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Abstract

The isolated horizon formalism recently introduced by Ashtekar et al. aims at providing a quasi-local concept of a black hole in
equilibrium in an otherwise possibly dynamical spacetime. In this formalism, a hierarchy of geometrical structures is constructed
on a null hypersurface. On the other side, the 3 + 1 formulation of general relativity provides a powerful setting for studying the
spacetime dynamics, in particular gravitational radiation from black hole systems. Here we revisit the kinematics and dynamics
of null hypersurfaces by making use of some 3 + 1 slicing of spacetime. In particular, the additional structures induced on null
hypersurfaces by the 3 + 1 slicing permit a natural extension to the full spacetime of geometrical quantities defined on the null
hypersurface. This four-dimensional point of view facilitates the link between the null and spatial geometries. We proceed by
reformulating the isolated horizon structure in this framework. We also reformulate previous works, such as Damour’s black hole
mechanics, and make the link with a previous 3 + 1 approach of black hole horizon, namely the membrane paradigm. We explicit
all geometrical objects in terms of 3 + 1 quantities, putting a special emphasis on the conformal 3 + 1 formulation. This is in
particular relevant for the initial data problem of black hole spacetimes for numerical relativity. Illustrative examples are provided
by considering various slicings of Schwarzschild and Kerr spacetimes.
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1. Introduction

1.1. Scope of this article

Black holes are currently the subject of intense research, both from the observational and theoretical points of view.
Numerous observations of black holes in X-ray binaries and in the center of most galaxies, including ours, have firmly
established black holes as ‘standard’ objects in the astronomical field [121,142,126]. Moreover, black holes are one of
the main targets of gravitational wave observatories which are currently starting to acquire data: LIGO [75], VIRGO
[2], GEO600 [153], and TAMA [6], or are scheduled for the next decade: advanced ground-based interferometers
and the space antenna LISA [115]. These vigorous observational activities constitute one of the main motivations for
new theoretical developments on black holes, ranging from new quasi-local formalisms [18,31] to numerical relativity
[3,25], going through perturbative techniques [140] and post-Newtonian ones [28]. In particular, special emphasis is
devoted to the computation of the merger of inspiralling binary black holes, a not yet solved cornerstone which is
par excellence the 2-body problem of general relativity, and constitutes one of the most promising sources for the
interferometric gravitational wave detectors [25].

In this article, we concentrate on the geometrical description of the black hole horizon as a null hypersurface
embedded in spacetime, mainly aiming at numerical relativity applications. Let us recall that a null hypersurface is a
3-dimensional surface ruled by null geodesics (i.e. light rays), like the light cone in Minkowski spacetime, and that it
is always a “one-way membrane”: it divides locally spacetime in two regions, A and B let’s say, such that any future
directed causal (i.e. null or timelike) curve can move from region A to region B, but not in the reverse way. Regarding
black holes, null hypersurfaces are relevant in two contexts. Firstly, wherever it is smooth, the black hole event horizon
is a null hypersurface of spacetime1 [39,40,48]. Let us stress that the event horizon constitutes an intrinsically global
concept, in the sense that its definition requires the knowledge of the whole spacetime (to determine whether null
geodesics can reach null infinity). Secondly, a systematic attempt to provide a quasi-local description2 of black holes
has been initiated in the recent years by Hayward [93,94] (concept of future trapping horizons) and Ashtekar and
collaborators [10–17] — see Refs. [18,31] for a review — (concepts of isolated and dynamical horizons). Restricted
to the quasi-equilibrium case (isolated horizons), the quasi-local description amounts to model the black hole horizon
by a null hypersurface. This line of research finds its motivations and subsequent applications in a variety of fields of
gravitational physics such as black hole mechanics, mathematical relativity, quantum gravity and, due to its quasi-local
character, numerical relativity [65,108,99,58,19].

The geometry of a null hypersurface H is usually described in terms of objects that are intrinsic to H. At least
some of them admit no natural extension outside the hypersurface H. In the case of the isolated horizon formalism
this leads, in a natural way, to a discussion which is eminently intrinsic to H in a twofold manner. On one hand, the
derived expressions are generically valid only on H without canonical extensions to a neighborhood of the surrounding
spacetime. On the other hand, since in this setting the hypersurface H can be seen as representing the history of a
spacelike 2-sphere (a world-tube in spacetime), the study of H’s geometry from a strictly intrinsic point of view leads
to a strategy in which one firstly discuss evolution concepts, and then one considers the initial conditions on the 2-sphere
which are compatible with such an evolution. We may call this an up-down strategy.

On the contrary, the dynamics of black hole spacetimes is mostly studied within the 3+1 formalism (see e.g. [25,171]
for a review), which amounts in the foliation of spacetime by a family of spacelike hypersurfaces. In this case, one
deals with a Cauchy problem, starting from some initial spacelike hypersurface �0 and evolving it in order to construct
the proper spacetime objects. In particular, this applies to the construction of the horizon H as a worldtube. We may
call this a down-up strategy.

1 More generally the event horizon is an achronal set [90].
2 By quasi-local we mean an analysis restricted to a submanifold of spacetime (typically a three-dimensional hypersurface with compact sections,

but also a single compact two-dimensional surface).
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In this article, we analyze the dynamics of null hypersurfaces from the 3 + 1 point of view. As a methodological
strategy, we adopt a complete four-dimensional description, even when considering objects which are actually intrinsic
to a given (hyper)surface. This facilitates the link between the null horizon hypersurface and the spatial hypersurfaces
of the 3 + 1 slicing. Moreover, the 3 + 1 foliation of spacetime induces an additional structure on H which allows to
normalize unambiguously the null normal to H and to define a projector onto H. Let us recall that a distinctive feature
of null hypersurfaces is the lack of such canonical constructions, contrary to the spacelike or timelike case where one
can unambiguously define the unit normal vector and the orthogonal projector onto the hypersurface.

Null hypersurfaces have been extensively studied in the literature in connection with black hole horizons, from many
different points of view. In the seventies, Há "́iček conducted geometrical studies of non-expanding null hypersurfaces
to model stationary black hole horizons [82–84]. By studying the response of the (null) event horizon to external
perturbations, Hawking and Hartle [91,85,86] introduced the concept of black hole viscosity. This hydrodynamical
analogy was extended by Damour [59–61]. Electromagnetic aspects were studied by Damour [59–61] and Znajek
[175,176]. These studies led to the famous membrane paradigm for the description of black holes ([141,165] and
references therein). In particular, this paradigm represents the first systematic 3 + 1 approach to black hole physics.
Whereas these studies all dealt with the event horizon (the global aspect of a black hole), a quasi-local approach,
based on the notion of trapped surface [132], has been initiated in the nineties by Hayward [93,94], in the framework
of the 2 + 2 formalism. Closely related to these ideas, a systematic quasi-local treatment has been developed these
last years by Ashtekar and collaborators [10–17] (see Refs. [18,31] for a review), giving rise to the notion of isolated
horizons and more recently to that of dynamical horizons, the latter not being constructed on a null hypersurface, but
on a spacelike one.

One purpose of this article is to fill the gap existing between the mathematical techniques used in null geometry
and the standard expertise in the numerical relativity community. Consequently, an important effort will be devoted
to the derivation of explicit expressions of null-geometry quantities in terms of 3 + 1 objects. More generally, the
article is relatively self-contained, and requires only an elementary knowledge of differential geometry, at the level of
introductory textbooks in general relativity [90,123,167]. We have tried to be quite pedagogical, by providing concrete
examples and detailed derivations of the main results. In fact, these explicit developments permit to access directly
to intermediate steps, which might be useful in actual numerical implementations. We rederive the basic properties
of null hypersurfaces, taking advantage of our 3 + 1 perspective, namely the unambiguous definition of the null
normal and transverse projector provided by the 3 + 1 spacelike slicing. Therefore the present article should not be
considered as a substitute for comprehensive formal presentations of the intrinsic geometry of null surfaces, as Refs.
[73,72,109,101,103]. Likewise, it is not the aim here to review the isolated horizon formalism and its applications,
something already carried out in a full extent in Ref. [18].

Despite the length of the article, some important topics are not treated here, namely electromagnetic properties of
black holes or black hole thermodynamics. In particular, we will not develop the Hamiltonian description of black
hole mechanics in the isolated horizon scheme, except for the minimum required to discuss the physical parameters
associated with the black hole. We do not comment either on the application of the isolated horizon framework beyond
Einstein–Maxwell theory to include, e.g. Yang–Mills fields. Even though these fields are not expected to be relevant
in an astrophysical setting, their inclusion involves a major conceptual and structural interest; we refer the reader to
Chapter 6 in Ref. [18] for a review on the achievements in this line of research, namely on the mass of solitonic solutions.

The plan of the article is as follows. After setting the notations in the next subsection, we start by reviewing the
basic properties of null hypersurfaces in Section 2. Then the spacelike slicing of the 3 + 1 formalism widely used
in numerical relativity is introduced in Section 3. The additional structures induced by this slicing on a given null
hypersurface H are discussed in Section 4; in particular, this involves a privileged null normal, a null transverse vector
and the associated projector onto H. Equipped with these tools, we proceed in Section 5 to describe the kinematics of
null hypersurfaces, namely relations involving the first “time” derivative of their degenerate metric. The next logical
step corresponds to dynamics, namely the second order derivatives of the metric, which is explored in Section 6. The
Einstein equation naturally enters the scene at this level. In particular, we recover in Section 6 previous results from the
membrane paradigm, like Damour’s Navier–Stokes equation or the tidal-force equation. Then in Section 7 we move
to the quasi-local approach of black holes by restricting to null hypersurfaces with vanishing expansion, which are the
“perfect horizons” of Há "́iček and constitute the first step in Ashtekar et al. hierarchy leading to isolated horizons. The
next levels in the hierarchy are studied in Sections 8 and 9, where we discuss the weakly and strongly isolated horizon
structures. Due to the extension of the material, these two sections rely more explicitly on the existing literature and, as
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a consequence, the intrinsic point of view of the geometry of H (the up-down strategy referred above) acquires there
a more important role than in the rest of the article. In Section 10, we express basic objects of null geometry in terms
of the 3 + 1 quantities, including the standard conformal decompositions of 3 + 1 objects. This allows to translate in
Section 11 the isolated horizon prescriptions into boundary conditions for the relevant 3 + 1 fields on some excised
sphere, making the link with numerical relativity. Some technical details are treated in appendices: the relationship
between different derivatives along the null normal is given Appendix A; Appendix B is devoted to the complete
computation of the spacetime Riemann tensor. In contrast with some works on null hypersurfaces, we do not make
use of the Newman–Penrose formalism but rely instead on Cartan’s structure equations. Appendix C briefly presents,
with the aid of examples, the basics of the Hamiltonian description. Appendix D provides the concrete example of the
horizon of a Kerr black hole, while simpler examples, based on Minkowski or Schwarzschild spacetimes, are provided
throughout the main text. Finally Appendix E gathers the different symbols used throughout the article.

1.2. Notations and conventions

For the benefit of the reader, we give here a somewhat detailed exposure of the notations used throughout the article.
This is also the occasion to recall some concepts from elementary differential geometry employed here.

We consider a spacetime (M, g) where M is a real smooth (i.e. C∞) manifold of dimension 4 and g a Lorentzian
metric on M, of signature (−, +, +, +). We denote by ∇ the affine connection associated with g, and call it the
spacetime connection to distinguish it from other connections introduced in the text.

At a given point p ∈ M, we denote by Tp(M) the tangent space, i.e. the (4-dimensional) space of vectors at p. Its
dual space (also called cotangent space) is denoted by T∗

p (M) and is constituted by all linear forms at p. We denote
by T(M) (resp. T∗(M)) the space of smooth vector fields (resp. 1-forms) on M. The experienced reader is warned
that T(M) does not stand for the tangent bundle of M (it rather corresponds to the space of smooth cross-sections of
that bundle). No confusion may arise since we shall not use the notion of bundle in this article.

1.2.1. Tensors: ‘index’ notation versus ‘intrinsic’ notation
Since we will manipulate geometrical quantities which are not well suited to the index notation (like Lie derivatives or

exterior derivatives), we will use quite often an index-free notation. When dealing with indices, we adopt the following
conventions: all Greek indices run in {0, 1, 2, 3}. We will use letters from the beginning of the alphabet (�, �, 	, . . .) for
free indices, and letters starting from 
 (
, �, �, . . .) as dumb indices for contraction (in this way the tensorial degree
(valence) of any equation is immediately apparent). All capital Latin indices (A, B, C, . . .) run in {0, 2, 3} and lower
case Latin indices starting from the letter i (i, j, k, . . .) run in {1, 2, 3}, while those starting from the beginning of the
alphabet (a, b, c, . . .) run in {2, 3} only.

For the sake of clarity, let us recall that if (e�) is a vector basis of the tangent space Tp(M) and (e�) is the associate

dual basis, i.e. the basis of T∗
p (M) such that e�(e�) = 
�

�, the components T �1...�p
�1...�q

of a tensor T of type
(

p
q

)
with respect to the bases (e�) and (e�) are given by the expansion

T = T �1...�p
�1...�q

e�1 ⊗ · · · ⊗ e�p ⊗ e�1 ⊗ · · · ⊗ e�q . (1.1)

The components ∇	T
�1...�p

�1...�q
of the covariant derivative ∇T are defined by the expansion

∇T = ∇	T
�1...�p

�1...�q
e�1 ⊗ · · · ⊗ e�p ⊗ e�1 ⊗ · · · ⊗ e�q ⊗ e	 . (1.2)

Note the position of the “derivative index” 	: e	 is the last 1-form of the tensorial product on the right-hand side. In
this respect, the notation T �1...�p

�1...�q ;	 instead of ∇	T
�1...�p

�1...�q
would have been more appropriate. This index

convention agrees with that of MTW [123] [cf. their Eq. (10.17)]. As a result, the covariant derivative of the tensor T
along any vector field u is related to ∇T by

∇uT = ∇T( ., . . . , .︸ ︷︷ ︸
p+q slots

, u) . (1.3)

The components of ∇uT are then u
∇
T �1...�p
�1...�q

.
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Given a vector field v on M, the infinitesimal change of any tensor field T along the flow of v, is given by the Lie
derivative of T with respect to v, denoted by Lv T and whose components are

(Lv T )�1...�p
�1...�q

=v
∇
(Lv T )�1...�p
�1...�q

−
p∑

i=1

T �1...
...�p
�1...�q

∇
v�i +
q∑

i=1

T �1...�p
�1...
...�q

∇�i
v
 , (1.4)

where the connection ∇ can be substituted by any other torsion-free connection. Actually let us recall that the Lie
derivative depends only upon the differentiable structure of the manifold M and not upon the metric g nor a particular
affine connection. In this article, extensive use will be made of expression (1.4), as well as of its straightforward
analogues on submanifolds of M (see also Appendix A).

We denote the scalar product of two vectors with respect to the metric g by a dot:

∀(u, v) ∈ Tp(M) × Tp(M), u · v := g(u, v) . (1.5)

We also use a dot for the contraction of two tensors A and B on the last index of A and the first index of B (provided of
course that these indices are of opposite types). For instance if A is a bilinear form and B a vector, A · B is the linear
form which components are

(A · B)� = A�
B
 . (1.6)

However, to denote the action of linear forms on vectors, we will use brackets instead of a dot:

∀(�, v) ∈ T∗
p (M) × Tp(M), 〈�, v〉 = � · v = �
v
 . (1.7)

Given a 1-form � and a vector field u, the directional covariant derivative ∇u� is a 1-form and we have [combining
the notations (1.7) and (1.3)]

∀(�, u, v) ∈ T∗(M) × T(M) × T(M), 〈∇u�, v〉 = ∇�(v, u) . (1.8)

Again, notice the ordering in the arguments of the bilinear form ∇�. Taking the risk of insisting outrageously, let
us stress that this is equivalent to say that the components (∇�)�� of ∇� with respect to a given basis (e� ⊗ e�) of
T∗(M) ⊗ T∗(M) are ∇���:

∇� = ∇���e� ⊗ e� , (1.9)

this relation constituting a particular case of Eq. (1.2).
The metric g induces an isomorphism between Tp(M) (vectors) and T∗

p (M) (linear forms) which, in the index

notation, corresponds to the lowering or raising of the index by contraction with g�� or g��. In the present article, an
index-free symbol will always denote a tensor with a fixed covariance type (e.g. a vector, a 1-form, a bilinear form,
etc. . .). We will therefore use a different symbol to denote its image under the metric isomorphism. In particular, we
denote by an underbar the isomorphism Tp(M) → T∗

p (M) and by an arrow the reverse isomorphism T∗
p (M) →

Tp(M):

(1) for any vector u in Tp(M), u stands for the unique linear form such that

∀v ∈ Tp(M), 〈u, v〉 = g(u, v) . (1.10)

However, we will omit the underlining on the components of u, since the position of the index allows to distinguish
between vectors and linear forms, following the standard usage: if the components of u in a given basis (e�) are
denoted by u�, the components of u in the dual basis (e�) are then denoted by u� [in agreement with Eq. (1.1)].

(2) for any linear form � in T∗
p (M), 
� stands for the unique vector of Tp(M) such that

∀v ∈ Tp(M), g(
�, v) = 〈�, v〉 . (1.11)

As for the underbar, we will omit the arrow over the components of 
� by denoting them ��.
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(3) we extend the arrow notation to bilinear forms on Tp(M): for any bilinear form T : Tp(M) × Tp(M) → R, we
denote by 
T the (unique) endomorphism Tp(M) → Tp(M) which satisfies

∀(u, v) ∈ Tp(M) × Tp(M), T(u, v) = u · 
T(v) . (1.12)

If T�� are the components of the bilinear form T in some basis e� ⊗ e�, the matrix of the endomorphism 
T with
respect to the vector basis e� (dual to e�) is T �

�.

1.2.2. Curvature tensor
We follow the MTW convention [123] and define the Riemann curvature tensor of the spacetime connection ∇ by

Riem : T∗(M) × T(M)3 −→ C∞(M, R)

(�, w, u, v) �−→ 〈�, ∇u∇vw − ∇v∇uw − ∇[u,v]w〉 ,
(1.13)

where C∞(M, R) denotes the space of smooth scalar fields on M. As it is well known, the above formula does define
a tensor field on M, i.e. the value of Riem(�, w, u, v) at a given point p ∈ M depends only upon the values of the
fields �, w, u and v at p and not upon their behaviors away from p, as the gradients in Eq. (1.13) might suggest. We
denote the components of this tensor in a given basis (e�), not by Riem	


��, but by R	

��. The definition (1.13) leads

then to the following writing (called Ricci identity):

∀w ∈ T(M), (∇�∇� − ∇�∇�)w
	 = R	


��w
 . (1.14)

From the definition (1.13), the Riemann tensor is clearly antisymmetric with respect to its last two arguments (u, v).
The fact that the connection ∇ is associated with a metric (i.e. g) implies the additional well-known antisymmetry:

∀(�, w) ∈ T∗(M) × T(M), Riem(�, w, ·, ·) = −Riem(w, 
�, ·, ·) . (1.15)

In addition, the Riemann tensor satisfies the cyclic property

∀(u, v, w) ∈ T(M)3,

Riem(·, u, v, w) + Riem(·, w, u, v) + Riem(·, v, w, u) = 0 . (1.16)

The Ricci tensor of the spacetime connection ∇ is the bilinear form R defined by

R : T(M) × T(M) −→ C∞(M, R)

(u, v) �−→ Riem(e
, u, e
, v) .
(1.17)

This definition is independent of the choice of the basis (e�) and its dual counterpart (e�). Moreover the bilinear form
R is symmetric. In terms of components:

R�� = R

�
� . (1.18)

Note that, following the standard usage, we are denoting the components of both the Riemann and Ricci tensors by
the same letter R, the number of indices allowing to distinguish between the two tensors. On the contrary we are using
different symbols, Riem and R, when dealing with the ‘intrinsic’ notation.

Finally, the Riemann tensor can be split into (i) a “trace-trace” part, represented by the Ricci scalar R := g
�R
�,
(ii) a “trace” part, represented by the Ricci tensor R [cf. Eq. (1.18)], and (iii) a “traceless” part, which is constituted by
the Weyl conformal curvature tensor, C:

R	

�� = C	


�� + 1
2 (R	

�g
� − R	
�g
� + R
�
	

� − R
�
	
�) + 1

6R(g
�
	
� − g
�
	

�) . (1.19)

The above relation can be taken as the definition of C. It implies that C is traceless:

C

�
� = 0 . (1.20)

The other possible traces are zero thanks to the symmetry properties of the Riemann tensor. It is well known that the
20 independent components of the Riemann tensor distribute in the 10 components in the Ricci tensor, that are fixed
by Einstein equation, and 10 independent components in the Weyl tensor.
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1.2.3. Differential forms and exterior calculus

In this article, we will make use of p-forms, mostly 1-forms and 2-forms. Let us recall that a p-form is a type
(

0
p

)
tensor field which is antisymmetric with respect to all its p arguments. In other words, it is a multilinear form field
T(M) × · · · × T(M) −→ C∞(M, R) which is fully antisymmetric.

We follow the convention of MTW [123], Wald [167], and Straumann [157] textbooks for the exterior product (wedge
product) between p-forms: if � and � are two 1-forms [i.e. two elements of T∗(M)], � ∧ � is the 2-form defined by

� ∧ � := � ⊗ � − � ⊗ � . (1.21)

Note that this definition disagrees with that of Hawking and Ellis [90], which would require a factor 1/2 in front of the
r.h.s. of (1.21) [cf. the equation on p. 21 of Ref. [90], and Ref. [38] for a discussion].

The exterior derivative of a differential form is defined by induction starting from df being the 1-form gradient of
f for any scalar field (0-form) f. For any (p + q)-form that can be written as the exterior product of a p-form � by a
q-form �, the exterior derivative is the (p + q + 1)-form defined by

d(� ∧ �) = d� ∧ � + (−1)p� ∧ d� . (1.22)

This equation agrees with that in Box 4.1 of MTW [123]. It constitutes a version of Leibnitz rule altered by the factor
(−1)p; for this reason the exterior derivative is sometimes called an antiderivation (e.g. Definition 4.2 of Ref. [157]).

