �n� �s and �k :� �n� �s: (A2)
-13



TABLE II. Correspondence between our notations and those
of Ashtekar and Krishnan.

This work Ashtekar and Krishnan [16]

�n �̂
�s r̂
�� q
�K �K
q ~q
D ~D
���s� ~K
���s� ~K
�‘ ‘
�k n
�� �n� ~W
��

~‘� �
1�����
2C
p dR

dt NR
1
C
dR
dt ‘ �

A
C
dR
dt

~‘ ��R�
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From Eqs. (4.15), (5.2), and (A1), we get immediately the
relation between these vectors and the null vectors �‘; k�
associated with h and introduced in Sec. IV B:

�‘ �

����
2

C

s
‘ and �k �

������
2C
p

k: (A3)

Ashtekar and Krishnan have introduced the 1-form

~W � :� � �K�� �s�q�� � � ��
�
� ����r� �n�� �s

�q��

� r� �n� �s�q�� � �� �n�� ; (A4)

hence ~W is nothing but the normal fundamental form �� �n�

[cf. Eq. (3.19)].
Another 1-form introduced by them is6

�� :� �s�r� �‘�q��: (A5)

Replacing �s and �‘ by their respective expressions (A1) and
(A3), and making use of Eq. (4.15), yields

�� �
1

C
‘�r�‘�q�� � k�r�‘�q��: (A6)

Thanks to the identities (4.24) and (4.28), and to the fact
that for C> 0, Eq. (4.22) implies D lnA �D lnC, we get

� � ��‘� �D lnC: (A7)

Now, since ‘ � A~‘, we have from the scaling law (3.30),
��‘� � ��

~‘� �D lnA � ��
~‘� �D lnC. Hence we con-

clude that the quantity � introduced by Ashtekar and
Krishnan [10,16] is nothing but the normal fundamental
6Actually they introduced it as a vector, but we consider it here
as a 1-form via the standard metric duality.
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form associated with the null vector ~‘:

� � ��
~‘�: (A8)

In the Ashtekar and Krishnan analysis [10,16], a privi-
leged role is played by the area radius R, i.e. the scalar field
on H , which is constant on each 2-surface St and related
to the area a of this surface by a � 4�R2. An associated
quantity is the lapse NR defined as the norm of the gradient
of R within H :

NR :�
����������������������
��ij@iR@jR

q
: (A9)

R is a function of t and we may write @iR � �dR=dt�@it �
�dR=dt� �si=

������
2C
p

. From the normalization ��ij �si �sj � 1 and
the positivity of dR=dt (area increase law [16]), we then
obtain

NR �
1������
2C
p

dR
dt
: (A10)

The null evolution vector considered by Ashtekar and
Krishnan is ��R� � NR �‘. From Eqs. (4.16), (A3), and
(A10), we can reexpress it as

� �R� �
1

C
dR
dt
‘ �

A
C
dR
dt

~‘: (A11)

Notice that thanks to the property (4.22), the coefficient
A=CdR=dt in front of ~‘ is constant on each 2-surface St.

2. Angular momentum

Ashtekar and Krishnan [10,16] define the generalized
angular momentum associated with a section St and a
vector field ’ tangent to St by

�J�’� :�
1

8�

I
St

�K�’; �s� S�: (A12)

From Eq. (A4) and ~q�’� � ’, we deduce immediately that

�J�’� � �
1

8�

I
St

h�� �n�;’i S�: (A13)

If we suppose now that ’ is divergence free with respect to
the connection in St: D �’ � 0, then, by means of the
transformation laws of normal fundamental forms,
Eqs. (3.25) and (3.30), it is easy to see that �J�’� coincides
with the generalized angular momentum J�’� as defined
by Eq. (6.8):

D �’ � 0�) �J�’� � J�’�: (A14)