The components of the exterior derivative of a 1-form � with respect to some coordinate system (x�) on M are

(d�)�� = ���� − ���� , (1.23)

where the partial derivative �� can be replaced by any covariant derivative operator without torsion on M (for instance
the spacetime derivative ∇�). Taking into account Eqs. (1.9) and (1.8), we can then write

∀ (u, v) ∈ T(M) × T(M), d�(u, v) = ∇�(v, u) − ∇�(u, v) (1.24)

= 〈∇u�, v〉 − 〈∇v�, u〉 . (1.25)

A very useful relation that we shall employ throughout the article is Cartan identity, which relates the Lie derivative of
a p-form � along a vector field v to the exterior derivative of �:

Lv � = v · d� + d(v · �) . (1.26)

Given a 1-form � ∈ T∗(M) and a connection operator ∇̃ onM (not necessarily the spacetime connection ∇ associated
with the metric g), the exterior derivative d� can be viewed as (minus two times) the antisymmetric part of the gradient
∇̃�. The symmetric part is given by (half of) the Killing operator Kil(∇̃, .), such that Kil(∇̃, �) is the symmetric
bilinear form T(M) × T(M) → C∞(M, R) defined by

Kil(∇̃, �)(u, v) = ∇̃�(u, v) + ∇̃�(v, u) , (1.27)

for any (u, v) ∈ T(M) × T(M). Combining Eqs. (1.27) and (1.24), we have the decomposition

∀� ∈ T∗(M), ∇̃� = 1
2 [ Kil(∇̃, �) − d�] . (1.28)

As stated before, the antisymmetric part, d�, is independent of the choice of the connection ∇̃.

2. Basic properties of null hypersurfaces

There is no doubt about the central role of null hypersurfaces in general relativity, and they have been extensively
studied in the literature. We review here some of their elementary properties, referring the reader to Refs. [72,73,109]
and [21,101–103,128] for further details or alternative approaches. Let us mention that the properties described here,
as well as in the subsequent Sections 3–6, are valid for any kind of null hypersurface and do not require any link with
a black hole horizon. For instance they are perfectly valid for a light cone in Minkowski spacetime.
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Fig. 1. Embedding � of the 3-dimensional manifold H0 into the 4-dimensional manifold M, defining the hypersurface H = �(H0). The
push-forward �∗v of a vector v tangent to some curve C in H0 is a vector tangent to �(C) in M.

2.1. Definition of a hypersurface

A hypersurface H of M is the image of a 3-dimensional manifold H0 by an embedding � : H0 → M (Fig. 1):

H = �(H0) . (2.1)

Let us recall that embedding means that � : H0 → H is a homeomorphism, i.e. a one-to-one mapping such that both
� and �−1 are continuous. The one-to-one character guarantees that H does not “intersect itself”. A hypersurface can
be defined locally as the set of points for which a scalar field on M, u let us say, is constant:

∀p ∈ M, p ∈ H ⇐⇒ u(p) = 1 . (2.2)

For instance, let us assume that H is a connected submanifold of M with topology3 R × S2. Then we may introduce
locally a coordinate system of M, x� = (t, u, �, �), such that t spans R and (�, �) are spherical coordinates spanning
S2. H is then defined by the coordinate condition u = 1 [Eq. (2.2)] and an explicit form of the mapping � can be
obtained by considering xA = (t, �, �) as coordinates on the 3-manifold H0:

� :H0 −→ M
(t, �, �) �−→ (t, 1, �, �) .

(2.3)

In what follows, we identify H0 and H= �(H0) (consequently, � can be seen as the inclusion map � : H −→ M).
The embedding � “carries along” curves in H to curves in M. Consequently it also “carries along” vectors on H to

vectors on M (cf. Fig. 1). In other words, it defines a push-forward mapping �∗ between Tp(H) and Tp(M). Thanks
to the adapted coordinate systems x� = (t, u, �, �), the push-forward mapping can be explicited as follows:

�∗ :Tp(H) −→ Tp(M)

v = (vt , v�, v�) �−→ �∗v = (vt , 0, v�, v�) ,
(2.4)

where vA = (vt , v�, v�) denotes the components of the vector v with respect to the natural basis �/�xA of Tp(H)

associated with the coordinates (xA).
Conversely, the embedding � induces a pull-back mapping �∗ between the linear forms on Tp(M) and those on

Tp(H) as follows

�∗ :T∗
p (M) −→ T∗

p (H)

� �−→ �∗� : Tp(H) → R

v �→ 〈�, �∗v〉 .

(2.5)

Taking into account (2.4), the pull-back mapping can be explicited:

�∗ :T∗
p (M) −→ T∗

p (H)

� = (�t , �u, ��, ��) �−→ �∗� = (�t , ��, ��) ,
(2.6)

3 This is the case we will consider in Section 7 and in the subsequent ones, whereas all results up to Section 7 are independent of the topology
of H.
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where �� denotes the components of the 1-form � with respect to the basis dx� associated with the coordinates (x�).
The pull-back operation can be extended to the multi-linear forms on Tp(M) in an obvious way: if T is a n-linear form
on Tp(M), �∗T is the n-linear form on Tp(H) defined by

∀(v1, . . . , vn) ∈ Tp(H)n, �∗T(v1, . . . , vn) = T(�∗v1, . . . ,�∗vn) . (2.7)

Remark 2.1. By itself, the embedding � induces a mapping from vectors on H to vectors on M (push-forward
mapping �∗) and a mapping from 1-forms on M to 1-forms on H (pull-back mapping �∗), but not in the reverse
way. For instance, one may define “naively” a reverse mapping F : Tp(M) −→ Tp(H) by v = (vt , vu, v�, v�) �−→
F v = (vt , v�, v�), but it would then depend on the choice of coordinates (t, u, �, �), which is not the case of the push-
forward mapping defined by Eq. (2.4). For spacelike or timelike hypersurfaces, the reverse mapping is unambiguously
provided by the orthogonal projector (with respect to the ambient metric g) onto the hypersurface. In the case of a null
hypersurface, there is no such a thing as an orthogonal projector, as we shall see below (Remark 2.3).

A very important case of pull-back operation is that of the bilinear form g (i.e. the spacetime metric), which defines the
induced metric on H:

q := �∗g , (2.8)

q is also called the first fundamental form ofH. In terms of the coordinate system4 xA=(t, �, �) ofH, the components
of q are deduced from (2.6):

qAB = gAB . (2.9)

2.2. Definition of a null hypersurface

The hypersurface H is said to be null (or lightlike, or characteristic or to be a wavefront) if, and only if, the induced
metric q is degenerate. This means if, and only if, there exists a non-vanishing vector field l in T(H) which is
orthogonal (with respect to q) to all vector fields in T(H):

∀v ∈ T(H), q(l, v) = 0 . (2.10)

The signature of q is then necessarily (0, +, +). An equivalent definition of a null hypersurface demands any vector
field l in T(M) which is normal to H [i.e. orthogonal to all vectors in T(H)] to be a null vector with respect to the
metric g:

g(l, l) = l · l = 0 . (2.11)

We adopt the same notation l than in the previous definition, since this l is nothing but the pushed-forward by �∗ of
the l in T(H). Indeed, by saying that l is orthogonal to itself, Eq. (2.11) states that l is tangent to H. A distinctive
property of null hypersurfaces is that their normal vectors are both orthogonal and tangent to them.

Since the hypersurface H is defined by a constant value of the scalar field u [Eq. (2.2)], the gradient 1-form du is
normal to H, i.e.

∀v ∈ T(M), v ∈ T(H) ⇐⇒ 〈du, v〉 = 0 . (2.12)

As a side remark notice that, in terms of the components v� of v with respect to the natural basis associated with the
coordinates (x�), 〈du, v〉 = vu and the above property is equivalent to

∀v ∈ T(M), v ∈ T(H) ⇐⇒ vu = 0 , (2.13)

4 Let us recall that by convention capital Latin indices run in {0, 2, 3}.
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which agrees with (2.4). From (2.12), it is obvious that the 1-form l associated with the normal vector l by the standard
metric duality [cf. notation (1.10)] must be collinear to du:

l = e�du , (2.14)

where � is some scalar field on H. We have chosen the coefficient relating l and du to be strictly positive, i.e. under
the form of an exponential. This is always possible by a suitable choice of the scalar field u.

The characterization of Tp(H) as a hyperplane of the vector space Tp(M) can then be expressed as follows:

∀v ∈ Tp(M), v ∈ Tp(H) ⇐⇒ 〈l, v〉 = l · v = 0 . (2.15)

Remark 2.2. Since the scalar square of l is zero [Eq. (2.11)], there is no natural normalization of l, contrary to the
case of spacelike hypersurfaces, where one can always choose the normal to be a unit vector (scalar square equal to −1).
Equivalently, there is no natural choice of the factor � in relation (2.14). In Section 4, we will use the extra-structure
introduced in M by the spacelike foliation of the 3 + 1 formalism to set unambiguously the normalization of l.

Remark 2.3. Another distinctive feature of null hypersurfaces, with respect to spacelike or timelike ones, is the absence
of orthogonal projector onto them. This is a direct consequence of the fact that the normal l is tangent to H. Indeed,
suppose we define “naively” � := 1+al〈l, .〉 (or in index notation : ��

� := 
�
�+a����) as the “orthogonal projector”

with some coefficient a to be determined (a = 1 for a spacelike hypersurface and a =−1 for a timelike hypersurface, if
l is the unit normal). Then it is true that for any v ∈ Tp(H), �(v) = v, but if v /∈Tp(H), l · �(v) = l · v �= 0, which
shows that �(v) /∈Tp(H), hence the endomorphism � is not a projector on Tp(H), whatever the value of a. This
lack of orthogonal projector implies that there is no canonical way, from the null structure alone, to define a mapping
Tp(M) −→ Tp(H) (cf. Remark 2.1).

2.3. Auxiliary null foliation in the vicinity of H

The null normal vector field l is a priori defined only on H and not at points p /∈H. However within the four-
dimensional point of view adopted in this article, we would like to consider l as a vector field not confined to H
but defined in some open subset of M around H. In particular this would permit to define the spacetime covariant
derivative ∇l, which is not possible if the support of l is restricted to H. Following Carter [43], a simple way to
achieve this is to consider not only a single null hypersurface H, but a foliation of M (in the vicinity of H) by a
family of null hypersurfaces, such that H is an element of this family. Without any loss of generality, we may select
the scalar field u to label these hypersurfaces and denote the family by (Hu). The null hypersurface H is then nothing
but the element H=Hu=1 of this family [Eq. (2.2)]. The vector field l can then be viewed as defined in the part of M
foliated by (Hu), such that at each point in this region, l is null and normal to Hu for some value of u. The identity
(2.14) is then valid for this “extended” l, and � is now a scalar field defined not only on H but in the open region of
M around H which is foliated by (Hu).

Obviously the family (Hu) is non-unique but all geometrical quantities that we shall introduce hereafter do not
depend upon the choice of the foliation Hu once they are evaluated at H.

2.4. Frobenius identity

The identity (2.14) which expresses that the 1-form l is normal to a hypersurface u = const, leads to a particular
form for the exterior derivative of l. Indeed, taking the exterior derivative of (2.14) (considering l defined in a open
neighborhood of H in M, cf. Section 2.3) and applying rule (1.22) (with e� = 0-form) leads to

dl = e�d� ∧ du + e�ddu . (2.16)

Since dd = 0 is a basic property of the exterior derivative, the last term on the right-hand side of (2.16) vanishes [this
is also obvious by applying Eq. (1.23) to the 1-form du]. Hence, after replacing du by e−�l, one is left with

dl = d� ∧ l . (2.17)
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This reflects the Frobenius theorem in its dual formulation (see e.g. Theorem B.3.2 in Wald’s textbook [167]): the
exterior derivative of the 1-form l is the exterior product of l itself with some 1-form (d� in the present case) if,
and only if, l defines hyperplanes of T(M) [by Eq. (2.15)] which are integrable in some hypersurface (H in the
present case).

2.5. Generators of H and non-affinity coefficient �

Let us establish a fundamental property of null hypersurfaces: they are ruled by null geodesics. Contracting
Eq. (2.17) with l and using the fact that l is null, gives

l · dl = 〈d�, l〉l − 〈l, l〉︸ ︷︷ ︸
=0

d� = 〈d�, l〉l . (2.18)

On the other side if we express the exterior derivative dl in terms of the covariant derivative ∇ associated with the
spacetime metric g, the left-hand side of the above equation becomes

(l · dl)� = �
∇
�� − �
∇��
 = �
∇
�� = (∇ll)� , (2.19)

where we have used �
∇��
 = 1/2∇�(�

�
) = 0. Hence Eq. (2.18) leads to

∇ll = 〈d�, l〉l , (2.20)

or by the metric duality between 1-forms and vectors:

∇ll = �l , (2.21)

where � is the scalar field defined on H by

� := ∇l� = 〈d�, l〉 . (2.22)

In the case where H is the horizon of a Kerr black hole, l can be normalized to become a Killing vector of (M, g), of
the form l = �0 + �H�1, where �H = const and �0 and �1 are the Killing vectors associated with respectively the
stationarity and axisymmetry of Kerr spacetime and normalized so that the parameter length of �1’s orbits is 2� and
�0 asymptotically coincides with the 4-velocity of an inertial observer. � is then called the surface gravity of the black
hole (see Appendix D for further details).

Since Eq. (2.21) involves only the derivative of l along l, i.e. within H, the definition of � is intrinsic to (H, l)

and does not depend upon the choice of the auxiliary null foliation (Hu).
Eq. (2.21) means that l remains collinear to itself when it is parallely transported along its field lines. This implies

that these field lines are spacetime geodesics. Indeed, by a suitable choice of the renormalization factor � such that
l′ = �l, Eq. (2.21) can be brought to the classical “equation of geodesics” form:

∇l′l′ = 0 . (2.23)

This is immediate since

∇l′l′ = �[�∇ll + (∇l�)l] = �2(� + ∇l ln �)l (2.24)

and one can choose � to get Eq. (2.23) by requiring it to be a solution of the following first order differential equation
along the field lines of l,

∇l ln � = −� . (2.25)

If � �= 0, Eq. (2.21) means that the parameter � associated with l by �� = dx�/d� is not an affine parameter of the
geodesics. For this reason, we may call � the non-affinity coefficient. Note that (2.24) gives the following scaling law
for �:

l → l′ = �l �⇒ � → �′ = �(� + ∇l ln �) . (2.26)
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Fig. 2. Null hypersurface H with some null normal l and the null generators (thin lines).

Fig. 3. Outgoing light cone in Minkowski spacetime. The null hypersurface H under consideration is the member u= 1 of the family (Hu) of light
cones emitted from the origin (x, y, z) = (0, 0, 0) at successive times t = 1 − u.

Having established that the field lines of l are geodesics, it is obvious that they are null geodesics (for l is null). They
are called the null generators of H. Note that whereas l is not uniquely defined, being subject to the rescaling law
l → l′ = �l, the null generators, considered as one-dimensional curves in M, are unique (see Fig. 2). In other words,
they depend only upon H.

Example 2.4 (Outgoing light cone in Minkowski spacetime). The simplest example of a null hypersurface one may
think of is the light cone in Minkowski spacetime (Fig. 3). More precisely, let us consider for H the outgoing light
cone from a given point O, excluding O itself to keep H smooth. If (x�) = (t, x, y, z) denote standard Minkowskian
coordinates with origin O, the scalar field u defining H as the level set u = 1 is then

u(t, x, y, z) := r − t + 1 with r :=
√

x2 + y2 + z2 . (2.27)

Note that u generates not only H, but a full null foliation (Hu) as the level sets of u (cf. Section 2.3). The member
Hu of this foliation is then nothing but the light cone emanating from the point (−u + 1, 0, 0, 0) (cf. Fig. 3). In terms
of components with respect to the coordinates (x�), the gradient 1-form du is ∇�u= (−1, x/r, y/r, z/r). Hence, from



E. Gourgoulhon, J.L. Jaramillo / Physics Reports 423 (2006) 159 –294 173

Eq. (2.14), the null normal to H is �� = e�(1, x/r, y/r, z/r). For simplicity, let us select � = 0. Then

�� =
(

1,
x

r
,
y

r
,
z

r

)
and �� =

(
−1,

x

r
,
y

r
,
z

r

)
. (2.28)

The gradient bilinear form ∇l is easily computed since, for the coordinates (t, x, y, z), ∇��� = ���/�x�:

∇��� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
y2 + z2

r3 −xy

r3 −xz

r3

0 −xy

r3

x2 + z2

r3 −yz

r3

0 −xz

r3 −yz

r3

x2 + y2

r3

⎞
⎟⎟⎟⎟⎟⎟⎠

(� = row index ;
� = column index) .

(2.29)

We may check immediately on this formula that �
∇
�� = 0, which leads to

� = 0 , (2.30)

in accordance with � = ∇l� [Eq. (2.22)] and our choice � = 0. Actually it is easy to check that the coordinate t is an
affine parameter of the null geodesics generating H and that l is the associated tangent vector, hence the vanishing of
the non-affinity coefficient �.

Example 2.5 (Schwarzschild horizon in Eddington–Finkelstein coordinates). The next example of null surface one
might think of is the (future) event horizon of a Schwarzschild black hole. The corresponding spacetime is often
(partially) described by two sets of coordinates: (i) the Schwarzschild coordinates (tS, r, �, �), in which the metric
components are given by

g
� dx
 dx� = −
(

1 − 2m

r

)
dt2

S +
(

1 − 2m

r

)−1

dr2 + r2(d�2 + sin2 � d�2) , (2.31)

where m is the mass of the black hole, and (ii) the isotropic coordinates (tS, r̃, �, �), resulting in the metric components

g
� dx
 dx� = −
⎛
⎜⎝1 − m

2r̃

1 + m

2r̃

⎞
⎟⎠

2

dt2
S +

(
1 + m

2r̃

)4 [
dr̃2 + r̃2(d�2 + sin2 � d�2)

]
. (2.32)

The relation between the two sets of coordinates is given by r= r̃(1+ m
2r̃

)2.As it is well known, the above two coordinate
systems are singular at the event horizon H, which corresponds to r = 2m, r̃ = m/2 and tS → +∞. In particular the
hypersurfaces of constant time tS, which constitute a well known example of maximal slicing (cf. Section 3), do not
intersect H, except at a 2-sphere (named the bifurcation sphere), where they also cross each other (this is illustrated
by the Kruskal diagram in Fig. 4).

A coordinate system, well known for being regular at H, is constructed with the ingoing Eddington–Finkelstein
coordinates (V , r, �, �), where the coordinate V is constant on each ingoing radial null geodesic and is related to the
Schwarzschild coordinate time tS by V = tS + r + 2m ln | r

2m
− 1|. The coordinate V is null, but if we introduce

t := V − r = tS + 2m ln
∣∣∣ r

2m
− 1

∣∣∣ , (2.33)

we get a timelike coordinate. The system (t, r, �, �) is called the 3 + 1 Eddington–Finkelstein coordinates. These
coordinates are well behaved in the vicinity of H, as shown in Fig. 4, and yields the following metric components:

g
� dx
 dx� = −
(

1 − 2m

r

)
dt2 + 4m

r
dt dr +

(
1 + 2m

r

)
dr2 + r2(d�2 + sin2 � d�2) . (2.34)

It is clear on this expression that the 3+1 Eddington–Finkelstein coordinates are regular at the event horizon H, which
is located at r = 2m (cf. Fig. 5). However, we cannot use u = r − 2m + 1 for the scalar field defining H, because the
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Fig. 4. Kruskal diagram representing the Schwarzschild spacetime; the hypersurfaces of constant Schwarzschild time tS (dashed lines) do not
intersect the future event horizon H, except at the bifurcation 2-sphere B (reduced to a point in the figure), whereas the hypersurfaces of constant
Eddington–Finkelstein time t (solid lines) intersect it in such a way that t can be used as a regular coordinate on H (figure adapted from Fig. 3.1 of
Ref. [161]).

Fig. 5. Event horizon H of a Schwarzschild black hole in 3 + 1 Eddington–Finkelstein coordinates. The dashed lines represents the hypersurfaces
of constant Schwarzschild time tS shown in Fig. 4.

hypersurfaces r = const are not null, except for r = 2m, whereas we have required in Section 2.3 all the hypersurfaces
u = const to be null. Actually, a family of null hypersurfaces encompassing H is given by the constant values of the
outgoing Eddington–Finkelstein coordinate

U = tS − r − 2m ln
∣∣∣ r

2m
− 1

∣∣∣= t − r − 4m ln
∣∣∣ r

2m
− 1

∣∣∣ . (2.35)
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The event horizon corresponds to U =+∞; to get finite values, let us replace U by the null Kruskal–Szekeres coordinate
(shifted by 1)

u := ± exp

(
− U

4m

)
+ 1 , (2.36)

where the + sign (resp. − sign) is for r �2m (resp. r < 2m). Then

u =
( r

2m
− 1

)
exp

(
r − t

4m

)
+ 1 (2.37)

and all the hypersurfacesHu defined by u=const are null (they are drawn in Fig. 5), the event horizonH corresponding
to u = 1.