Regarding the angular momentum flux law, Ashtekar
and Krishnan [16] have derived an integrated version of
it from the momentum constraint equation relative to the
hypersurface H . It writes
-14
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J�’; t2� � J�’; t1� � �
Z

�H
T� �n;’�H��

1

16�

�
Z

�H

� �K ��ij � �Kij�L’ ��ij�H�;

(A15)

where �H is a portion of H delimited by two surfaces,
St1 and St2 say, and H� is the volume 3-form on H
associated with the metric ��. Note that we have restored
the explicit dependence of J�’� on St by writing J�’; t�.
Note also that Eq. (A15) holds for any spacelike hypersur-
face H , not necessarily a dynamical horizon. Let us
express the integrand in the second integral in the right-
hand side of Eq. (A15) in terms of fields defined on the 2-
surfaces St. First of all, performing an orthogonal 2� 1
decomposition of �K with respect to St yields

�K ij � ��� �n�ij ��� �n�i �sj ��� �n�j �si � � �Kkl �sk �sl��si �sj;

(A16)

�K � ��� �n� � �Kkl �sk �sl: (A17)

Besides, L’ ��ij � �Di’j � �Dj’i, where �Di is the covariant
derivative associated with the 3-metric �� on H and ’i :�
��ij’j, with

�D i’j �Di’j ����s�ik ’
k �sj � �si �sk �Dk’j: (A18)

Using the property Lh’ � 0 [Eq. (6.11)] and the relation
(A1) between h and �s, we can rewrite the above expression
as

�D i’j �Di’j � � �si�
��s�
jk � �sj�

��s�
ik �’

k � 1
2’

kDk lnC�si �sj:

(A19)

From Eqs. (A16), (A17), and (A19) and the divergence-
free property of ’ [Eq. (6.7)], we get

� �K ��ij � �Kij�L’ ��ij � 2�� �n�abDa’b � ��
�n�’aDa lnC

� �
/ � �n�

:L’q� ��
�n�’ �D lnC:

(A20)

Now from Eq. (A1), �� �n� � ��m�=
������
2C
p

and �� �n� �
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��m�=
������
2C
p

, so that we can write Ashtekar and Krishnan’s
integrated flux law (A15) as

J�’; t2� � J�’; t1� � �
Z

�H

1������
2C
p T�m;’�H�

�
1

16�

Z
�H

1������
2C
p

� 
�
/ �m�

:L’q� ��m�’ �D lnC�H�:

(A21)

On the other side, if we integrate in time our flux law
(6.17), which, as Eq. (A21), is valid for any spacelike
hypersurface H , we get

J�’; t2� � J�’; t1� � �
Z

�H
T�m;’�Hdt ^ S�

�
1

16�

Z
�H

�
/ �m�

:L’q

� 2��‘�’ �D lnC�Hdt ^ S�; (A22)

where Hdt denotes the gradient 1-form of the scalar field t
within the manifold H . Besides, from the basic properties
Lht � 1, h orthogonal to St and h � h � 2C, we deduce
easily that h :� �� � h � 2CHdt, hence �s :� �� � �s �
h =

������
2C
p

�
������
2C
p

Hdt. Now, since �s is the unit vector or-
thogonal to St, H� � �s ^ S�, so that we have

H� �
������
2C
p

Hdt ^ S�: (A23)

This relation shows the equivalence of Eqs. (A21) and
(A22), except at first glance for the ��m� term in
Eq. (A21) which is replaced by 2��‘� in Eq. (A22).
However, ��m� � 2��‘� � ��h� [cf. Eqs. (4.15) and (5.2)]
and the integral over St of ��h�’ �D lnC vanishes since
the vector field ��h�’ is divergence free [Eq. (6.15)]. This
proves that Eq. (A22) is identical to Eq. (A21), i.e. that for
a spacelike hypersurface, and, in particular, for a dynami-
cal horizon, the integrated version of our angular momen-
tum flux law (6.17) results in Ashtekar and Krishnan [16]
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