The null normals to Hu are deduced from the gradient of u by �� = e�∇�u [Eq. (2.14)]. We get the following
components with respect to the 3 + 1 Eddington–Finkelstein coordinates (x�) = (t, r, �, �):

�� = 1

4m
exp

(
� + r − t

4m

)(
1 + r

2m
,

r

2m
− 1, 0, 0

)
. (2.38)

Let us choose � such that �t = 1. Then

� = t − r

4m
− ln

(
1 + r

2m

)
+ ln(4m) , (2.39)

�� =
(

1,
r − 2m

r + 2m
, 0, 0

)
and �� =

(
2m − r

r + 2m
, 1, 0, 0

)
. (2.40)

Note that on the horizon, �� H=(1, 0, 0, 0), i.e.

l
H= t , (2.41)

where t = �/�t is a Killing vector associated with the stationarity of Schwarzschild solution. The gradient of l is obtained
by a straightforward computation, after having evaluated the connection coefficients from the metric components
given by Eq. (2.34):

∇��� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m

r2

2m − r

r + 2m

m(3m2 + 4mr − 3r2)

r2(r + 2m)2 0 0

m

r2

m(3r + 2m)

r2(r + 2m)
0 0

0 0
r(r − 2m)

r + 2m
0

0 0 0
(r − 2m)r sin2 �

r + 2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(� = row index; � = column index) . (2.42)

We deduce from these values that

�
∇
�� =
(

4m

(r + 2m)2 ,
4m(r − 2m)

(r + 2m)3 , 0, 0

)
. (2.43)

Comparing with the expression (2.40) for ��, we deduce the value of the non-affinity coefficient [cf. Eq. (2.21)]:

� = 4m

(r + 2m)2 . (2.44)

As a check, we can recover � by means of formula (2.22), evaluating ∇l� from expression (2.39) for �. Note that on
the horizon,

�
H= 1

4m
, (2.45)

which is the standard value for the surface gravity of a Schwarzschild black hole.
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2.6. Weingarten map

As for any hypersurface, the “bending” of H in M (also called extrinsic curvature of H) is described by the
Weingarten map (sometimes called the shape operator), which is the endomorphism of Tp(H) which associates with
each vector tangent to H the variation of the normal along that vector, with respect to the spacetime connection ∇:

� :Tp(H) −→ Tp(H)

v �−→ ∇vl
(2.46)

This application is well defined (i.e. its image is in Tp(H)) since

l · �(v) = l · ∇vl = 1
2∇v(l · l) = 0 , (2.47)

which shows that �(v) ∈ Tp(H) [cf. Eq. (2.15)]. Moreover, since it involves only the derivative of l along vectors
tangent to H, the definition of � is clearly independent of the choice of the auxiliary null foliation (Hu) introduced in
Section 2.3.

Remark 2.6. The Weingarten map depends on the specific choice of the normal l, in contrast with the timelike or
spacelike case, where the unit length of the normal fixes it unambiguously. Indeed a rescaling of l acts as follows on �:

l → l′ = �l �⇒ � → �′ = �� + 〈d�, ·〉l , (2.48)

where the notation 〈d�, ·〉l stands for the endomorphism Tp(H) −→ Tp(H), v �−→ 〈d�, v〉l.

The fundamental property of the Weingarten map is to be self-adjoint with respect to the metric q [i.e. the pull-back
of g on T(H), cf. Eq. (2.8)]:

∀(u, v) ∈ T(H) × T(H), u · �(v) = �(u) · v , (2.49)

where the dot means the scalar product with respect to q [considering u and v as vectors of T(H)] or g [considering
u and v as vectors of T(M)]. Indeed, one obtains from the definition of �

u · �(v) = u · ∇vl = ∇v(u · l) − l · ∇vu = 0 − l · (∇uv − [u, v])
= − ∇u(l · v) + v · ∇ul + l · [u, v]
= 0 + v · �(u) + l · [u, v] , (2.50)

where use has been made of l · u = 0 and l · v = 0. Now the Frobenius theorem states that the commutator [u, v] of
two vectors of the hyperplane T(H) belongs to T(H) since T(H) is surface-forming (see e.g. Theorem B.3.1 in
Wald’s textbook [167]). It is straightforward to establish it:

l · [u, v] = 〈l, [u, v]〉 = �
u�∇�v

 − �
v�∇�u


 = −u�v
∇��
 + v�u
∇��


= (∇
�� − ∇��
)u�v
 = (d�)
�u
�v
 = (∇
� �� − ∇�� �
)u�v


l · [u, v] = 0 , (2.51)

where use has been made of expression (2.17) for the exterior derivative of l and the last equality results from ��u
� =0

and �
v
 = 0. Inserting (2.51) into (2.50) establishes the self-adjointness of the Weingarten map.
Let us note that the non-affinity coefficient � is an eigenvalue of the Weingarten map, corresponding to the eigenvector

l, since Eq. (2.21) can be written

�(l) = �l . (2.52)
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2.7. Second fundamental form of H

The self-adjointness of � implies that the bilinear form defined on H’s tangent space by

� :Tp(H) × Tp(H) −→ R

(u, v) �−→ u · �(v)
(2.53)

is symmetric. It is called the second fundamental form of H with respect to l. Note that � could have been defined
for any vector field l, but it is symmetric only because l is normal to some hypersurface (since the self-adjointness of
� originates from this last property). If we make explicit the value of � in the definition (2.53), we get [see Eq. (1.8)]

∀ (u, v) ∈ Tp(H) × Tp(H), �(u, v) = u · �(v) = u · ∇vl = 〈∇vl, u〉
= ∇l(u, v) , (2.54)

from which we conclude that � is nothing but the pull-back of the bilinear form ∇l onto Tp(H), pull-back induced
by the embedding � of H in M [cf. Eq. (2.7)]:

� = �∗∇l . (2.55)

It is worth to note that although the bilinear form ∇l is a priori not symmetric on Tp(M), its pull-back � on Tp(H)

is symmetric, as a consequence of the hypersurface-orthogonality of l (which yields the self-adjointness of �).
The bilinear form � is degenerate, with a degeneracy direction along l (as the first fundamental form q), since

∀v ∈ Tp(H), �(l, v) = v · �(l) = �v · l = 0 . (2.56)

Remark 2.7. As for �, � depends on the choice of the normal l. However its transformation under a rescaling of l is
simpler than that of �: from Eq. (2.48) and the orthogonality of l with respect to Tp(H), we get

l → l′ = �l �⇒ � → �′ = �� . (2.57)

Remark 2.8. To get rid of the dependence upon the normalization of l in the definitions of � and �, some authors
[109,72,73,101] introduce the following equivalence class R on Tp(H): u ∼ v iff u and v differ only by a vector
collinear to l. Then the Weingarten map and the second fundamental form can be defined as unique geometric objects in
the quotient space Tp(H)/R. However we do not adopt such an approach here because we plan to use some spacetime
slicing by spacelike hypersurfaces (the so-called 3 + 1 formalism) to fix in a natural way the normalization of l, as we
shall see in Section 4.

3. 3 + 1 formalism

3.1. Introduction

The 3+1 formalism of general relativity is aimed at reducing the resolution of Einstein equation to a Cauchy problem,
namely (coordinate) time evolution from initial data specified on a given spacelike hypersurface. This formalism
originates in the works of Lichnerowicz (1944) [113], Choquet-Bruhat (1952) [70], Arnowitt et al. (1962) [9] and
has many applications, in particular in numerical relativity. We refer the reader to York’s seminal article [171] for an
introduction to the 3 + 1 formalism and to Baumgarte and Shapiro [25] for a recent review of applications in numerical
relativity. Here we simply recall the most relevant features of the 3 + 1 formalism which are necessary for our purpose.

3.2. Spacetime foliation �t

The spacetime (or at least the part of it under study, in the vicinity of the null hypersurface H) is supposed to be
foliated by a continuous family of spacelike hypersurfaces (�t ), labeled by the time coordinate t (Fig. 6). The �t ’s
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Fig. 6. Spacetime foliation by a family of spacelike hypersurfaces �t . The �t ’s can be considered as the level sets of some smooth scalar field t,
such that the gradient dt is timelike.

can be considered as the level sets of some smooth scalar field t, such that the gradient dt is timelike. We denote by n
the future directed timelike unit vector normal to �t . It can be identified with the 4-velocity of the class of observers
whose worldlines are orthogonal to �t (Eulerian observers). By definition the 1-form n dual to n [cf. notation (1.10)]
is parallel to the gradient of the scalar field t:

n = −Ndt . (3.1)

The proportionality factor N is called the lapse function. It ensures that n satisfies the normalization relation

n · n = 〈n, n〉 = −1 . (3.2)

The metric � induced by g on each hypersurface �t (first fundamental form of �t ) is given by

� = g + n ⊗ n . (3.3)

Since �t is assumed to be spacelike, � is a positive definite (i.e. Riemannian) metric. Let us stress that the writing
(3.3) is fully four-dimensional and does not restrict the definition of � to Tp(�t ): it is a bilinear form on Tp(M). The
endomorphism Tp(M) → Tp(M) canonically associated with the bilinear form � by the metric g [cf. notation (1.12)]
is the orthogonal projector onto �t :


� = 1 + 〈n, .〉n (3.4)

(in index notation: 	�
� = 
�

� + n�n�, whereas (3.3) writes 	�� = g�� + n�n�).
The existence of the orthogonal projector 
� makes a great difference with the case of null hypersurfaces, for which

such an object does not exist (cf. Remark 2.3). In particular we can use it to map any multilinear form on Tp(�t )

into a multilinear form on Tp(M), which is in the direction inverse of that of the pull-back mapping induced by the
embedding of �t in M. We denote this mapping T∗

p (�t ) → T∗
p (M) by 
�∗ and make it explicit as follows: given a

n-linear form A on Tp(�t ), 
�∗A is the n-linear form acting on Tp(M)n defined by


�∗A :Tp(M)n −→ R

(v1, . . . , vn) �−→ A(
�(v1), . . . , 
�(vn))
. (3.5)

Actually we extend the above definition to all multilinear forms A on Tp(M) and not only those restricted to Tp(�t ).
The index version of this definition is

(
	∗A)�1...�n
= A
1...
n

	
1
�1

· · · 	
n
�n

. (3.6)
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In particular, we have


�∗g = � and 
�∗n = 0 . (3.7)

There exists a unique (torsion-free) connection on �t associated with the metric �, which we denote by D: D� = 0. If

we consider a generic tensor field T of type
(

p
q

)
lying on �t (i.e. such that its contraction with the normal n on any of

its indices vanishes), then, from a four-dimensional point of view, the covariant derivative DT can be expressed as the
full orthogonal projection of the spacetime covariant derivative ∇T on �t [see Eq. (1.2)]:

D	T
�1...�p

�1...�q
= 	�1


1
· · · 	�p


p
	�1

�1
· · · 	�q

�q
	�

	∇�T 
1...
p
�1...�q

. (3.8)

In the following, we shall make extensive use of this formula, without making explicit mention. In the special case of

a tensor of type
(

0
q

)
, i.e. a multilinear form, the definition of DT amounts to, thanks to Eq. (3.6),

DT = 
�∗∇T . (3.9)

3.3. Weingarten map and extrinsic curvature

As for the hypersurface H, the “bending” of each hypersurface �t in M is described by the Weingarten map which
associates with each vector tangent to �t the covariant derivative (with respect to the ambient connection ∇) of the unit
normal n along this vector [compare with Eq. (2.46)]:

K :Tp(�t ) −→ Tp(�t )

v �−→ ∇vn .
(3.10)

The computations presented in Section 2.6 for the Weingarten map � of H can be repeated here,5 by simply replacing
the normal l by the normal n, the field u by the field t and the coefficient e� by −N [compare Eqs. (2.14) and (3.1)].
They then show that K is well defined [i.e. its image is in Tp(�t )] and that it is self-adjoint with respect to the metric
�. A difference with the Weingarten map � of H is that the Weingarten map K can be naturally extended to Tp(M)

thanks to the orthogonal projector 
� [Eq. (3.4)], which did not exist for H (cf. Remark 2.3), by setting

K :Tp(M) −→ Tp(�t )

v �−→ ∇
�(v)n ,
(3.11)

or in index notation:

K�
� = ∇
n� 	


� . (3.12)

We then define the extrinsic curvature tensor K of the hypersurface �t as minus the second fundamental form [compare
with Eq. (2.53)]:

K :Tp(M) × Tp(M) −→ R

(u, v) �−→ −u · K(v) ,
(3.13)

or in index notation

K�� = −∇
n�	

� . (3.14)

Since the image of K is in Tp(�t ), we can write K(u, v) = −
�(u) · K(
�(v)). It follows then immediately from the
self-adjointness of K that K is symmetric and that the following relation holds:

K�� = −∇
n�	


�	�

� , (3.15)

5 Indeed the computations in Section 2.6 did not make use of the fact that H is null, i.e. that l is tangent to H.
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which we can write, thanks to Eq. (3.6) and the symmetry of K,

K = −
�∗∇n . (3.16)

Replacing in Eq. (3.14) n� by its expression (3.1) in terms of the gradient of t leads to

K�� = ∇
(N∇�t)	


� = (∇
N∇�t + N∇
∇�t)	



�

= (∇
N∇�t + N∇�∇
t)	

� = D�N∇�t + N∇�(−N−1n
)	


�

= − n�N
−1D�N − N∇�(N

−1) n
	

�︸ ︷︷ ︸

=0

−∇�n
	

�

= − n�D� ln N − ∇�n



� − ∇�n
n
︸ ︷︷ ︸

=0

n� . (3.17)

Hence

K�� = −∇�n� − n�D� ln N . (3.18)

or, taking into account the symmetry of K and Eq. (1.9)

K = −∇n − D ln N ⊗ n . (3.19)

In the following, we will make extensive use of this formula, without explicitly mentioning it. Inserting n as the second
argument in the bilinear form (3.19) and using K(., n)=0 as well as 〈n, n〉=−1 results in the important formula giving
the 4-acceleration of the Eulerian observers:

∇nn = D ln N . (3.20)

Another useful formula relates K to the Lie derivative of the spatial metric � along the normal n:

K = − 1
2Ln � . (3.21)

This formula follows from Eq. (3.19) and the symmetry of K by a direct computation, provided that the Lie derivative
along n is expressed in terms of the connection ∇ via Eq. (1.4): (Ln 	)�� = n
∇
	�� + 	
�∇�n


 + 	�
∇�n
.

3.4. 3 + 1 coordinates and shift vector

We may introduce on M a coordinate system adapted to the (�t ) foliation by considering on each hypersurface �t a
coordinate system (xi), such that (xi) varies smoothly from one hypersurface to the next one. Then, (x�)= (x0 = t, xi)

constitutes a well behaved coordinate of M. The coordinate time vector of this system is

t := �

�t
(3.22)

and is such that each spatial coordinate xi is constant along its field lines. t can be seen as a vector “dual” to the gradient
1-form dt , in the sense that

〈dt, t〉 = 1 . (3.23)

Then, from Eq. (3.1), n · t = −N and we have the orthogonal 3 + 1 decomposition

t = Nn + � with n · � = 0 . (3.24)
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Fig. 7. Constant spatial coordinate lines xi = const cutting across the foliation (�t ) and defining the coordinate time vector t and the shift vector �.
Also represented are the unit normal to each hypersurface �t , n, and the lapse function N as giving the metric distance d� between two neighboring
hypersurfaces �t and �t+dt via d� = N dt .

The vector � := 
�(t) is called the shift vector of the coordinate system (x�). The vectors t and � are represented in
Fig. 7. Given a choice of the coordinates (xi) in an initial slice �0, fixing the lapse function N and shift vector � on
every �t fully determines the coordinates (x�) in the portion of M covered by these coordinates. We refer the reader
to Ref. [152] for an extended discussion of the choice of coordinates based on the lapse and the shift.

The components g�� of the metric tensor g with respect to the coordinates (t, xi) are expressible in terms of the lapse

N, the components �i of the shift vector and the components 	ij of the spatial metric, according to

g
� dx
 dx� = −N2 dt2 + 	ij (dxi + �idt)(dxj + �j dt) . (3.25)

Example 3.1 (Lapse and shift of Eddington–Finkelstein coordinates). Returning to Example 2.5 (Schwarzschild space-
time in Eddington–Finkelstein coordinates), the lapse function and shift vector of the 3 + 1 Eddington–Finkelstein
coordinates are obtained by comparing Eqs. (3.25) and (2.34):

N = 1√
1 + 2m/r

, (3.26)

�� =
(

0,
1

1 + r/(2m)
, 0, 0

)
and �� =

(
4m2

r(r + 2m)
,

2m

r
, 0, 0

)
. (3.27)

Note that, on H (r = 2m), N
H= 1/

√
2 and �r H= 1/2. The expression for the unit timelike normal to the hypersurfaces

�t is deduced from N and �:

n� =

⎛
⎜⎜⎝
√

1 + 2m

r
, − 2m

r

√
1 + 2m

r

, 0, 0

⎞
⎟⎟⎠ , n� =

⎛
⎜⎜⎝− 1√

1 + 2m

r

, 0, 0, 0

⎞
⎟⎟⎠ . (3.28)

3.5. 3 + 1 decomposition of the Riemann tensor

We present here the expression of the spacetime Riemann tensor Riem (cf. Section 1.2.2) in terms of 3 + 1 objects,
in particular the Riemann tensor 3Riem of the connection D associated with the spatial metric �. This is a step required
to get a 3 + 1 decomposition of the Einstein equation in next section. Moreover, this allows to gain intuition on
the analogous (but null) decomposition that will be introduced in Section 6, when studying the dynamics of a null
hypersurface.
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As a general strategy, calculations start from the three-dimensional objects and then use is made of Eqs. (3.8)
and (3.3), together with the Ricci identity (1.14). Since these techniques will be explicitly exposed in Section 6, we
present the following results without proof (see, for instance, Ref. [171]). The 3 + 1 writing of the spacetime Riemann
tensor thus obtained can be viewed as various orthogonal projections of Riem onto the hypersurface �t and along the
normal n:

	�

	�

�	�
		

�

R


��� = 3R�
�	
 + K�

	K�
 − K�

K�	 , (3.29)

	�

	�

�	�
	n

�R

��� = D�K�

	 − D�K�	 , (3.30)

	�
n�	�
�n�R


��� = 1

N
L(Nn)K�� + K�
K


� + 1

N
D�D�N . (3.31)

From the symmetries of the Riemann tensor, all the other contractions involving n either are equivalent to one of the
Eqs. (3.30)–(3.31), or vanish. For instance, a contraction with three times n would be zero. Eq. (3.29) is known as
the Gauss equation, and Eq. (3.30) as the Codazzi equation. The third equation, (3.31), is sometimes called the Ricci
equation [not to be confused with the Ricci identity (1.14)].

The Gauss and Codazzi equations do not involve any second order derivative of the metric tensor g in a timelike
direction. They constitute the necessary and sufficient conditions for the hypersurface �t , endowed with a 3-metric �

and an extrinsic curvature K, to be a submanifold of (M, g). Contracted versions of the Gauss and Codazzi equations
turn out to be very useful, especially in the 3 + 1 writing of the Einstein equation. Contracting the Gauss equation
(3.29) on the indices � and 	 leads to an expression that makes appear the Ricci tensors R and 3R associated with g and
�, respectively [cf. Eq. (1.17)]

	

�	�

�R
� + 	�
n�	�
�n�R


��� = 3R�� + KK�� − K�
K

� , (3.32)

where K is the trace of K, K


. Taking the trace of this equation with respect to �, leads to an expression that involves

the Ricci scalars R := g
�R
� and 3R := 	
�3R
�, again respectively associated with g and �:

R + 2R
�n

n� = 3R + K2 − K
�K


� . (3.33)

This formula, which relates the intrinsic curvature 3R and the extrinsic curvature K of �t , can be seen as a generalization
to the four-dimensional case of Gauss’ famous Theorema egregium (see e.g. Ref. [26]). On the other side, contracting
the Codazzi equation on the indices � and 	 leads to

	

�n

�R
� = D�K − D
K�
 . (3.34)

3.6. 3 + 1 Einstein equation

We are now in position of presenting the 3 + 1 splitting of Einstein equation:

R − 1
2Rg = 8�T , (3.35)

where T is the total (matter + electromagnetic field) energy–momentum tensor. The 3 + 1 decomposition of the
latter is

T = En ⊗ n + n ⊗ J + J ⊗ n + S , (3.36)

where the energy density E, the momentum density J and the strain tensor S, all of them as measured by the Eulerian
observer of 4-velocity n, are given by the following projections E := T
�n


n�, J� := −	 

� T
�n

�, S�� := 	 

� 	 �

� T
�.
Einstein equation (3.35) splits into three equations by using, respectively, (i) the twice contracted Gauss equation

(3.33), (ii) the contracted Codazzi equation (3.34), (iii) the combination of the Ricci equation (3.31) with the contracted
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Gauss equation (3.32):

3R + K2 − K
�K

� = 16�E , (3.37)

D
K�
 − D�K = 8�J� , (3.38)

L(Nn)K��= −D�D�N + N{3R�� − 2K�
K

� + KK��

+4�[(S − E)	�� − 2S��]} . (3.39)

These equations are known as the Hamiltonian constraint, the momentum constraint and the dynamical 3+1 equations,
respectively.

The Hamiltonian and momentum constraints do not contain any second order derivative of the metric in a timelike
direction, contrary to Eq. (3.39) [remember that K is already a first order derivative of the metric in the timelike direction
n, according to Eq. (3.21)]. Therefore they are not associated with the dynamical evolution of the gravitational field
and represent constraints to be satisfied by � and K on each hypersurface �t .

The dynamical equation (3.39) can be written explicitly as a time evolution equation, once a 3+1 coordinate system
(t, xi) is introduced, as in Section 3.4. Then Nn is expressible in terms of the coordinate time vector t and the shift
vector � associated with these coordinates: Nn = t − � [cf. Eq. (3.24)], so that the Lie derivative in the left-hand side
of Eq. (3.39) can be written as

L(Nn) = Lt − L� . (3.40)

Now, if one uses tensor components with respect to the coordinates (xi), Lt Kij = �Kij /�t , Eq. (3.39) becomes

�
�t

Kij − L� Kij= −DiDjN + N{3Rij − 2KikKk
j + KKij

+4�[(S − E)	ij − 2Sij ]} . (3.41)

Similarly, relation (3.21) between K and Ln � becomes

�
�t

	ij − L� 	ij = −2NKij , (3.42)

where one may use the following identity [cf. Eq. (1.4)]: L� 	ij = Di�j + Dj�i .

3.7. Initial data problem

In view of the above equations, the standard procedure of numerical relativity consists in firstly specifying the values
of � and K on some initial spatial hypersurface �0 (Cauchy surface), and then evolving them according to Eqs. (3.41)
and (3.42). For this scheme to be valid, the initial data must satisfy the constraint Eqs. (3.37)–(3.38). The problem of
finding pairs (�, K) on �0 satisfying these constraints constitutes the initial data problem of 3 + 1 general relativity.

The existence of a well-posed initial value formulation for Einstein equation, first established by Choquet-Bruhat more
than 50 years ago [70], provides fundamental insight for a number of issues in general relativity (see e.g. Refs. [68,22]
for a mathematical account). In this article we aim at underlining those aspects related with the numerical construction
of astrophysically relevant spacetimes containing black holes. In this sense, the 3+1 formalism constitutes a particularly
convenient and widely extended approach to the problem (for other numerical approaches, see for instance [96,97,169]).
Consequently, the first step in this numerical approach consists in generating appropriate initial data which correspond
to astrophysically realistic situations. For a review on the numerical aspects of this initial data problem see [51,135].

If one chooses to excise a sphere in the spatial surface �t for it to represent the horizon of a black hole, appropriate
boundary conditions in this inner boundary must be imposed when solving the constraint Eqs. (3.37)–(3.38). This
particular aspect of the initial data problem constitutes one of the main applications of the subject studied here, and
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will be developed in Section 11. In order to carry out such a discussion, the conformal decomposition of the initial
data introduced by Lichnerowicz [113], particularly successful in the generation of initial data, will be presented in
Section 10.

4. 3 + 1-induced foliation of null hypersurfaces

4.1. Introduction

In Sections 2.6 and 2.7, we have introduced two geometrical objects on the 3-manifold H: the Weingarten map � and
the second fundamental form �. These objects are unique up to some rescaling of the null normal l to H. Following
Carter [41–43], we would like to consider these objects as four-dimensional quantities, i.e. to extend their definitions
from the 3-manifold H to the four-manifold M (or at least to the vicinity of H, as discussed in Section 2.3). The
benefit of such an extension is an easier manipulation of these objects, as ordinary tensors on M, which will facilitate
the connection with the geometrical objects of the 3 + 1 slicing. In particular this avoids the introduction of special
coordinate systems and complicated notations. For instance, one would like to define easily something like the type(

0
3

)
tensor ∇�, where ∇ is the spacetime covariant derivative. At the present stage, this is not possible even when

restricting the definition of ∇� to H, because there is no unique covariant derivation associated with the induced
metric q, since the latter is degenerate.

We have already noticed that, from the null structure of H alone, there is no canonical mapping from vectors of M
to vectors of H, and in particular no orthogonal projector (Remarks 2.1 and 2.3). Such a mapping would have provided
natural four-dimensional extensions of the forms defined on H. Actually in order to define a projector onto Tp(H),
we need some direction transverse to H, i.e. some vector of Tp(M) not belonging to Tp(H). We may then define a
projector along this transverse direction. The problem with null hypersurfaces is that there is no canonical transverse
direction since the normal direction is not transverse but tangent.

However if we take into account the foliation provided by some family of spacelike hypersurfaces (�t ) in the
standard 3 + 1 formalism introduced in Section 3, we have some extra-structure on M. We may then use it to define
unambiguously a transverse direction to H and an associated projector �. Moreover this transverse direction will be,
by construction, well suited to the 3 + 1 decomposition.

4.2. 3 + 1-induced foliation of H and normalization of l

In the general case, each spacelike hypersurface �t of the 3 + 1 slicing discussed in Section 3 intersects6 the null
hypersurface H on some two-dimensional surface St (cf. Fig. 8):

St := H ∩ �t . (4.1)

More generally, considering some null foliation (Hu) in the vicinity of H (cf. Section 2.3), we define the 2-surface
family (St,u) by

St,u := Hu ∩ �t . (4.2)

St is then nothing but the element St,u=1 of this family. (St,u) constitutes a foliation of M (in the vicinity of H) by
2-surfaces. This foliation is of type null-timelike in the terminology of the 2 + 2 formalism [96,98].

A local characterization of St follows from Eq. (2.2) and the definition of �t as the level set of some scalar field t:

∀p ∈ M, p ∈ St ⇐⇒ u(p) = 1 and t (p) = t . (4.3)

6 Note however the existence of slicings of the “exterior” region of H which actually do not intersect H, such as the standard maximal slicing
of Schwarzschild spacetime defined by the Schwarzschild time tS and illustrated in Fig. 4.
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Fig. 8. Foliation (St ) of the null hypersurface H induced by the spacetime foliation (�t ) of the 3 + 1 formalism.

The subspace Tp(St ) of vectors tangent to St at some point p ∈ St is then characterized in terms of the gradients of
the scalar fields u and t by

∀v ∈ Tp(M), v ∈ Tp(St ) ⇐⇒ 〈du, v〉 = 0 and 〈dt, v〉 = 0 . (4.4)

As a submanifold of �t , each St is necessarily a spacelike surface. Until Section 7, we make no assumption on the
topology of St , although we picture it as a closed (i.e. compact without boundary) manifold (Fig. 8). In the absence
of global assumptions on St or H, we define the exterior (resp. interior) of St , as the region of �t for which u > 1
(resp. u < 1). In the case another criterion is available to define the exterior of St (e.g. if St has the topology of S2,
�t is asymptotically flat and the exterior of St is defined as the connected component of �t\St which contains the
asymptotically flat region), we can always change the definition of u to make coincide the two definitions of exterior.

The St ’s constitute a foliation of H. The coordinate t can then be used as a parameter, in general non-affine, along
each null geodesic generatingH (cf. Section 2.5). Thanks to it, we can normalize the null normal l ofH by demanding
that l is the tangent vector associated with this parametrization of the null generators:

�� = dx�

dt
. (4.5)

An equivalent phrasing of this is demanding that l is a vector field “dual” to the 1-form dt (equivalently, the function
t can be regarded as a coordinate compatible with l):

〈dt, l〉 = ∇lt = 1 . (4.6)

A geometrical consequence of this choice is that the 2-surfaceSt+
t is obtained from the 2-surfaceSt by a displacement

tl at each point of St , as depicted in Fig. 9. Indeed consider a point p in St and displace it by a infinitesimal quantity

tl to the point p′ = p + 
tl (cf. Fig. 9). From the very definition of the gradient 1-form dt , the value of the scalar
field t at p′ is

t (p′) = t (p + 
tl) = t (p) + 〈dt, 
tl〉 = t (p) + 
t 〈dt, l〉︸ ︷︷ ︸
=1

=t (p) + 
t . (4.7)

This last equality shows that p′ ∈ St+
t . Hence the vector 
tl carries the surface St into the neighboring one St+
t .
One says equivalently that the 2-surfaces (St ) are Lie dragged by the null normal l.

Let s be the unit vector of �t , normal to St and directed toward the exterior of St (cf. Fig. 10); s obeys to the
following properties:

s · s = 1 , (4.8)

n · s = 0 , (4.9)
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Fig. 9. Lie transport of the surfaces St by the vector l.

Fig. 10. Null vector l normal to H, unit timelike vector n normal to �t , unit spacelike vector s normal to St and ingoing null vector k normal
to St .

〈du, s〉 > 0 , (4.10)

∀v ∈ Tp(�t ), v ∈ Tp(St ) ⇐⇒ s · v = 0 . (4.11)

Let us establish a simple expression of the null normal l in terms of the unit vectors n and s. Let b ∈ Tp(�t ) be the
orthogonal projection of l onto �t : b := 
�(l) [cf. Eq. (3.4)]. Then l = an + b, with a coefficient a to be determined.
By means of Eq. (3.1), 〈dt, l〉 = a/N , so that the normalization condition (4.6) leads to a = N , hence

l = Nn + b . (4.12)

For any vector v ∈ Tp(St ), l · v = 0. Replacing l by the above expression and using n · v = 0 results in b · v = 0.
Since this equality is valid for any v ∈ Tp(St ), we deduce that b is a vector of �t which is normal to St . It is then
necessarily collinear to s: b = �s, with � = s · b = s · l = 〈l, s〉 = e�〈du, s〉 > 0, thanks to Eq. (4.10). The condition
l · l = 0 then leads to � = N , so that finally

l = N(n + s) . (4.13)

In particular, the three vectors l, n and s are coplanar (see Fig. 10). Moreover, since 
�(l) = Ns with N > 0, 
�(l) is
directed toward the exterior of St . We say that l is an outgoing null vector with respect to St .

Remark 4.1. Since n is a unit timelike vector, s a unit spacelike vector and they are orthogonal, it is immediate that the
vector n+s is null. The relation (4.13) implies that this vector is tangent to H. Therefore, another natural normalization
of the null normal to H would have been to consider l = n + s, instead of 〈dt, l〉 = 1 [Eq. (4.6)]. Both normalizations
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are induced by the foliation (�t ). Only the normalization (4.6) has the property of Lie dragging the surfaces (St ). On
the other side, at a given point p ∈ H, the normalization l = n + s can be defined by a single spacelike hypersurface
� intersecting H, whereas the normalization (4.6) requires the existence of a family (�t ) in the neighborhood of p.
In what follows, we will denote by l̂ the null vector

l̂ := 1√
2
(n + s) , (4.14)

where the factor 1/
√

2 is introduced for later convenience.

4.3. Unit spatial normal to St

Eq. (4.13) can be inverted to express the unit spatial normal to the surface St ,7 s, in terms of l and n:

s = 1

N
l − n . (4.15)

When combined with l = e�du [Eq. (2.14)] and n = −Ndt [Eq. (3.1)] this leads to the following expression of the
1-form s associated with the normal s:

s = Ndt + Mdu , (4.16)

where we have introduced the factor

M := e�

N
, so that � = ln(MN) . (4.17)

Eq. (4.16) implies [cf. definition (3.5) of the operator 
�∗]


�∗s = M
�∗du , (4.18)

because 
�∗dt = −N−1 
�∗n = 0. Now, since s ∈ Tp(�t ), 
�∗s = s. Moreover, from Eq. (3.9), 
�∗du = Du, so that we get

s = M
�∗du = MDu . (4.19)

4.4. Induced metric on St

The metric h induced by �t ’s metric � on the 2-surfaces St is given by a formula analogous to Eq. (3.3), except for
the change of the + sign into a − one, to take into account the spacelike character of the normal s (whereas the normal
n was timelike):

h := � − s ⊗ s = g + n ⊗ n − s ⊗ s . (4.20)

Let us consider a pair of vectors (u, v) in Tp(H). Denoting by u0 and v0 their respective projections along l on the
vector plane Tp(St ), we have the unique decompositions

u = u0 + �l and v = v0 + 
l , (4.21)

where � and 
 are two real numbers. Since n · u0 = n · v0 = s · u0 = s · v0 = 0, one has

h(u, v) = g(u, v) + 〈n, u〉〈n, v〉 − 〈s, u〉〈s, v〉
= g(u, v) + [n · (u0 + �l)] × [n · (v0 + 
l)] − [s · (u0 + �l)][s · (v0 + 
l)]
= g(u, v) + �
(n · l︸︷︷︸

=−N

)2 − �
(s · l︸︷︷︸
=N

)2 ,

7 Note that the definition of the vector s can be extended to the 2-surfacesSt,u in the vicinity ofH. This permits to extend the objects constructed
by using s to a neighborhood of H, in the spirit of Section 2.3. We will refer in the following to St , keeping in mind that the results can be extended
to the whole foliation (St,u).
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h(u, v) = g(u, v) . (4.22)

This last equality shows that h and g coincide on Tp(H). In other words, the pull-back of h on H equals the pull-back
of g, that we have denoted q in Section 2 [see Eq. (2.8)]: �∗h = �∗g = q. We may then take h as the four-dimensional
extension of q and write Eq. (4.20) as

q = � − s ⊗ s (4.23)

q = g + n ⊗ n − s ⊗ s . (4.24)

Consequently we abandon from now on the notation h in profit of q. To summarize, on Tp(M), q is the symmetric
bilinear form given by Eq. (4.24), on Tp(�t ) it is the symmetric bilinear form given by Eq. (4.23), on Tp(H) it is the
degenerate metric induced by g, and on Tp(St ) it is the positive definite (i.e. Riemannian) metric induced by g.

The endomorphism Tp(M) → Tp(M) canonically associated with the bilinear form q by the metric g [cf. notation
(1.12)] is the orthogonal projector onto the 2-surface St :


q = 1 + n〈n, .〉 − s〈s, .〉 , (4.25)

in the very same manner in which 
� defined by Eq. (3.4) was the orthogonal projector onto �t .

4.5. Ingoing null vector

As mentioned in Section 4.1, we need some direction transverse to H to define a projector Tp(M) → Tp(H).
The (�t ) slicing has already provided us with two different transverse directions: the timelike direction n and the
spacelike direction s, both normal to the 2-surfaces St (cf. Fig. 10). These two directions are indeed transverse to H
since n /∈Tp(H) (otherwise H would be a timelike hypersurface) and s /∈Tp(H) (otherwise H would be a spacelike
hypersurface, coinciding locally with �t ). However n and s are not the only natural choices linked with the (�t )

foliation: we may also think about the null directions normal to St , i.e. the trajectories of the light rays emitted in the
radial directions from points on St . The light rays emitted in the outgoing radial direction (as defined in Section 4.2)
define the null vector l tangent to H already introduced. But those emitted in the ingoing radial direction define (up
to some normalization factor) another null vector:

k̂ := 1√
2
(n − s) (4.26)

[compare with Eq. (4.14)]. k̂ is transverse to H, since l · k̂=−√
2N �= 0. In fact we will favor this transverse direction,

rather than those arising from n or s, because its null character leads to simpler formulæ for the description of the null
hypersurface H.

Let us renormalize the vector k̂ by dividing it by
√

2N to get the null vector

k = 1

2N
(n − s) . (4.27)

The normalization has been chosen so that k satisfies the relation

l · k = −1 , (4.28)

which will simplify some of the subsequent formulæ. Eqs. (4.13) and (4.27) can be inverted to express n and s in terms
of the null vectors l and k:

n = 1

2N
l + Nk , (4.29)
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Fig. 11. View of the plane orthogonal to the 2-surface St : the timelike vector n, the spacelike vector s and the null vectors l and k all belong to
this plane. The dyad (l, k) defines the intersection of this plane with the light cone emerging from St ’s points. Intersections of the hypersurfaces
H and �t with this plane are also shown.

s = 1

2N
l − Nk . (4.30)

Each pair (n, s) or (l, k) forms a basis of the vectorial plane orthogonal to St :

Tp(St )
⊥ = Span(n, s) = Span(l, k) . (4.31)

This plane is shown in Fig. 11.

Remark 4.2. All the null vectors at a given point p ∈ H, except those collinear to l are transverse to H (see
Fig. 10 where all these vectors form the light cone emerging from p). It is the slicing (St ) of H which has enabled us
to select a preferred transverse null direction k, as the unique null direction normal to St and different from l.

Let us consider the 1-form k canonically associated with the vector k by the metric g. By combining Eqs. (4.27),
(3.1) and (4.16), one gets

k = −dt − M

2N
du . (4.32)

Remark 4.3. Eqs. (2.14), (3.1), (4.16) and (4.32) show that the 1-forms l, n, s and k are all linear combinations of the
exact 1-forms dt and du. This simply reflects the fact that the vectors l, n, s and k are all orthogonal to St [Eq. (4.31)
above] and that (dt, du) form a basis of the two-dimensional space of 1-forms normal to St [see Eq. (4.4)].

An immediate consequence of (4.32) is that the action of k on vectors tangent to H is identical (up to some sign) to
the action of the gradient 1-form dt :

∀v ∈ Tp(H), 〈k, v〉 = −〈dt, v〉 . (4.33)

An equivalent phrasing of this is: the pull-back of the 1-form k on H and that of −dt coincide:

�∗k = −�∗dt . (4.34)

Remark 4.4. The null vector k can be seen as “dual” to the null vector l in the following sense: (i) l belongs to
Tp(H), while k does not, and (ii) �∗k is a non-trivial exact 1-form in T∗(H), while �∗l is zero.

Example 4.5 (Slicing of Minkowski light cone). In continuation of Example 2.4 (H = light cone in Minkowski
spacetime), the simplest 3 + 1 slicing we may imagine is that constituted by hypersurfaces t = const, where t is a
standard Minkowskian time coordinate. The lapse function N is then identically one and the unit normal to �t has
trivial components with respect to the Minkowskian coordinates (t, x, y, z): n� = (1, 0, 0, 0) and n� = (−1, 0, 0, 0).
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In Example 2.4, we have already normalized l so that �t = 〈dt, l〉 = 1 [Eq. (4.6)], [cf. Eq. (2.28)]. The 2-surface St

is the sphere r := √
x2 + y2 + z2 = t in the hyperplane �t and its outward unit normal has the following components

with respect to (t, x, y, z):

s� =
(

0,
x

r
,
y

r
,
z

r

)
, s� =

(
0,

x

r
,
y

r
,
z

r

)
. (4.35)

We then deduce the components of the ingoing null vector k from Eq. (4.27):

k� =
(

1

2
, − x

2r
, − y

2r
, − z

2r

)
, k� =

(
−1

2
, − x

2r
, − y

2r
, − z

2r

)
, (4.36)

and the components of q from Eq. (4.24):

q�� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
y2 + z2

r2 −xy

r2 −xz

r2

0 −xy

r2

x2 + z2

r2 −yz

r2

0 −xz

r2 −yz

r2

x2 + y2

r2

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4.37)

Example 4.6 (Eddington–Finkelstein slicing of Schwarzschild horizon). As a next example, let us consider the 3 + 1
slicing of Schwarzschild spacetime by the hypersurfaces t=const, where t is the Eddington–Finkelstein time coordinate
considered in Example 2.5. This slicing has been already represented in Fig. 4. The corresponding lapse function has
been exhibited in Example 3.1. In Example 2.5, we have already normalized the null vector l to ensure �t =〈dt, l〉=1, so
Eq. (2.40) provides the correct expression for the null normal induced by the 3+1 slicing. From the metric components
given by Eq. (2.34), we obtain immediately the expression of the unit normal to St lying in �t :

s� =

⎛
⎜⎜⎝0,

1√
1 + 2m

r

, 0, 0

⎞
⎟⎟⎠ , s� =

⎛
⎜⎜⎝ 2m

r

√
1 + 2m

r

,

√
1 + 2m

r
, 0, 0

⎞
⎟⎟⎠ . (4.38)

Inserting this value into formula (4.27) and making use of expression (3.26) for N and (3.28) for n, we get the ingoing
null vector k:

k� =
(

1

2
+ m

r
, −1

2
− m

r
, 0, 0

)
, k� =

(
−1

2
− m

r
, −1

2
− m

r
, 0, 0

)
. (4.39)

Note that on H, k�
H=(−1, −1, 0, 0), so that we verify property (4.34), which is equivalent to (kt , k�, k�)

H=(−1, 0, 0).
The vectors n, s, l and k are represented in Fig. 12. The 2-surface St is spanned by the coordinates (�, �) and the
expression of the induced metric on St is obtained readily from the line element (2.34):

q�� = diag(0, 0, r2, r2 sin2 �) . (4.40)

4.6. Newman–Penrose null tetrad

4.6.1. Definition
The two null vectors l and k are the first two pieces of the so-called Newman–Penrose null tetrad, which we briefly

present here. We complete the null pair (l, k) by two orthonormal vectors in Tp(St ), (ea) = (e2, e3) let’s say, to get a
basis of Tp(M), such that

l · l = 0, l · k = −1, l · ea = 0 ,

k · k = 0, k · ea = 0 ,

ea · eb = 
ab .

(4.41)
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Fig. 12. Null vector l normal to H, unit timelike vector n normal to �t , unit spacelike vector s normal to St and ingoing null vector k normal to
St for the 3 + 1 Eddington–Finkelstein slicing of Schwarzschild horizon.

The basis (l, k, e2, e3) is formed by two null vectors and two spacelike vectors. At the price of introducing complex
vectors, we can modify it into a basis of four null vectors. Indeed let us introduce the following combination of e2 and
e3 with complex coefficients:

m := 1√
2
(e2 + ie3) . (4.42)

Then the complex conjugate defines another vector, which is linearly independent from m:

m̄ = 1√
2
(e2 − ie3) . (4.43)

Both m and m̄ are null vectors (with respect to the metric g).
The tetrad (l, k, m, m̄) constitutes a basis of Tp(M) made of null vectors only: any vector of Tp(M) admits a

unique expression as a linear combination (possibly with complex coefficients) of these four vectors. (l, k, m, m̄) is
called a Newman–Penrose null tetrad [127] (see also p. 343 of Ref. [90] or p. 72 of [156]). This tetrad obeys to

l · l = 0, l · k = −1, l · m = 0, l · m̄ = 0 ,

k · k = 0, k · m = 0, k · m̄ = 0 ,

m · m = 0, m · m̄ = 1 ,

m̄ · m̄ = 0 .

(4.44)

Since (e2, e3) is an orthonormal basis of Tp(St ), the metric induced in St can be written as

q = e2 ⊗ e2 + e3 ⊗ e3 = m ⊗ m̄ + m̄ ⊗ m . (4.45)

Moreover (n, s, e2, e3) is an orthonormal tetrad of Tp(M). The spacetime metric can then be written as

g = −n ⊗ n + s ⊗ s + e2 ⊗ e2 + e3 ⊗ e3 . (4.46)

It can also be expressed in terms of the Newman–Penrose null tetrad:

g = −l ⊗ k − k ⊗ l + m ⊗ m̄ + m̄ ⊗ m . (4.47)
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Comparing Eqs. (4.47) and (4.45), we get an expression of q in terms of g and the null dyad (l, k):

q = g + l ⊗ k + k ⊗ l . (4.48)

This expression is alternative to Eq. (4.24). It can be obtained directly by inserting Eqs. (4.29) and (4.30) in Eq. (4.24).
The related expression for the orthogonal projector 
q onto the 2-surface St is


q = 1 + l〈k, .〉 + k 〈l, .〉 , (4.49)

which constitutes an alternative to Eq. (4.25).

4.6.2. Weyl scalars
In Section 1.2.2 we have introduced the Weyl tensor C and have indicated that it encodes 10 of the 20 independent

components of the Riemann tensor. The null tetrad previously introduced permits to write these free components as
five independent complex scalars �n (n ∈ {0, 1, 2, 3, 4}), known as Weyl scalars. They are defined as

�0 := C(l, m, l, m) = C

����
m���m� ,

�1 := C(l, m, l, k) = C

����
m���k� ,

�2 := C(l, m, m̄, k) = C

����
m�m̄�k� ,

�3 := C(l, k, m̄, k) = C

����
k�m̄�k� ,

�4 := C(m̄, k, m̄, k) = C

���m̄
k�m̄�k� . (4.50)

As we will see in the following sections, some relevant geometrical quantities are naturally expressed in terms of
(some of) these scalars. For an account of the Newman–Penrose formalism in which they are naturally defined, see
[154–156,45] and references therein.

4.7. Projector onto H

Having introduced the transverse null direction k, we can now define the projector onto H along k by

� :Tp(M) −→ Tp(H)

v �−→ v + (l · v)k
. (4.51)

This application is well defined, i.e. its image is in Tp(H), since

∀v ∈ Tp(M), l · �(v) = l · v + (l · v) (l · k)︸ ︷︷ ︸
=−1

=0 . (4.52)

Moreover, � leaves invariant any vector in Tp(H):

∀v ∈ Tp(H), �(v) = v (4.53)

and

�(k) = 0 . (4.54)

These last two properties show that the operator � is the projector onto H along k. The projector � can be written as

� = 1 + k〈l, .〉 . (4.55)

It can be considered as a type
(

1
1

)
tensor, whose components are

��
� = 
�

� + k��� . (4.56)
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Comparing Eqs. (4.55) and (4.49) leads to the following relation:


q = � + l〈k, .〉 . (4.57)

Remark 4.7. The definition of the projector � does not depend on the normalization of l and k as long as they satisfy
the relation l · k = −1 [Eq. (4.28)]. Indeed a rescaling l �→ l′ = �l would imply a rescaling k �→ k′ = �−1k, leaving
� invariant. In other words, � is determined only by the foliation St of H and not by the scale of H’s null normal.
Note that such a foliation-induced tranverse projector onto a null hypersurface has been already used in the literature
(see e.g. Ref. [30]).

Since � is a well defined application Tp(M) → Tp(H), we may use it to map any linear form in T∗
p (H) to a linear

form in T∗
p (M), in the very same way that in Section 2.1 we used the application �∗ : Tp(H) → Tp(M) to map

linear forms in the opposite way, i.e. from T∗
p (M) to T∗

p (H). Indeed, and more generally, if T is a n-linear form on
Tp(H)n, we define �∗T as the n-linear form

�∗T :Tp(M)n −→ R

(v1, . . . , vn) �−→ T(�(v1), . . . ,�(vn))
. (4.58)

Note that since any multilinear form on Tp(M)n can also be regarded as a multilinear form on Tp(H)n, thanks to the
pull-back mapping �∗ if we identify �∗T with T abusing of the notation [cf. Eq. (2.7)], we may extend the definition
(4.58) to any multilinear form T on Tp(M). In index notation, we have then

(�∗T )�1...�n
= T
1...
n

�
1
�1

· · · �
n
�n

. (4.59)

Note that we are again abusing of the notation, since �∗T here should be properly denoted as (�∗ ◦�∗)T. In particular,
for a 1-form, the expression (4.55) for � yields:

∀� ∈ T∗
p (M), �∗� = � + 〈�, k〉l . (4.60)

For � = l, we get immediately

�∗l = 0 , (4.61)

which reflects the fact that l restricted to Tp(H) vanishes. On the contrary, for the 1-form k we have

�∗k = k . (4.62)

Collecting together Eqs. (4.53) (for v=l), (4.54), (4.61) and (4.62), we recover the duality between l and k mentioned
in Remark 4.4:

�(l) = l and �(k) = 0 , (4.63)

�∗l = 0 and �∗k = k . (4.64)

In index notation, the above relations write respectively

��

�
 = �� and ��


k
 = 0 , (4.65)

�
�

� = 0 and k
�


� = k� . (4.66)

The various mappings introduced so far between the vectorial spacesTp(H) andTp(M) and their duals are represented
in Fig. 13.

Remark 4.8. The vector k is a special case of what is called more generally a rigging vector [118], i.e. a vector
transverse to H everywhere, which allows to define a projector onto H whatever the character of H (i.e. spacelike,
timelike, null or changing from point to point).
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Fig. 13. Mappings between the space Tp(H) (resp. Tp(M)) of vectors tangent to H (resp. M) and the space T∗
p (H) (resp. T∗

p (M)) of 1-forms
on H (resp. M): �∗ and �∗ are respectively the push-forward and the pull-back mapping canonically induced by the embedding of H in M; � is
the projector onto H along the null transverse direction k and �∗ the induced mapping of 1-forms; g and g−1 denote the standard duality between
vectors and 1-forms induced by the spacetime metric g. Note that since the metric q on H is degenerate, it provides a mapping Tp(H) → T∗

p (H),
but not in the reverse way. � is the Weingarten map, defined in Section 2.6, which is an endomorphism of Tp(H).

4.8. Coordinate systems stationary with respect to H

Let us consider a 3 + 1 coordinate system (x�)= (t, xi), with the associated coordinate time vector t and shift vector
�, as defined in Section 3.4. It is useful to perform an orthogonal 2+1 decomposition of the shift vector with respect to
the surface St , according to

� = bs − V with s · V = 0 . (4.67)

In other words, b = s · � and V = −
q(�) ∈ Tp(St ) (the minus sign is chosen for later convenience).
Combining the two 3 + 1 decompositions l = N(n + s) [Eq. (4.13)] and t = Nn + � [Eq. (3.24)], we get

l = t + V + (N − b)s . (4.68)

We say that (x�) is a coordinate system stationary with respect to the null hypersurface H iff the equation of H in this
coordinate system involves only the spatial coordinates (xi) and does not depend upon t, i.e. iff there exists a scalar
function f (x1, x2, x3) such that

∀p = (t, x1, x2, x3) ∈ M, p ∈ H ⇐⇒ f (x1, x2, x3) = 1 . (4.69)

This means that the location of the 2-surface St is fixed with respect to the coordinate system (xi) on �t , as t varies.
The gradient of f is normal to H and thus parallel to du:

du
H= �df , (4.70)

where
H= means that this identity is valid only at points on H and � is some scalar field on H. Eq. (4.70) and the

independence of f from t imply

�u

�t

H= 0 . (4.71)

This has an immediate consequence on the coordinate time vector t:

〈du, t〉 = �u

�x
 t
 = �u

�x
 


t = �u

�t

H= 0 , (4.72)

which implies that t is tangent to H [cf. Eq. (2.12)]. Consequently, for a coordinate system stationary with respect
to H,

l̂ · t = 0 . (4.73)
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Fig. 14. Same as Fig. 10 but with the addition of the coordinate time vector t, the shift vector � and H’s surface velocity vector V with respect to a
coordinate system (x�) stationary with respect to H.

Replacing8 l̂ and t by their respective 3 + 1 decompositions (4.14) and (3.24) and using b = s · � leads to

b = N . (4.74)

Thus, for a coordinate system stationary with respect to H, the decomposition (4.68) simplifies to

l = t + V . (4.75)

In the case where H is the event horizon of some black hole and (x�) is stationary with respect to H, V ∈ Tp(St ) is
called the surface velocity of the black hole by Damour [59,60]. More generally, we will call V the surface velocity of
H with respect to the coordinate system (x�) stationary with respect to H.

To summarize, we have the following:

((x�) stationary w.r.t. H) ⇐⇒ �u

�t

H= 0 (4.76)

⇐⇒ t ∈ Tp(H) (4.77)

⇐⇒ l̂ · t
H= 0 (4.78)

⇐⇒ b
H= N (4.79)

⇐⇒ l
H= t + V (4.80)

Notice that for a coordinate system stationary with respect to H, the scalar field u defining H is not necessarily such
that u = u(x1, x2, x3) everywhere in M, but only on H [Eq. (4.76)].

The vectors t, � and V of a coordinate system stationary with respect to H are shown in Fig. 14.
A special case of a coordinate system stationary with respect to H is a coordinate system (x�) for which the function

f in Eq. (4.69) is simply one of the coordinates, x1 let’s say: f (x1, x2, x3) = x1. We call such a system a coordinate
system adapted to H. For instance, if the topology of H is R × S2, an adapted coordinate system can be of spherical
type (xi) = (r, ϑ, �), where r is such that H corresponds to r = 1.

Another special case of coordinate system stationary with respect to H is a coordinate system (x�) for which V = 0
(in addition to the stationarity condition t ∈ Tp(H)). We call such a system a coordinate system comoving with H.
From Eq. (4.80) this implies

t
H= l , (4.81)

which shows that the null generators of H are some lines xi = const.

8 Expression (4.73) is equivalent to l · t = 0 whenever N �= 0 on H.
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Example 4.9. The Minkowskian coordinates (t, x, y, z) introduced in Examples 2.4 and 4.5 are not stationary with
respect to the light cone H. In particular, �u/�t = −1 �= 0 and N = 1 �= b = 0 for these coordinates. On the contrary,
the Eddington–Finkelstein coordinates (t, r, �, �) introduced in Examples 2.5, 3.1 and 4.6 are stationary with respect
to the event horizon H of a Schwarzschild black hole. In particular, from the expression (2.37) for u, we notice that the

requirement (4.76) is fulfilled, and from Eqs. (3.27) and (4.38), we get b=2m/r (1+2m/r)−1/2 so that b
H= N

H= 1/
√

2,
in agreement with (4.79). Moreover, the Eddington–Finkelstein coordinates are both adapted to H and comoving with
H. Indeed, the equation for H can be defined by r = 2m (instead of u = 1), which shows the adaptation, and we have

already noticed that t
H= l [Eq. (2.41)], which shows the comobility (this can also be seen from the shift vector which

is collinear to s, according to Eqs. (3.27) and (4.38), implying V = 0).

If (x�) is a coordinate system adapted to H, then9 (xA) = (t, xa) = (t, x2, x3) is a coordinate system for H. In
terms of it, the induced metric element on H is

ds2|H = qAB dxA dxB = gtt dt2 + 2gta dt dxa + gab dxa dxb . (4.82)

Now, from Eqs. (4.68) and (4.80)

gtt = t · t = (l − V) · (l − V) = V · V = VaV
a (4.83)

and, from Eqs. (4.67) and (4.16)

gta = �a = bsa − Va = −Va . (4.84)

Besides, gab = qab [cf. Eq. (2.9)]. Thus the above line element can be written

ds2|H = qAB dxA dxB = qab(dxa − V a dt)(dxb − V b dt) . (4.85)

This equation agrees with Eq. (I.50c) of Damour [60] (or Eq. (6) of Appendix of Ref. [61]).10

Example 4.10. For the Eddington–Finkelstein coordinates (t, r, �, �) considered in Examples 2.5, 3.1, 4.6 and 4.9,
(xA) = (t, �, �) constitutes a coordinate system for the event horizon H. Taking into account that r = 2m on H, we
read from the line element (2.34) that

ds2|H = r2(d�2 + sin2 � d�2) , (4.86)

in agreement with Eq. (4.85), with, in addition V a = 0, since the Eddington–Finkelstein coordinates are comoving
with H.

5. Null geometry in four-dimensional version. Kinematics

In this section we consider the spacetime first derivatives of the null vectors l and k and of the associated 1-forms
l and k, as well as the Lie derivatives of the induced metric q along l and k. This is what we mean by “kinematics”.
The first derivative of l has been represented by the Weingarten map of H in Section 2.6. We start by extending the
definition of this map to the whole four-dimensional vector space Tp(M), whereas its original definition was restricted
to the three-dimensional subspace Tp(H).

9 Remember the index convention given in Section 1.2.
10 Note that Damour’s convention for indices A, B, . . . is the same than ours for indices a, b, . . ., namely they run in {2, 3} (whereas our convention

for A, B, . . . is that they run in {0, 2, 3}, same as Damour’s Ā, B̄, . . .).
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5.1. Four-dimensional extensions of the Weingarten map and the second fundamental form of H

Having introduced in Section 4.7 the projector � onto H, we can extend the definition of the Weingarten map of
H (with respect to the null normal l) to all vectors of Tp(M) at any point of H, by setting

� :Tp(M) −→ Tp(H)

v �−→ �H(�(v))
, (5.1)

where �H denotes the Weingarten map introduced on Tp(H) in Section 2.6. The image of � is in Tp(H) because the
image of �H is. Explicitly, one has [cf. Eq. (2.46)]

∀v ∈ Tp(M), �(v) = ∇�(v)l . (5.2)

In index notation

��

v
 = �(v)�∇��

� = (
�

 + k��
)v
∇��

� , (5.3)

hence the matrix of �:

��
� = ∇��� + k
∇
���� . (5.4)

We have already noticed that l is an eigenvector of the Weingarten map, with the eigenvalue � (the non-affinity
coefficient) [cf. Eq. (2.52)]. Since �(k) = 0, k constitutes another eigenvector of the (extended) Weingarten map, with
the eigenvalue zero:

�(l) = �l and �(k) = 0 . (5.5)

Similarly, we make use of the projector � to extend the definition of the second fundamental form of H with respect
to the normal l by [cf. the definition (4.58) of �∗]

� := �∗�H , (5.6)

where �H denotes the second fundamental form of H with respect to l introduced in Section 2.7. Explicitly, � writes

� :Tp(M) × Tp(M) −→ R

(u, v) �−→ �H(�(u), �(v)) .
(5.7)

Since �H is symmetric, the bilinear form � defined above is symmetric. Moreover, from the relation (4.57), we have
�(u) = 
q(u) − 〈k, u〉l. Since l is a degeneracy direction of �H [cf. Eq. (2.56)], we get

∀(u, v) ∈ Tp(M) × Tp(M), �(u, v) = �H(
q(u), 
q(v)) . (5.8)

Replacing �H by its definition (2.53), we get

∀ (u, v) ∈ Tp(M) × Tp(M), �(u, v) = 
q(u) · ∇
q(v)l

= ∇l(
q(u), 
q(v)) . (5.9)

We write this relation as

� = 
q∗∇l , (5.10)

where 
q∗ is the operator on multilinear forms induced by the projector 
q, in a manner similar to �∗ [cf. Eq. (4.58)]:
for any n-linear form T on Tp(M) or on Tp(St ), 
q∗T is the n-linear form on Tp(M) defined by


q∗T :Tp(M)n −→ R

(v1, . . . , vn) �−→ T(
q(v1), . . . , 
q(vn))
. (5.11)
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In index notation:

(
q∗T )�1...�n
= T
1...
n

q
1
�1

· · · q
n
�n

, (5.12)

so that Eq. (5.10) writes (taking into account the symmetry of �)

��� = ∇
��q


�q�

� . (5.13)

The identity (5.10) strengthens Eq. (5.6): not only � “acts only” in H (in the sense that � starts by a projection onto
H), but it “acts only” in the submanifold St of H.

The bilinear form � is degenerate, with at least two degeneracy directions : l [see Eq. (2.56)] and k (since �(k)=0):

�(l, .) = 0 and �(k, .) = 0 . (5.14)

From Eq. (4.31) we conclude that any vector in the plane orthogonal to St is also a degeneracy direction for �:

∀v ∈ Tp(St )
⊥, �(v, .) = 0 . (5.15)

5.2. Expression of ∇l: rotation 1-form and Háj́iček 1-form

A quantity which appears very often in our study is the spacetime covariant derivative of the null normal: ∇l. Let
us recall that, thanks to some null foliation (Hu), we have extended the definition of l to an open neighborhood of H
(cf. Section 2.3). Consequently the covariant derivatives ∇l and ∇l are well defined. ∇l is a bilinear form on Tp(M).
Let us express it in terms of the bilinear form � which we have just extended to the whole space Tp(M). For two
arbitrary vectors u and v of Tp(M), by combining definition (5.7) of � with the definition (2.53) of �H and making
use of expression (4.51) of �, one has

�(u, v) = �(u) · ∇�(v)l = (u + 〈l, u〉k) · ∇�(v)l

= u · ∇�(v)l + 〈l, u〉k · ∇�(v)l︸ ︷︷ ︸
=�(v)

=u · ∇v+〈l,v〉kl + 〈l, u〉k · �(v)

= u · ∇vl + 〈l, v〉u · ∇kl + 〈l, u〉k · �(v)
= ∇l(u, v) + 〈l, v〉〈∇kl, u〉 + 〈l, u〉k · �(v) . (5.16)

In this expression appears the 1-form

� :Tp(M) −→ R

v �−→ −k · �(v)
, (5.17)

which we call the rotation 1-form (for reasons which will become clear later; see Section 8.6.1). Relation (5.16) then
reads

�(u, v) = ∇l(u, v) + 〈l, v〉〈∇kl, u〉 − 〈�, v〉〈l, u〉 . (5.18)

Since this equation is valid whatever u and v in Tp(M), we obtain the relation we were looking for

∇l = � + l ⊗ � − ∇k l ⊗ l . (5.19)

Taking into account the symmetry of �, the ‘index’ version of the above relation is [see Eq. (1.9)]:

∇��� = ��� + ���� − ��k

∇
�� . (5.20)

An equivalent form of Eq. (5.19), obtained via the standard metric duality [or by raising the last index of Eq. (5.20)],
gives the covariant derivative of the vector field l

∇l = 
� + l ⊗ � − ∇kl ⊗ l , (5.21)
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where 
� is the endomorphism canonically associated with the bilinear form � by the metric g [see the notation (1.12)].
Its components are ��

� = g�
�
� and it is related to the Weingarten map � by


� := 
q ◦ � ◦ 
q = 
q ◦ � . (5.22)

By combining Eqs. (5.2), (5.21) and using the fact that 〈�, k〉 = 0, so that 〈�, �(v)〉 = 〈�, v〉 for any v ∈ Tp(M), we
get a simple expression relating the extended Weingarten map to the endomorphism 
� and the rotation 1-form �:

� = 
� + 〈�, .〉l . (5.23)

Let us now discuss further the rotation 1-form �. First, from the expressions (5.2) for � and (4.51) for �, one has

∀ v ∈ Tp(M), 〈�, v〉 = − k · ∇�(v)l = −k · ∇v+〈l,v〉kl
= − k · ∇vl − 〈l, v〉k · ∇kl . (5.24)

Hence

� = −k · ∇l − (k · ∇kl)l . (5.25)

Next, for any vector v ∈ Tp(M) we have 〈�, v〉 = −〈k, �(v)〉. Since the image of the extended Weingarten map � is in
Tp(H) and the action of the 1-forms k and −dt coincide on Tp(H) [cf. Eq. (4.34)], we get the following alternative
expressions for �:

∀v ∈ Tp(M), 〈�, v〉 = 〈dt, �(v)〉 = 〈dt, ∇�(v)l〉 , (5.26)

which we can write in terms of the function composition operator ◦ as

� = dt ◦ � . (5.27)

Besides, from the very definition (5.17) of �, the eigenvector expressions (5.5) lead immediately to the following action
on the null vectors l and k:

〈�, l〉 = � and 〈�, k〉 = 0 . (5.28)

The pull-back of the rotation 1-form to the 2-surfaces St by the inclusion mapping of St into M is called the Háj́iček
1-form and is denoted by the capital letter �. Following the four-dimensional point of view adopted in this article,
we can extend the definition of � to all vectors in Tp(M) thanks to the orthogonal projector 
q and set [see definition
(5.11)]

� := � ◦ 
q or � := 
q∗� . (5.29)

Replacing � by its definition (5.17) leads to

∀v ∈ Tp(M), 〈�, v〉 = −k · ∇
q(v)l . (5.30)

The 1-form � has been introduced by Há "́iček [82,84] in the special case � = 0 (non-expanding horizons, to be
discussed in Section 7) and in the general case by Damour [60,61]. � is considered by Há "́iček as a “gravimagnetic
field”, whereas it is viewed by Damour as a surface momentum density, as we shall see in Section 6.3. The form � has
also been used in the subsequent membrane paradigm formulation of Price and Thorne [141]. Actually, restricting the
action of � to Tp(St ), on which 
q is the identity operator, and using Eq. (5.26), we get

∀v ∈ Tp(St ), 〈�, v〉 = 〈dt, ∇vl〉 , (5.31)
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This expression agrees with Eq. (2.6) of Ref. [141], used by Price and Thorne as the definition of the Há "́iček 1-form. By
construction (because of the orthonormal projector 
q onto St ), the Há "́iček 1-form vanishes for any vector orthogonal
to the 2-surface St :

∀v ∈ Tp(St )
⊥, 〈�, v〉 = 0 . (5.32)

In particular, it vanishes on the null dyad (l, k):

〈�, l〉 = 0 and 〈�, k〉 = 0 . (5.33)

Actually the 1-form � can be viewed as a 1-form intrinsic to the 2-surface St , independently of the fact that St is
a submanifold of H or �t . It describes some part of the extrinsic geometry of St as a submanifold of (M, g) and
is called generically a normal fundamental form of the 2-surface St [93,67,76]. The remaining part of the extrinsic
geometry of St is described by the second fundamental tensor K discussed in Remark 5.4 below.

We have, thanks to the expression (4.57) for 
q,

∀ v ∈ Tp(M), 〈�, v〉 = 〈�, 
q(v)〉 = 〈�, �(v) + 〈k, v〉l〉
= 〈�, �(v)〉︸ ︷︷ ︸

=〈�,v〉
+〈k, v〉 〈�, l〉︸ ︷︷ ︸

=�

. (5.34)

Hence it follows the simple relation between the rotation 1-form �, the Há "́iček 1-form � and the “transverse”
1-form k:

� = � − �k . (5.35)

5.3. Frobenius identities

From expression (5.19) of the spacetime covariant derivative ∇l, we can compute the exterior derivative of H’s
normal 1-form l following Eq. (1.24). We get, taking into account the symmetry of �,

dl = � ⊗ l − l ⊗ � − l ⊗ ∇kl + ∇kl ⊗ l = � ∧ l + ∇kl ∧ l ,

dl = (� + ∇kl) ∧ l . (5.36)

The fact that the exterior derivative of l is the exterior product of some 1-form with l itself reflects the fact that l is
normal to some hypersurface (H): this is the dual formulation of Frobenius theorem already noticed in Section 2.4.
Actually Eq. (5.36) has the same structure as Eq. (2.17). Let us rewrite the latter by expressing � is terms of the lapse
function N and the factor M [Eq. (4.17)]:

dl = d ln(MN) ∧ l . (5.37)

Let us now evaluate the exterior derivative of the 1-form k dual to the ingoing null vector k. First of all, the definition
of k is extended to an open neighborhood of H in M as the vector field which satisfies (i) k is an ingoing null normal
to the 2-surface St,u [cf. Eq. (4.2)] and (ii) k · l = −1. The exterior derivative dk is then well defined. Starting from
expression (4.32) for k and using dd = 0, we have immediately [cf. formula (1.22)]

dk = −1

2
d
(

M

N

)
∧ du = − 1

2MN
d
(

M

N

)
∧ l , (5.38)

where we have used l = MN du [cf. Eq. (2.14)]. Hence

dk = 1

2N2 d ln

(
N

M

)
∧ l . (5.39)
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Remark 5.1. Since a priori the 1-form d ln(N/M) is not of the form �k + �l (in which case Eq. (5.39) would write
dk=�/(2N2)k∧l), we deduce from the (dual formulation of) of Frobenius theorem (see e.g. Theorem B.3.2 in Wald’s
textbook [167]) and Eq. (5.39) that the hyperplane normal to k is not in general integrable into some hypersurface. On
the other side, the Frobenius theorem and relations (5.37) and (5.39) imply that the 2-planes normal to both l and k
are integrable into a 2-surface: it is St [cf. the property (4.31)].

5.4. Another expression of the rotation 1-form

Let us show that the Frobenius identity (5.39) leads to the identification of the rotation 1-form � with the covariant
derivative of the 1-form k along the vector l. Starting from the definition of � [Eq. (5.17)], any vector v ∈ Tp(M)

satisfies

〈�, v〉 = − k · ∇�(v)l = l · ∇�(v)k = 〈∇�(v)k, l〉 = 〈∇k · �(v), l〉
= 〈−dk · �(v) + �(v) · ∇k, l〉

=
〈

1

2N2

⎡
⎣∇�(v) ln

(
N

M

)
l − 〈l, �(v)〉︸ ︷︷ ︸

=0

d ln

(
N

M

)⎤⎦ , l

〉
+ 〈�(v) · ∇k, l〉

= 1

2N2 ∇�(v) ln

(
N

M

)
〈l, l〉︸ ︷︷ ︸

=0

+〈∇lk, �(v)〉

= 〈∇lk, v + (l · v)k〉 = 〈∇lk, v〉 + (l · v) 〈∇lk, k〉︸ ︷︷ ︸
=0

= 〈∇l k, v〉 , (5.40)

where the relation k · l = −1 has been used in the first line, Eq. (1.24) to obtain the second line, and Eq. (5.39) to get
the third line. Therefore

� = ∇lk . (5.41)

From Eq. (4.34), k can be written as k = −�∗dt on H. If we make use of this, together with expression (4.57) for �,
the pull-back of the above relation on H results in

�∗� = −�∗∇l dt , (5.42)

which provides some nice perspective on �, alternative to Eq. (5.27). Combining Eqs. (5.41) and (5.28) results in the
simple relation

∇k(l, l) = � . (5.43)

Another consequence of the Frobenius identity (5.39) is

k · dk = 1

2N2

⎡
⎢⎣∇k ln

(
N

M

)
l − 〈l, k〉︸ ︷︷ ︸

=−1

d ln

(
N

M

)⎤⎥⎦
∇k · k − k · ∇k︸ ︷︷ ︸

=0

= 1

2N2

[
∇k ln

(
N

M

)
l + d ln

(
N

M

)]
. (5.44)

Hence [cf. Eq. (4.60)]

∇kk = 1

2N2 �∗d ln

(
N

M

)
. (5.45)
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Since ∇l(k, k) = k · ∇kl = −l · ∇kk = −〈∇kk, l〉 and �(l) = l, we deduce from the above relation that

∇l(k, k) = − 1

2N2 ∇l ln

(
N

M

)
. (5.46)

Let us now evaluate ∇kl. Contracting the Frobenius relation (5.37) for l with the vector k yields

k · dl = ∇k ln(MN)l − 〈l, k〉︸ ︷︷ ︸
=−1

d ln(MN) ,

∇l · k − k · ∇l = �∗d ln(MN) ,

∇kl = k · ∇l + �∗d ln(MN) . (5.47)

Substituting Eq. (5.25) for k · ∇l and using Eq. (5.46) gives

∇kl = −� + 1

2N2 ∇l ln

(
N

M

)
l + �∗d ln(MN) . (5.48)

From this relation and Eqs. (5.46) and (4.60), we get the following expression for the rotation 1-form:

� = �∗(d ln(MN) − ∇kl) , (5.49)

which clearly shows that the action of � vanishes in the direction k.

5.5. Deformation rate of the 2-surfaces St

The choice of l as the tangent vector to H’s null generators corresponding to the parameter t (cf. Section 4.2) makes
it the natural vector field to describe the evolution of H’s fields with respect to t. Following Damour [60,61], we define
the tensor of deformation rate with respect to l of the 2-surface St as half the Lie derivative of St ’s metric q along
the vector field l:

Q := 1
2
SLlq , (5.50)

where q is considered as a bilinear form field on St and SLl is the Lie derivative intrinsic to (St ) which arises from
the Lie-dragging of St by l (cf. Section 4.2 and Fig. 9). The precise definition of SLl is given in Appendix A. The
relation with the Lie derivative along l within the manifold M, Ll , is given in 4-dimensional form by Eq. (A.20)


q∗SLlq = 
q∗Ll q , (5.51)

where we have used 
q∗q = q. Thus Eq. (5.50) becomes


q∗Q = 1
2 
q∗Ll q , (5.52)

where q is now considered as a bilinear form on M [as given by Eq. (4.24) or Eq. (4.48)]. Let us evaluate the four-
dimensional) Lie derivative in the right-hand side of the above equation, by substituting Eq. (4.48) for q:

Ll q = Ll (g + l ⊗ k + k ⊗ l)

= Ll g + Ll l ⊗ k + l ⊗ Ll k + Ll k ⊗ l + k ⊗ Ll l . (5.53)

Since 
q∗l = 0 and 
q∗k = 0, only the term Ll g remains in the right-hand side when applying the operator 
q∗, so that
Eq. (5.52) becomes


q∗Q = 1
2 
q∗Ll g . (5.54)

Now Ll g is the Killing operator applied to the 1-form l : Ll g�� = ∇��� + ∇���. Then from Eq. (5.13) and taking
into account the symmetry of �, we get


q∗Q = � . (5.55)
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Replacing Q by its definition (5.50), we conclude that the second fundamental form of H is related to the deformation
rate of the 2-surface St by

� = 1
2 
q∗SLlq = 1

2 
q∗Ll q , (5.56)

where the second equality follows from Eq. (5.51).
Let us consider a coordinate system (x�) = (t, xi). Then, according to Eq. (4.68), l = t + V + (N − b)s, where t is

the coordinate time vector associated with (x�), V = 
q(l − t), and b is the component of the shift vector of (x�) along
the spatial normal s to St . Eq. (5.56) can then be written as

��� = 1
2 (Ltq
� + LVq
� + L(N−b)sq
�)q



�q�

�

= 1
2 {Ltq
� + V �∇�q
� + q��∇
V � + q
�∇�V

� + (N − b)s�∇�q
�

+ q��∇
[(N − b)s�] + q
�∇�[(N − b)s�]}q

�q�

�

= 1
2 {(Ltq
�)q



�q�

� + q

�q��∇
V � + q��q�

�∇�V
� + (N − b)(q


�q��∇
s� + q��q�
�∇�s

�)}
��� = 1

2 [Ltq
� + ∇
V� + ∇�V
 + (N − b)(∇
s� + ∇�s
)]q

�q�

� , (5.57)

where the last but one equality results from the identities q
�s� = 0 and q

�q�

�∇�q
� = 0. This last identity follows
immediately from Eq. (4.48). Now, similarly to Eq. (3.8) and thanks to the fact that V ∈ T(St ),

q

�q�

�∇
V� = 2D�V� , (5.58)

where 2D denotes the covariant derivative in the surface St compatible with the induced metric q. More generally the
relation between 2D derivatives and ∇ derivatives is given by a formula analogous to Eq. (3.8), with the projector 
�
simply replaced by the projector 
q:

2D	T
�1...�p

�1...�q
= q�1


1
· · · q�p


p
q�1

�1
· · · q�q

�q
q�

	∇�T 
1...
p
�1...�q

, (5.59)

where T is any tensor of type
(

p
q

)
lying in St [i.e. such that its contraction with the normal vectors n and s (or l and

k) on any of its indices vanishes]. On the other side

(∇
s� + ∇�s
)q

�q�

� = H�� + H�� = 2H�� , (5.60)

where H is the extrinsic curvature of the surface St considered as a hypersurface embedded in the Riemannian space
(�t , �). H is a symmetric bilinear form which vanishes in the directions orthogonal to St . It will be discussed in
a greater extent in Section 10.3.1. In particular formula (5.60) is a direct consequence of Eq. (10.32) established in
that section.

Thanks to Eqs. (5.58) and (5.60), Eq. (5.57) becomes

��� = 1
2 [(Ltq
�)q



�q�

� + 2D�V� + 2D�V�] + (N − b)H�� , (5.61)

or, in index-free notation (cf. the definition (1.27) of the Killing operator):

� = 1
2 [
q∗Lt q + Kil(2D, V)] + (N − b)H . (5.62)

In particular, if (x�) is a coordinate system adapted to H, then N − b = 0 [Eq. (4.79)] and q

a = 



a , so that when
restricting Eq. (5.61) to St (i.e. � = a ∈ {2, 3}, � = b ∈ {2, 3}) one obtains

�ab = 1

2

(
�qab

�t
+ 2DaVb + 2DbVa

)
, (5.63)

which agrees with Eq. (I.52b) of Damour [60].
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5.6. Expansion scalar and shear tensor of the 2-surfaces St

Let us split the second fundamental form � (now considered as the deformation rate of the 2-surfaces St ) into a
trace part and a traceless part with respect to St ’s metric q

� = 1
2�q + � , (5.64)

where

� := tr 
� = �


 = g
��
� = q
��
� = qab�ab = �a

a (5.65)

is the trace of the endomorphism 
� canonically associated with � by the metric g [see also Eq. (5.22)] and � is the
traceless part of �

� := � − 1
2�q , (5.66)

which satisfies

�


 = q
��
� = �a

a = 0 . (5.67)

The trace � is called the expansion scalar of St and � the shear tensor of St .
The expansion � is linked to the divergence of l; indeed taking the trace of Eq. (5.21) results in

∇ · l = � + 〈�, l〉︸ ︷︷ ︸
=�

− 〈l, ∇kl〉︸ ︷︷ ︸
=0

, (5.68)

hence

∇ · l = � + � . (5.69)

Another relation is obtained by combining � = q
��
� with the expression (5.9) for �
�:

� = q
�q�

q�

�∇��� = q��q�
�∇��� = q��∇��� , (5.70)

i.e.

� = q
�∇
�� . (5.71)

Another expression of � is obtained as follows. Let (x�) be a coordinate system adapted to H; (xa)a=2,3 is then a
coordinate system on St . We have �= qab�ab [cf. Eq. (5.65)] and let us use Eq. (5.56) restricted to T(St ), i.e. under
the form �ab = 1/2SLlqab. We get

� = 1
2qabSLlqab = 1

2
SLl ln q , (5.72)

where q is the determinant of the components qab of the metric q with respect to the coordinates (xa) in St :

q := det qab . (5.73)

The second equality in Eq. (5.72) follows from the standard formula for the variation of a determinant. Hence we have

� = SLl ln
√

q . (5.74)
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This relation justifies the name of expansion scalar given to �, for
√

q is related to the surface element 2ε of St by

2ε = √
qdx2 ∧ dx3 . (5.75)

Another expression of � is obtained by contracting Eq. (5.63) with qab:

� = �

�t
ln

√
q + 2DaV

a . (5.76)

More generally, contracting Eq. (5.61) with q�� leads to

� = q
�Ltq
� + 2DaV
a + (N − b)H , (5.77)

where H is twice St ’s mean curvature within (�t , �) [Eq. (10.41) below].

Remark 5.2. Eqs. (5.74) and (5.76), by relating � to the rate of expansion of the 2-surfaces St , might suggest that the
scalar � depends quite sensitively upon the foliation of spacetime by the spacelike hypersurfaces �t , since the surfaces
St are defined by this foliation. Actually the dependence is pretty weak: as shown by Eq. (5.69), � depends only upon
the null normal l to H (since � depends only upon l). Hence the dependence of � with respect to foliation (St ) is
only through the normalization of l induced by the (St ) slicing and not on the precise shape of this slicing.

5.7. Transversal deformation rate

By analogy with the expression (5.56) of �, we define the transversal deformation rate of the 2-surface St as the
projection onto T(St ) of the Lie derivative of St ’s metric q along the null transverse vector k:

� := 1
2 
q∗Lkq . (5.78)

Remark 5.3. In the above definition q is considered as the four-dimensional bilinear form given by Eq. (4.24) or
Eq. (4.48), rather than as the two-dimensional metric of St , and Lkq is its Lie derivative within the four-manifold M.
Indeed since the vector field k does not Lie drag the surfaces (St ), we do not have an object such as the two-dimensional
Lie derivative “SLk” (the analog of SLl) which could have been applied to the two-metric of St in the strict sense.

From its definition, it is obvious that � is a symmetric bilinear form. Replacing q by its expression (4.48), we get

� = 1
2 
q∗Lk(g + l ⊗ k + k ⊗ l)

= 1
2 
q∗(Lkg + Lkl ⊗ k + l ⊗ Lkk + Lkk ⊗ l + k ⊗ Lkl) . (5.79)

Since 
q∗l = 0 and 
q∗k = 0, only the term Lkg remains in the right-hand side after the operator 
q∗ has been applied.
Now Lkg is nothing but the Killing operator applied to the 1-form k, so that the above equation becomes

� = 1

2

q∗Lkg = 1

2

q∗ Kil(∇, k) = 
q∗

(
∇k + 1

2
dk
)

= 
q∗
[
∇k + 1

4N2 d ln

(
N

M

)
∧ l

]
= 
q∗∇k + 1

4N2 
q∗d ln

(
N

M

)
∧ 
q∗l︸︷︷︸

=0

,

where use has been made of the Frobenius identity (5.39) to get the second line. We conclude that

� = 
q∗∇k , (5.80)

which is an expression completely analogous to expression (5.10) for � in terms of ∇l.
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Remark 5.4. The metric q induced by g on the 2-surface St is a Riemannian metric (i.e. positive definite) (cf. Section
4.4). It is called the first fundamental form of St and describes fully the intrinsic geometry of St . The way St is
embedded in the spacetime (M, g) constitutes the extrinsic geometry of St . For a non-null hypersurface of M, this
extrinsic geometry is fully described by a single bilinear form, the so-called second fundamental form (for instance K
for the hypersurface �t ). For the two-dimensional surface St , a part of the extrinsic geometry is described by a normal
fundamental form, like the Há "́iček 1-form � as discussed in Section 5.2. The remaining part is described by a type
(1,2) tensor: the second fundamental tensor K [41,43] (also called shape tensor [149]), which relates the covariant
derivative of a vector tangent to St taken with the spacetime connection ∇ to that taken with the connection 2D in St

compatible with the induced metric q:

∀(u, v) ∈ T(St )
2, ∇uv = 2Duv + K(u, v) . (5.81)

It is easy to see that K is related to the spacetime derivative of 
q by

K	
�� = q


�q�
�∇
q	

� . (5.82)

K	
�� is tangent to St with respect to the indices � and � and orthogonal to St with respect to the index 	. Moreover,

it is symmetric in � and � [although this is not obvious on Eq. (5.82)]. From Eqs. (4.49), (5.13) and (5.80), we have

K	
�� = ���k	 + ����	 . (5.83)

Accordingly, the bilinear forms � and � can be viewed as two facets of the same object: the second fundamental
tensor K:

��� = −�
K


�� and ��� = −k
K



�� . (5.84)

By substituting Eq. (4.49) for the projector 
q in Eq. (5.80), using the identity �
∇�k
 = −k
∇��

 (which follows

from l · k = −1), expressing ∇��

 via Eq. (5.21) and using Eqs. (5.35) and (5.41), we get the following expression for

the spacetime derivative of the 1-form k, in terms of � and the Há "́iček 1-form �:

∇�k� = ��� − ��k� − ��k

∇
k� − k��� , (5.85)

or, taking into account the symmetry of �,

∇k = � − k ⊗ � − ∇kk ⊗ l − � ⊗ k . (5.86)

Similarly to the definition of the expansion scalar � as the trace of the deformation rate � [cf. Eqs. (5.65) and (5.71)],
we define the transversal expansion scalar �(k) as the trace of �:

�(k) := tr 
� = �


 = g
��
� = q
��
� = qab�ab = q
�∇
k� . (5.87)

Remark 5.5. The reader will have noticed a certain dissymmetry in our notations, since we use �(k) for the expansion
of the null vector k and merely � the expansion of the null vector l. From the point of view of the two-dimensional
spacelike surface St , l and k play perfectly symmetric roles, l (resp. k) being the unique – up to some rescaling –
outgoing (resp. ingoing) null normal to St . However, l is in addition normal to the null hypersurface H, whereas k
has not any specific relation to H. In particular, there is not a unique transverse null direction to H, so that k is defined
only thanks to the extra-structure (St ). The dissymmetry in our notations accounts therefore for the privileged status
of l with respect to k.

Example 5.6 (�, �, � and � for a Minkowski light cone). Let us proceed with Example 4.5, namely a light cone in
Minkowski spacetime, sliced according to the standard Minkowskian time coordinate t. Comparing the components of
∇l given by Eq. (2.29) with those of q given by Eq. (4.37), we realize that

∇l = 1

r
q . (5.88)
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The second fundamental form � = 
q∗∇l [Eq. (5.10)] follows then immediately:

� = 1

r
q . (5.89)

We deduce from this relation and Eq. (5.64) that the expansion scalar is

� = 2

r
(5.90)

and the shear tensor vanishes identically:

� = 0 . (5.91)

Note that � > 0, in accordance with the fact that the light cone is expanding. From expression (5.88) and the orthogonality
of q with k, we deduce by means of Eq. (5.25) that the rotation 1-form vanishes identically:

� = 0 . (5.92)

Consequently, its pull-back on St , the Há "́iček 1-form, vanishes as well:

� = 0 . (5.93)

Similarly, from expression (4.36) for k, we get ∇k = −1/(2r)q. From this relation and Eq. (5.80), we deduce that the
transversal deformation rate has the simple expression

� = − 1

2r
q , (5.94)

on which we read immediately the transversal expansion scalar:

�(k) = −1

r
. (5.95)

Example 5.7 (�, �, � and � associated with the Eddington–Finkelstein slicing of Schwarzschild horizon). Let us
continue the Example 4.6 about the event horizon of Schwarzschild spacetime, with the 3 + 1 slicing provided by
Eddington–Finkelstein coordinates. The second fundamental form � is obtained from Eqs. (5.13), (2.42) and (4.40):

��� = diag

(
0, 0,

r − 2m

r + 2m
r,

r − 2m

r + 2m
r sin2 �

)
. (5.96)

Accordingly, the expansion scalar is

� = 2

r

r − 2m

r + 2m
(5.97)

and the shear tensor vanishes identically

��� = 0 . (5.98)

The transversal deformation rate is deduced from Eq. (5.80) and expression (4.39) for k:

��� = diag

(
0, 0, − r + 2m

2
, − r + 2m

2
sin2 �

)
, (5.99)

so that the transversal expansion scalar is

�(k) = −1

r
− 2m

r2 . (5.100)

The rotation 1-form is obtained from Eq. (5.25) combined with expression (2.42) for ∇l and expression (4.39) for k:

�� =
(

2m

r(r + 2m)
,

2m

r(r + 2m)
, 0, 0

)
. (5.101)
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We deduce immediately from this expression and Eq. (5.29) that the Há "́iček 1-form vanishes identically:

� = 0 . (5.102)

As a check, we verify that, from the obtained values for �, �, � and k, Eq. (5.35) is satisfied. It is of course instructive
to specify the above results on the event horizon H (r = 2m):

�
H= 0, �

H= 0, �
H= 0 , (5.103)

�
H= − 1

2m
q, �(k)

H= − 1

m
, (5.104)

�
H= − 1

4m
k, �

H= 0 . (5.105)

Note that for a rotating black hole, described by the Kerr metric, � is no longer zero, as shown in Appendix D.

5.8. Behavior under rescaling of the null normal

As stressed in Section 2, from the null structure only, the normal l to the hypersurface H is defined up to some
normalization factor (cf. Remark 2.2), i.e. one can change l to

l′ = �l , (5.106)

where � is any strictly positive scalar field on H (� > 0 ensures that l′ is future oriented). In the present framework, the
extra-structure on H induced by the spacelike foliation �t of the 3 + 1 formalism provides a way to normalize l: we
have demanded l to be the tangent vector corresponding to the parametrization by t of the null geodesics generating
H [cf. Eq. (4.5)], or equivalently that l be a dual vector to the gradient dt of the t field [cf. Eq. (4.6)]. It is however
instructive to examine how the various quantities introduced so far change under a rescaling of the type (5.106). In
Section 2, we have already exhibited the behavior of the non-affinity parameter � [cf. Eq. (2.26)], as well as of the
Weingarten map and the second fundamental form, both restricted to H [cf. Eqs. (2.48) and (2.57)].

In view of Eq. (4.28) the scaling properties of the transverse null vector k are simply k′ = �−1k. From the expression
(4.55) of the projector � onto H along k, in conjunction with l′ = �l and k′ = �−1k, we get that � is invariant under
the rescaling (5.106):

�′ = � . (5.107)

This is not surprising since �|Tp(H) is the identity and therefore does not depend upon l. Similarly the orthogonal
projector 
q onto St does not depend upon l [this is obvious from its definition and is clear in expression (4.49)] so that


q′ = 
q . (5.108)

From its definition (5.1) and the scaling properties (2.48) and (5.107), we get the following scaling behavior of the
extended Weingarten map

�′ = �� + 〈d�, �(·)〉l , (5.109)

where the notation 〈d�, �(·)〉l stands for the endomorphism Tp(M) −→ Tp(M), v �−→ 〈d�, �(v)〉l. From its
definition (5.6) and the scaling properties (2.57) and (5.107), we get the following scaling behavior of the extended
second fundamental form of H with respect to l:

�′ = �� . (5.110)

The scaling property of the rotation 1-form � is deduced from its definition (5.17) and the scaling law (5.109) for �:

∀ v ∈ Tp(M), 〈�′, v〉 = − k′ · �′(v) = −�−1k · [��(v) + 〈d�, �(v)〉l]
= − k · �(v) − �−1〈d�, �(v)〉 k · l︸︷︷︸

=−1

= 〈�, v〉 + 〈d ln �, �(v)〉 . (5.111)
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Table 1
Behavior under a rescaling l → l′ = �l of H’s null normal

l′ = �l

�′ = �(� + ∇l ln �) �′ = ��

k′ = 1

�
k �′ = ��

�′ = � �′ = ��


q′ = 
q �′ = 1

�
�

�′ = �� + 〈d�,�(·)〉l
�′ = � + �∗d ln �
�′ = � + 2D ln �

Hence

�′ = � + �∗d ln � . (5.112)

Since � = 
q∗� [Eq. (5.29)], the scaling law for the Há "́iček 1-form is immediate:

�′ = � + 2D ln � . (5.113)

The scaling properties of the expansion scalar � and the shear tensor � are deduced from that of � via their definition
(5.65) and (5.66):

�′ = �� and �′ = �� . (5.114)

Finally the scaling law for the transversal expansion rate � is easily deduced from the Eq. (5.80) and the scaling laws
k′ = �−1k and (5.108):

�′ = �−1� . (5.115)

For further reference, the various scaling laws are summarized in Table 1.

6. Dynamics of null hypersurfaces

In the previous section, we have considered only first order derivatives of the null vector fields l and k, as well as
of the metric q. In the present section we consider second order derivatives of these fields. Some of these second order
derivatives are written as Lie derivatives along l of the first order quantities, like the second fundamental form �, the
Há "́iček 1-form � and the transversal deformation rate �. The obtained equations can be then qualified as evolution
equations along the future directed null normal l (cf. the discussion at the beginning of Section 5.5). Some other second
order derivatives of l and k are rearranged to let appear the spacetime Riemann tensor, via the Ricci identity (1.14).
The totality of the components of the Riemann tensor with respect to a tetrad adapted to our problem, i.e. involving l,
k, and two vectors tangent to St , are derived in Appendix B. Here we will focus only on those components related to
the evolution of �, � and �.

Some of the obtained evolution equations involve the Ricci part of the Riemann tensor. At this point, the Einstein
equation enters into scene in contrast with all results from previous sections (except Section 3.6), which are independent
of whether the spacetime metric g is a solution or not of Einstein equation. This concerns the evolution equations for the
expansion scalar �, the Há "́iček 1-form � and the transversal expansion rate �. On the contrary the evolution equation
for the shear tensor � involves only the traceless part of the Riemann tensor, i.e. the Weyl tensor, and consequently is
independent from the Einstein equation.

6.1. Null Codazzi equation

Let us start by deriving the null analog of the contracted Codazzi equation of the spacelike 3 + 1 formalism, i.e.
Eq. (3.34) presented in Section 3.5. The idea is to obtain an equation involving the quantity R
��


��
�, which is similar
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to the left-hand side of Eq. (3.34) with the normal n replaced by the normal l, and the projector 
� replaced by the
projector �.

Remark 6.1. We must point out that, from the very fact that l is simultaneously normal and tangent to H, the standard
classification in terms Codazzi and Gauss equations employed in Section 3.5, is not completely adapted to the present
case. In particular, the trace of R
��


��
�, associated with the contracted Codazzi equation, can also be interpreted as

a component of the null analog of the contracted Gauss equation, as we shall see in Section 6.4.

The starting point for the null contracted Codazzi equation is the Ricci identity (1.14) applied to the null normal l.
Contracting this identity on the indices 	 and �, we get:

∇
∇��

 − ∇�∇
�
 = R
��


 , (6.1)

where R
� is the Ricci tensor of the connection ∇ [cf. Eq. (1.18)]. Substituting Eq. (5.21) for ∇��

 and Eq. (5.69) for

∇
�
, yields

∇
[�

� + ���


 − ��k
�∇��


] − ∇�(� + �) = R
��

 . (6.2)

Expanding the left-hand side and using again Eqs. (5.21) and (5.69) leads to

R
��

 = ∇
�


� + �
∇
�� + (� + �)�� − ∇�(� + �) − ��
k�∇��



− (�
k�∇��

 + ∇
k�∇��


 + k�∇
∇��

)�� . (6.3)

The null contracted Codazzi equation is the contraction of this equation with the projector ��
� onto H. A difference

with the spacelike case is that this projection can be divided in two pieces: a projection along l itself, since the normal
l is also tangent to H, and a projection onto the 2-surfaces St . This is clear if one expresses the projector � in terms
of the orthogonal projector 
q via Eq. (4.57):

R
��

��

� = −R
��

��k� + R
��


q�
� . (6.4)

We will examine the two parts successively: the first one, R
��

��, will provide the null Raychaudhuri equation (Section

6.2), whereas the second one, R
��

q�

� will lead to an evolution equation for the Há "́iček 1-form which is analogous
to a two-dimensional Navier–Stokes equation (Section 6.3).

6.2. Null Raychaudhuri equation

The first part of the null contracted Codazzi equation is the one along l. It is obtained by contracting Eq. (6.3)
with ��:

R
��

�� = ��∇
�


� + �
��∇
�� + (� + �)�
�
 − �
∇
(� + �) . (6.5)

Taking into account the identities �

��

� = 0 [Eq. (5.14)], �
�
 = � [Eq. (5.28)], �
∇
�� = ��� [Eq. (2.21)] and
expression (5.21) for ∇
��, we get

R
��

�� = −�
��


� + �� − �
∇
� . (6.6)

As shown in Appendix B, this relation can also been obtained by computing the components of the Ricci tensor from
the curvature 2-forms and Cartan’s structure equations [cf. Eq. (B.39)]. We may express �
��
� in terms of the shear
� and the expansion scalar �, thanks to Eqs. (5.64) and (5.67):

�
��

� = �
��


� + 1
2�2 = �ab�

ab + 1
2�2 , (6.7)

to get finally

∇l� − �� + 1
2�2 + �ab�ab + R(l, l) = 0 . (6.8)
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This is the well-known Raychaudhuri equation for a null congruence with vanishing vorticity or twist, i.e. a congruence
which is orthogonal to some hypersurface (see e.g. Eq. (4.35) in Ref. [90]11 or Eq. (2.21) in Ref. [40]).

If one takes into account the Einstein equation (3.35), the Ricci tensor R can be replaced by the stress-energy tensor
T (owing to the fact that l is null):

∇l� − �� + 1
2�2 + �ab�ab + 8�T(l, l) = 0 . (6.9)

6.3. Damour–Navier–Stokes equation

Let us now consider the second part of the Codazzi equation R
��

��

� = · · ·, i.e. the part lying in the 2-surface St

[second term in the right-hand side of Eq. (6.4)]. It is obtained by contracting Eq. (6.3) with q�
�:

R
��

q�

� = q�
�∇
�


� + q�
��


∇
�� + (� + �)�� − 2D�(� + �) − ��
k�∇��

 . (6.10)

The first term on the right-hand side is related to the divergence of � with respect to the connection 2D in St by

q�
�∇
�


� = 2D
�

� + �


�(k
�∇��
 + ��∇�k
)

= 2D
�

� + �


�(k
�∇��
 + �
) . (6.11)

The first line results from relation (5.59) between the derivatives 2D and ∇ for objects living on St , whereas the second
line follows from Eqs. (5.41) and (5.29).

Besides, the second term on the right-hand side of Eq. (6.10) can be expressed as [cf. Eq. (5.35)]

q�
��


∇
�� = q�
��


∇
(�� − �k�) = q�
�(�


∇
�� − ��
∇
k�)

= q�
�(Ll �� − �
∇��


 − ���)

= q�
�Ll �� − �


��
 − ��� , (6.12)

where, to get the last line, use has been made of Eq. (5.13) to let appear �

� and of Eqs. (5.41) and (5.29) to let appear

��. Inserting expressions (6.11) and (6.12) in Eq. (6.10) results immediately in

R
��

q�

� = q

�Ll �
 + ��� − 2D�(� + �) + 2D
�


� . (6.13)

An alternative derivation of this relation, based on Cartan’s structure equations, is given in Appendix B [cf. Eq. (B.47)].
Expressing � in terms of the expansion scalar � and the shear tensor � [Eq. (5.64)], we get

R
��

q�

� = q

�Ll �
 + ��� − 2D�

(
� + �

2

)
+ 2D
�


� . (6.14)

Taking into account the Einstein equation (3.35), the Ricci tensor can be replaced by the stress-energy tensor (owing
to the fact that g
��


q�
� = 0) to write Eq. (6.14) as an evolution equation for the Há "́iček 1-form:

q

�Ll �
 + ��� = 8�T
��


q�
� + 2D�

(
� + �

2

)
− 2D
�


� . (6.15)


q∗Ll � + �� = 8�
q∗T · l + 2D
(

� + �

2

)
− 2D · 
� . (6.16)

The components �=a ∈ {2, 3} of this equation agree with Eq. (I.30b) of Damour [60]. Eq. (6.15) can also be compared
with Eq. (2.14) of Price and Thorne [141], after one has noticed that their operator Dt̄ acting on the Há "́iček 1-form is
Dt̄�� = q�

��

∇
�� and therefore is related to our Lie derivative along l by the relation Dt̄�� = q


�Ll �
 − ��

�
,

11 Eq. (4.35) in Ref. [90] assumes � = 0.
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which can be deduced from (our) Eq. (6.12). Then the components � = a ∈ {2, 3} of (our) Eq. (6.15) coincide with
their Eq. (2.14), called by them the “Há "́iček equation”.

Let (x�) be a coordinate system adapted to H; (xa)a=2,3 is then a coordinate system on St . We can write Ll� =
Lt� + LV�, where t is the coordinate time vector associated with (x�) and V ∈ T(St ) is the surface velocity of
H with respect to (x�) [cf. Eq. (4.80)]. The projection of this relation onto St gives

q

aLl �
 = ��a

�t
+ V b2Db�a + �b

2DaV
b . (6.17)

Inserting this relation into Eq. (6.15) yields

��a

�t
+ V b2Db�a + �b

2DaV
b + ��a = 8�q


aT
��
� + 2Da� − 2Db�b

a + 1

2
2Da� , (6.18)

with, of course, T
� = 0 in the vacuum case. Noticing that

fa := −q

aT
��

� (6.19)

is a force surface density (momentum per unit surface of St and per unit coordinate time t), Damour [60,61] has
interpreted Eq. (6.18) as a two-dimensional Navier–Stokes equation for a viscous “fluid”. The Há "́iček 1-form � is
then interpreted as a momentum surface density 	 (up to a factor −8�):

�a := − 1

8�
�a . (6.20)

V a represents then the (two-dimensional) velocity of the “fluid”, �/(8�) the “fluid” pressure, 1/(16�) the shear viscosity
(�ab is then the shear tensor) and −1/(16�) the bulk viscosity. This last fact holds for � is the divergence of the velocity
field in the stationary case: consider Eq. (5.76) with �/�t = 0. We refer the reader to Chapter VI of the Membrane
Paradigm book [165] for an extended discussion of this “viscous fluid” viewpoint.

6.4. Tidal-force equation

The null Raychaudhuri equation (6.8) has provided an evolution equation for the trace � of the second fundamental
form �. Let us now derive an evolution equation for the traceless part of �, i.e. the shear tensor �. For this purpose we
evaluate �
∇
(∇���) in two ways. Firstly, we express it in terms of the Riemann tensor by means of the Ricci identity
(1.14):

��∇�(∇���) = ��(R�	���
	 + ∇�∇���) . (6.21)

Making repeated use of Eq. (5.21) to expand ∇��� and employing �
�
� = 0 we find

��∇�(∇���)=���	R�	��−��
���� + ���� − ��[�k�∇���−k
(∇
��)��

�]+��[��∇���+���] . (6.22)

On the other hand, using directly Eq. (5.21) to expand ∇��� we find

��∇�(∇���) = ��∇���� − ��[�(k
∇
��) + ��∇�(k
∇
��)] + ��[��� + ��∇���] . (6.23)

From both expressions for ��∇�(∇���), and projecting on St we obtain

q

�q�

���∇��
� = ���� − �����
� − q


�q�
�R	


���	�
� , (6.24)

i.e.


q∗∇l� = �� − � · 
� − 
q∗Riem(l, ., l, .) . (6.25)

Now, expressing the Lie derivative Ll � in terms of the covariant derivative ∇ and using � = 
q∗∇l [Eq. (5.10)], we
find the relation


q∗Ll � = 
q∗∇l� + 2� · 
� , (6.26)
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so that Eq. (6.25) becomes


q∗Ll � = �� + � · 
� − 
q∗Riem(l, ., l, .) . (6.27)

An alternative derivation of this relation, based on Cartan’s structure equations, is given in Appendix B [cf. Eq. (B.32)].
The equation equivalent to (6.27) in the framework of the quotient formalism (cf. Remark 2.8) is called a ‘Ricatti
equation’ by Galloway [73], by analogy with the classical Ricatti ODE: y′ = a(x)y2 + b(x)y + c(x). See also Refs.
[101,111].

Expressing the four-dimensional Riemann tensor in terms of the Weyl tensor C (its traceless part) and the Ricci
tensor R via Eq. (1.19), Eq. (6.27) becomes


q∗Ll � = �� + � · 
� − 
q∗C(l, ., l, .) − 1
2 R(l, l)q (6.28)

or

q

�q�

�(Ll �
�) = ���� + ��
�

� − q


�q�
�C�
���

��� − 1
2 (R
��


��)q�� , (6.29)

where we have made use of q · l = 0 and l · l = 0.
Taking the trace of Eq. (6.28) and making use of Eq. (6.7), results immediately in an evolution equation for the

expansion scalar �, which is nothing but the Raychaudhuri Eq. (6.8). From the components of the Riemann tensor
appearing in Eq. (6.27), Eq. (6.28) could have been considered as the projection on St of the null analog of the 3 + 1
Ricci equation (3.31). Thus the Raychaudhuri equation (6.8) can be derived either from the null Codazzi equation as
in Section 6.2, or from the null Ricci equation. This reflects the fact that the Gauss–Codazzi–Ricci terminology is not
well adapted to the null case, as anticipated in Remark 6.1.

On the other hand, the traceless part of Eq. (6.28) results in the evolution equation for the shear tensor:


q∗Ll � = �� + �ab�abq − 
q∗C(l, ., l, .) (6.30)

or

q

�q�

�(Ll �
�) = ���� + �
��
�q�� − q

�q�

�C�
���
��� , (6.31)

where we have used the fact that for a two-dimensional symmetric tensor we have ��
�

� = 1

2�
��
�q��. In particular,

from 
q∗Ll� = 
q∗∇�� + 2� · 
�, we find the equivalent expression

q

�q�

���∇��
� − (� − �)��� = −q

�q�

�C�
���
��� , (6.32)

which coincides with Eq. (2.13) of Price and Thorne [141], once we identify q

�q�

���∇��
� with Dt̄��� in that
reference.

This equation is denominated tidal equation in Ref. [141], since the term in the right-hand side is directly related
to the driving force responsible for the relative acceleration between two null geodesics via the geodesic deviation
equation (see e.g. Ref. [167]). In other words, this force is responsible for the tidal forces on the 2-surface St . The tidal
equation (6.30) and the null Raychaudhuri equation (6.8) are part of the so-called optical scalar equations derived by
Sachs within the Newman–Penrose formalism [143].

6.5. Evolution of the transversal deformation rate

Let us consider now an equation that can be seen as the null analog of the contracted Gauss (3.32) combined with
the Ricci (3.31). It is obtained by projecting the spacetime Ricci tensor R onto the hypersurface H. The difference
with the spacelike case of Section 3.5 is that this projection is not an orthogonal one, but instead is performed via the
projector � along the transverse direction k.
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Remark 6.2. The projection �∗R of the spacetime Ricci tensor onto H [as defined by Eq. (4.58)] can be decomposed
in the following way, thanks to Eq. (4.57):

R
��


��


� = R
�q


�q


� − R
��

q�

�︸ ︷︷ ︸
Codazzi 2

k� − R
��

q�

�︸ ︷︷ ︸
Codazzi 2

k� + R
��

��︸ ︷︷ ︸

Codazzi 1

k�k� . (6.33)

We notice that among the four parts of this decomposition, three of them are parts of the Codazzi equation and have
been already considered as the Raychaudhuri equation (Codazzi 1, Section 6.2) or the Damour–Navier–Stokes equation
(Codazzi 2, Section 6.3). Thus the only new piece of information contained in the null analog of the contracted Gauss
equation is 
q∗R, namely the (orthogonal) projection of the Ricci tensor onto the 2-surfaces St . This contrasts with the
spacelike case of the standard 3 + 1 formalism, where the contracted Gauss equation (3.32) is totally independent of
the Codazzi equation (3.30).

In order to evaluate 
q∗R, let us start by the contracted Ricci identity applied to the connection 2D induced by the
spacetime connection ∇ onto the 2-surfaces St :

2D

2D�v


 − 2D�
2D
v
=2R�
v
 , (6.34)

where v is any vector field in T(St ) and 2R is the Ricci tensor associated with 2D. Expressing each 2D derivative in
terms of the spacetime derivative ∇ via Eq. (5.59) and substituting Eq. (4.49) for the projector 
q leads to

2R�
v
 = [q

�(�k� + �(k)��) − �


�k� − �

���]∇
v� + q


�q�
�(∇�∇
v� − ∇
∇�v�) , (6.35)

where use has been made of Eqs. (5.13), (5.20), (5.65), (5.80), (5.85) and (5.87) to let appear �, �, � and �(k). Now
the four-dimensional Ricci identity (1.14) applied to the vector field v yields

q

�q�

�(∇�∇
v� − ∇
∇�v�) = q

�q�

�R
�
��
v� = q


�q�
�R�

��
q�
�v

� , (6.36)

where R�
��
 denotes the spacetime Riemann curvature tensor. Moreover, l · v = 0 and k · v = 0 [since v ∈ T(St )],

so that we can transform Eq. (6.35) into

2R�
v
 = [−���
 − �(k)��
 + �
��
�
� + �
��

�
�]v
 + q


�q�
�q�

�R
�
��
v� . (6.37)

Since this identity is valid for any vector v ∈ T(St ), we deduce the following expression of the Ricci tensor of the
two-dimensional Riemannian spaces (St , q) in terms of the Riemann tensor of (M, g), the second fundamental form
� of H and the transversal deformation rate �:

2R�� = q

�q�

�q�
�R�

��
 − ���� − �(k)��� + ��
�

� + ��
�


� . (6.38)

Let us now express the term q

�q�

�q�
�R�

��
 in terms of the spacetime Ricci tensor R��.We have, using the symmetries
of the Riemann tensor and the Ricci identity (1.14) for the vector field k

q

�q�

�q�
�R�

��
 = q

�q�

�(
�
� + k��� + ��k�)R�

��


= q

�q�

�(R
� − R
���k
��� − R���
k���)

= q

�q�

�[R
� − ��(∇�∇�k
 − ∇�∇�k
) − ��(∇�∇
k� − ∇
∇�k�)]
= q


�q�
�[R
�−��∇�∇�k
+∇��
−∇��

�∇�k
 − ��∇�∇
k�+∇
��−∇
��∇�k�] , (6.39)

where use has been made of the relation ��∇�k
 = �
 [Eq. (5.41)]. After expanding the gradient of k by means of
Eq. (5.86) and the gradient of l by means of Eq. (5.21), we arrive at

q

�q�

�q�
�R�

��
 = q

�q�

�(R
� − 2��∇��
� + ∇
�� + ∇��
) + 2���� − ��
�

� − ��
�


� . (6.40)

Now, by means of Eqs. (5.35) and (5.59),

q

�q�

�(∇
�� + ∇��
) = 2D��� + 2D��� − 2���� . (6.41)
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Inserting this relation along with ��∇��
� = Ll �
� − ���∇
�� − �
�∇��
� into Eq. (6.40) results in

q

�q�

�q�
�R�

��
 = q

�q�

�(R
� − 2Ll �
�) + 2D��� + 2D��� + 2���� − 2����

+ ��
�

� + ��
�


� . (6.42)

Replacing into Eq. (6.38) leads to the following evolution equation for �:

q

�q�

�Ll �
� = 1

2
(2D��� + 2D���) + ���� − 1

2
2R�� + 1

2
q


�q�
�R
�

−
(

� + �

2

)
��� − �(k)

2
��� + ��
�


� + ��
�

� . (6.43)

or


q∗Ll � = 1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 1

2

q∗R −

(
� + �

2

)
� − �(k)

2
� + � · 
� + � · 
� . (6.44)

Remark 6.3. It is legitimate to compare Eq. (6.44) with Eq. (B.57) derived in Appendix B by means of Cartan’s
structure equations, since both equations involve 
q∗Ll �, 
q∗R and 2R. The major difference is that Eq. (B.57) involves
in addition the Lie derivative Lk�. Actually Eq. (B.57) is completely symmetric between l and k (and hence between
� and �). This reflects the fact that 
q∗R and 2R depend only upon the 2-surface St and, from the point of view of St

alone, l and k are on the same footing, being respectively the outgoing and ingoing null normals to St . However, in the
derivation of Eq. (6.44), we have broken this symmetry, which is apparent in Eq. (6.38), at the step (6.39) by rearranging
terms in order to consider the Ricci identity for the vector k only. Actually by a direct computation (substituting
Eq. (5.19) for � and permuting the derivatives of l via Ricci identity), one gets the following relation between the two
Lie derivatives:


q∗Lk� = 
q∗Ll � + 2D2D� + 2D� ⊗ 2D� − � ⊗ 2D� − 2D� ⊗ �
− Kil(2D, �) + N−2∇l�� + �� . (6.45)

Substituting this expression for 
q∗Lk� into Eq. (B.57), we recover Eq. (6.44).

If we take into account Einstein equation (3.35), the four-dimensional Ricci term can be written 
q∗R = 8�(
q∗T −
1/2T q), where T = tr 
T is the trace of the energy–momentum tensor T. The evolution equation for � becomes then


q∗Ll � = 1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 4�

(

q∗T − T

2
q
)

−
(

� + �

2

)
� − �(k)

2
� + � · 
� + � · 
� .

(6.46)

Example 6.4 (“Dynamics” of Minkowski light cone). As a check of the above dynamical equations, let us specify
them to the case where H is a light cone in Minkowski spacetime, as considered in Examples 2.4, 4.5, and 5.6. Since
� = 0, � = 0 and T = 0 for this case [Eqs. (2.30) and (5.91)], the null Raychaudhuri equation (6.9) reduces to

∇l� + 1
2�2 = 0 . (6.47)

Using the values �� = (1, x/r, y/r, z/r) and � = 2/r given respectively by Eqs. (2.28) and (5.90), we check that the
above equation is satisfied. Besides, since � = 0 in this case [Eq. (5.93)], the Damour–Navier–Stokes equation (6.16)
reduces to

2D� = 0 . (6.48)

Since � = 2/r is a function of r only and r is constant on St (being equal to t), we have 2D� = 0, i.e. the
Damour–Navier–Stokes equation is fulfilled. The tidal force equation (6.30) is trivially satisfied in the present case
since both the shear tensor � and the Weyl tensor C vanish. On the other hand, the evolution equation for �, Eq. (6.46),
reduces somewhat, but still contains many non-vanishing terms:


q∗Ll � = −1

2
2R − �

2
� − �(k)

2
� + � · 
� + � · 
� . (6.49)
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Using the value of � given by Eq. (5.94) allows to write the left-hand side as


q∗Ll � = 
q∗Ll

(
− 1

2r
q
)

= − 1

2

⎡
⎢⎢⎣Ll

(
1

r

)
q + 1

r

q∗Ll q︸ ︷︷ ︸
=2�= 2

r
q

⎤
⎥⎥⎦

= − 1

2

[
�
 �

�x


(
1

r

)
+ 2

r2

]
q = − 1

2r2 q , (6.50)

where we have used expressions (5.89) for � and (2.28) for �
. Besides, since St is a two-dimensional manifold, the
Ricci tensor 2R which appears on the right-hand side of Eq. (6.49) is expressible in terms of the Ricci scalar 2R as
2R = 1

2
2Rq. Moreover, St being a metric 2-sphere of radius r, 2R = 2/r2. Thus

2R = 1

r2 q . (6.51)

Inserting Eqs. (6.50) and (6.51) as well as the values of �, �, � and �(k) obtained in Example 5.6 into Eq. (6.49), and
using q · 
q = q, leads to “0 = 0”, as it should be.

Example 6.5 (Dynamics of Schwarzschild horizon). In view of the values obtained in Example 5.7 for �, �, � and
� corresponding to the Eddington–Finkelstein slicing of the event horizon of Schwarzschild spacetime, let us specify
the dynamical equations obtained above to that case. First of all, the Ricci tensor and the stress-energy tensor vanish
identically, since we are dealing with a vacuum solution of Einstein equation: R = 0 and T = 0. Taking into account

�
H= 0 and �

H= 0 [Eq. (5.103)], the null Raychaudhuri equation (6.9) is then trivially satisfied on H. Similarly, since

�
H= 0 [Eq. (5.105)] and �

H= 1/(4m) is a constant [Eq. (2.45)], the Damour–Navier–Stokes equation (6.16) is trivially
satisfied on H. On the other side, the tidal force equation (6.30) reduces to


q∗C(l, ., l, .) = 0 . (6.52)

This constraint on the Weyl tensor is satisfied by the Schwarzschild solution, as a consequence of being of Petrov type
D and l a principal null direction (see e.g. Proposition 5.5.5 in Ref. [130]). Finally Eq. (6.46) giving the evolution of

the transversal deformation rate reduces to (since T = 0, �
H= 0 and �

H= 0)


q∗Ll �
H= − 1

2
2R − �� . (6.53)

Now from Eq. (5.104), we have 
q∗Ll �
H= −(2m)−1
q∗Ll q

H= −m−1�
H= 0, hence


q∗Ll �
H= 0 . (6.54)

On the other side, �
H= 1/(4m) [Eq. (2.45)] and expression (5.104) for � leads to

��
H= − 1

8m2 q . (6.55)

Besides, since St is a metric 2-sphere, as in Example 6.4 above, Eq. (6.51) holds. Since r
H= 2m, it yields

2R
H= 1

4m2 q . (6.56)

Gathering Eqs. (6.54)–(6.56), we check that Eq. (6.53) is satisfied.

7. Non-expanding horizons

All results presented in the previous sections apply to any null hypersurface and are not specific to the event horizon of
a black hole. For instance, they are perfectly valid for a light cone in Minkowski spacetime, as illustrated by Examples
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2.4, 4.5, 5.6 and 6.4. In this section, we move on the way to (quasi-equilibrium) black holes by requiring the null
hypersurface H to be non-expanding, in the sense that the expansion scalar � defined in Section 5.6 is vanishing.
Indeed, one should remind that � measures the rate of variation of the surface element of the spatial 2-surfaces St

foliating H [cf. Eqs. (5.74) or (5.76)]. We have seen in Example 5.7 that �=0 for the event horizon of a Schwarzschild
black hole [cf. Eq. (5.103)]. On the contrary, in any weak gravitational field, the null hypersurfaces with compact
spacelike sections are always expanding or contracting (cf. Example 5.6 for the light cone in flat spacetime). Therefore
the existence of a non-expanding null hypersurface H with compact sections St is a signature of a very strong
gravitational field.

As we shall detail below, non-expanding horizons are closely related to the concept of trapped surfaces introduced
by Penrose in 1965 [132] and the associated notion of apparent horizon [90]. They constitute the first structure in
the hierarchy recently introduced by Ashtekar et al. [10–13,15,18] which leads to isolated horizons. Contrary to event
horizons, isolated horizons constitute a local concept. Moreover, contrary to Killing horizons—which are also local
—, isolated horizons are well defined even in the absence of any spacetime symmetry.

7.1. Definition and basic properties

7.1.1. Definition
Following Há "́iček [82,83] and Ashtekar et al. [15,13], we say that the null hypersurface H is a non-expanding

horizon (NEH)12 if, and only if, the following properties hold13

(1) H has the topology of R × S2;
(2) the expansion scalar � introduced in Section 5.6 vanishes on H:

�
H= 0 ; (7.1)

(3) the matter stress-energy tensor T obeys the null dominant energy condition on H, namely the “energy–momentum
current density” vector

W := −
T · l (7.2)

is future directed timelike or null on H.

Let us recall that, although � can be viewed as the rate of variation of the surface element of the spatial 2-surfaces St

foliating H [cf. Eqs. (5.74) or (5.76)], it does not depend upon St but only on l (cf. Remark 5.2). Moreover, thanks
to the behavior � → �′ = �� [Eq. (5.114)] under the rescaling l → l′ = �l, the vanishing of � does not depend upon
the choice of a specific null normal l. Similarly the property (3) does not depend upon the choice of the null normal
l, provided that it is future directed. In other words, the property of being a NEH is an intrinsic property of the null
hypersurface H. In particular it does not depend upon the spacetime foliation by the hypersurfaces (�t ).

Remark 7.1. The topology requirement on H is very important in the definition of an NEH, in order to capture the
notion of black hole. Without it, we could for instance consider forH a null hyperplane of Minkowski spacetime. Indeed
let t − x = 0 be the equation of this hyperplane in usual Minkowski coordinates (x�) = (t, x, y, z). The components of
the null normal l with respect to these coordinates are then �� = (1, 1, 0, 0), so that ∇l = 0. Consequently, H fulfills
condition (2) in the above definition: � = 0, although H has nothing to do with a black hole.

Remark 7.2. The null dominant energy condition (3) is trivially fulfilled in vacuum spacetimes. Moreover, in the
non-vacuum case, this is a very weak condition, which is satisfied by any electromagnetic field or reasonable matter
model (e.g. perfect fluid). In particular, it is implied by the much stronger dominant energy condition, which says that
energy cannot travel faster than light (see e.g. the textbook [90, p. 91], or [167, p. 219]).

12 Há "́iček [83] used the term “perfect horizon” instead of “non-expanding horizon”.
13 In this review we are working with metrics satisfying Einstein equation on the whole spacetime M, and in particular on H (this has been

fully employed in Section 6). In more general contexts, the NEH definition must also include the enforcing of the Einstein equation on H.
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7.1.2. Link with trapped surfaces and apparent horizons
Let us first recall that a trapped surface has been defined by Penrose [132] as a closed (i.e. compact without boundary)

spacelike 2-surface S such that the two systems of null geodesics emerging orthogonally from S converge locally at
S, i.e. they have non-positive scalar expansions (see also the definition p. 262 of Ref. [90] and Ref. [62] for an early
characterization of black holes by trapped surfaces). In the present context, demanding that the spacelike 2-surface
St = H ∩ �t is a trapped surface is equivalent to

��0 and �(k) �0 , (7.3)

where �(k) is defined by Eq. (5.87). The sub-case � = 0 or �(k) = 0 is referred to as a marginally trapped surface (or
simply marginal surface by Hayward [93]).

Penrose’s definition is purely local since it involves only quantities defined on the surface S. On the contrary,
Hawking [89] (see also Ref. [90, p. 319]) has introduced the concept of outer trapped surface, the definition of which
relies on a global property of spacetime, namely asymptotic flatness: an outer trapped surface is an orientable compact
spacelike 2-surface S contained in the future development of a partial Cauchy hypersurface �0 and which is such
that the outgoing null geodesics emerging orthogonally from S converge locally at S. This requires the definition of
outgoing null geodesics, which is based on the assumption of asymptotic flatness. In present context, demanding that
the spacelike 2-surface St = H ∩ �t is an outer trapped surface is equivalent to

(1) the spacelike hypersurface �t is asymptotically flat (more precisely strongly future asymptotically predictable and
simply connected, cf. Ref. [89, p. 26], or Ref. [90, p. 319]) and the scalar field u defining H has been chosen so
that the exterior of St (defined by u > 1, cf. Section 4.2) contains the asymptotically flat region, so that l is an
outgoing null normal in the sense of Hawking;

(2) the expansion scalar of l is negative or null:

��0 . (7.4)

The sub-case � = 0 is referred to as a marginally outer trapped surface. Note that the above definition does not assume
anything on �(k), contrary to Penrose’s one.

A related concept, also introduced by Hawking [89] and widely used in numerical relativity (see e.g. [125,172,55,162,
81,145,146] and Section 6.1 of Ref. [25] for a review), is that of apparent horizon: it is defined as a 2-surface A inside
a Cauchy spacelike hypersurface � such that A is a connected component of the outer boundary of the trapped region
of �. By trapped region, it is meant the set of points p ∈ � through which there is an outer trapped surface lying in
�.14 From Proposition 9.2.9 of Hawking and Ellis [90], an apparent horizon is a marginally outer trapped surface (but
see Section 1.6 of Ref. [48] for an update and refinements).

In view of the above definitions, let us make explicit the relations with a NEH: if H is a NEH in an asymptotically
flat spacetime, then each slice St is a marginally outer trapped surface. If, in addition, �(k) �0, then St is a marginally
trapped surface. In general, k being the inward null normal to St , �(k) is always negative. However there exist some
pathological situations for which �(k) > 0 at some points of St [74].

Hence a NEH can be constructed by stacking marginally outer trapped surfaces. In particular, it can be obtained
by stacking apparent horizons. However, it must be pointed out that contrary to the black hole event horizon, nothing
guarantees that the world tube formed by a sequence of apparent horizons is smooth. It can even be discontinuous (cf.
Fig. 60 in Ref. [90] picturing the merger of two black holes)! Moreover, even when it is smooth, the world tube of
apparent horizons is generally spacelike and not null (Ref. [90, p. 323]). It is only in some equilibrium state that it can
be null. Note that this notion of equilibrium needs only to be local: non-expanding horizons can exist in non-stationary
spacetimes [47,18].

It is also worth to relate NEHs to the concept of trapping horizon introduced in 1994 by Hayward [93] (see also
[95]) and aimed at providing a local description of a black hole. A trapping horizon is defined as a hypersurface of
M foliated by spacelike 2-surfaces S such that the expansion scalar �(l) of one of the two families of null geodesics

14 Note that this definition of apparent horizon, which is Hawking’s original one [89,90] and which is commonly used in the numerical relativity
community, is different from that given in the recent study [65] devoted to the use of isolated horizons in numerical relativity, which requires in
addition �(k) < 0.
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orthogonal to S vanishes. A trapping horizon can be either spacelike or null. It follows immediately from the above
definition that NEHs are null trapping horizons.

7.1.3. Vanishing of the second fundamental form
Let us show that on a NEH, not only the trace � of the second fundamental form � vanishes, but also � as a whole.

Setting � = 0 in the null Raychaudhuri equation (6.9) leads to

�ab�
ab + 8�T(l, l) = 0 . (7.5)

Besides, q being a positive definite metric on St , one has

�ab�
ab �0 . (7.6)

Moreover, the null dominant energy condition (condition (3) in the definition of a NEH) implies

T(l, l)�0 . (7.7)

The three relations (7.5)–(7.7) imply

�ab�
ab = 0 (7.8)

and

T(l, l) = 0 . (7.9)

Note that this last constraint is trivially satisfied in the vacuum case (T=0). Invoking again the positive definite character
of q and the symmetry of �ab, Eq. (7.8) implies that �ab = 0, i.e. the vanishing of the shear tensor:

� = 0 . (7.10)

Since we had already �=0, we conclude that for a NEH, not only the scalar expansion vanishes, but also the full tensor
of deformation rate [cf. the decomposition (5.64)]:

� = 0 . (7.11)

From Eq. (5.56), this implies

SLlq = 0 , (7.12)

which means that the Riemannian metric of the 2-surfaces St is invariant as t evolves.

Remark 7.3. The vanishing of the second fundamental form � does not imply the vanishing of H’s Weingarten map
�, as it would do if the hypersurface H was not null: Eq. (5.23) shows clearly that the vanishing of � would require
� = 0 in addition to � = 0. On the contrary, for the spatial hypersurface �t , the Weingarten map K and the second
fundamental form −K are related by K�

� = −g�
K
� [cf. Eqs. (3.12) and (3.14)], so that K = 0 �⇒ K = 0.

7.2. Induced affine connection on H

Since � is the pull-back of the bilinear form ∇l onto H [Eq. (2.55)], its vanishing is equivalent to

�∗∇l = 0 . (7.13)

An important consequence of this is that

∀(u, v) ∈ T(H) × T(H), l · ∇uv = ∇u(l · v︸︷︷︸
=0

) − v · ∇ul︸ ︷︷ ︸
�∗∇l(v,u)=0

= 0 . (7.14)
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This means that for any vectors u and v tangent to H, ∇uv is also a vector tangent to H. Therefore ∇ gives birth to an
affine connection intrinsic to H, which we will denote ∇̂ to distinguish it from the connection on M:

∀(u, v) ∈ T(H) × T(H), ∇̂uv := ∇uv . (7.15)

We naturally call ∇̂ the connection induced on H by the spacetime connection ∇.

Remark 7.4. More generally, i.e. when H is not necessarily a NEH, the vector k, considered as a rigging vector (cf.
Remark 4.8), provides a torsion-free connection on H via the projector � along k:

∀(u, v) ∈ T(H) × T(H), ∇̂uv := �(∇uv) . (7.16)

This connection is called the rigged connection [118]. By expressing � via Eq. (4.55) it is easy to see that

∀(u, v) ∈ T(H) × T(H), ∇̂uv = ∇uv − �(u, v)k . (7.17)

We see then clearly that in the NEH case (� = 0), ∇̂ is independent of k, i.e. of the choice of the slicing (St ): it
becomes a connection intrinsic to H.

As a consequence of ∇uu ∈ T(H), whatever u ∈ T(H), and the fact that a geodesic passing through a given
point is completely determined by its derivative at that point, it follows that any geodesic curve of M which starts a
some point p ∈ H and is tangent to H at p remains within H for all points. For this reason, H is called a totally
geodesic hypersurface of M. This explains why in Há "́iček’s study [82], non-expanding horizons are called “TGNH”
for “totally geodesic null hypersurfaces”.

The definition of ∇̂ can be extended to 1-forms on T(H) by means of the Leibnitz rule: given a 1-form field
� ∈ T∗(H), the bilinear form ∇̂� is defined by

∀ (u, v) ∈ T(H) × T(H), ∇̂�(u, v) := 〈∇̂v�, u〉
:= ∇̂v〈�, u〉 − 〈�, ∇̂vu〉 . (7.18)

Now, thanks to Eq. (7.15),

∇̂�(u, v) = ∇v〈�, u〉 − 〈�, ∇vu〉 = ∇v〈�, �(u)〉 − 〈�, �(∇vu)〉
= ∇v〈�∗�, u〉 − 〈�∗�, ∇vu〉
= ∇(�∗�)(u, v) , (7.19)

where �∗� ∈ T∗(M) is the extension of � to T(M) provided by the projector � onto H [cf. Eq. (4.58)]. Since the
above equation is valid for any pair of vectors (u, v) in T(H), we conclude that the ∇̂-derivative of the 1-form � is
the pull-back onto H of the spacetime covariant derivative of �∗�:

∇̂� = �∗∇(�∗�) . (7.20)

The above relation is extended to any multilinear form A on T(H), in order to define ∇̂A:

∇̂A = �∗∇(�∗A) . (7.21)

In words: the intrinsic covariant derivative ∇̂A of a multilinear form A on T(H) is the pull-back via the embedding of
H in M of the ambient spacetime covariant derivative of the extension of A to T(M), the extension being provided
by the projector � onto T(H). In particular, for the bilinear form q constituting the (degenerate) metric on H:

∇̂q = �∗∇q , (7.22)
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where we have used �∗q = q. Then

∀ (u, v, w) ∈ T(H)3, ∇̂q(u, v, w) = ∇q(u, v, w) = ∇wq(u, v)
= 〈∇wl, u〉〈k, v〉 + 〈k, u〉〈∇wl, v〉
= �(u, w)〈k, v〉 + �(v, w)〈k, u〉
= 0 , (7.23)

where we have used � = �∗∇l [Eq. (2.55)] to let appear � and the property � = 0 [Eq. (7.11)] characterizing NEHs.
Hence

∇̂q = 0 . (7.24)

We thus conclude that the induced connection ∇̂ is compatible with the metric q on H.

Remark 7.5. Since the metric q on H is degenerate, there is a priori no unique affine connection compatible with it
(i.e. a torsion-free connection ∇̄ such that ∇̄q = 0). The non-expanding character of H allows then a canonical choice
for such a connection, namely the connection ∇̂ which coincides with the ambient spacetime connection. The couple
(q, ∇̂) defines an intrinsic geometry of H. This geometrical structure, which was first exhibited by Há "́iček [82,83], is
however different from that for a spacelike or timelike hypersurface, in so far as q and ∇̂ are largely two independent
entities [apart from the relation (7.24)]: for instance the components ∇̂A with respect to a given coordinate system (xA)

on H are not deduced from the components qAB by means of some Christoffel symbols.

The ∇̂-derivative of the null normal l (considered as a vector field in T(H)) takes a simple form, obtained by
setting 
� = 0 in Eq. (5.21) and using �∗l = 0:

∇̂l = l ⊗ � . (7.25)

7.3. Damour–Navier–Stokes equation in NEHs

The vanishing of � and � means that for a NEH, all the “viscous” terms of Damour–Navier–Stokes equation
[Eq. (6.16)] disappear, so that one is left with


q∗Ll � = 8�
q∗T · l + 2D� . (7.26)

In this equation it appears the orthogonal projection onto the spatial 2-surfaces St of the “energy–momentum current
density” vector W defined by Eq. (7.2). The orthogonal projection 
q(W) on the 2-surfaces St is the force surface
density denoted by f in Eq. (6.19). For a NEH, Eq. (7.9) holds and yields

l · W = 0 . (7.27)

This means that W is tangent to H. Then W cannot be timelike (for H is a null hypersurface). From the null dominant
energy condition (hypothesis (3) in Section 7.1.1), it cannot be spacelike. It is then necessarily null. Moreover, being
tangent to H, it must be collinear to l:

W = wl , (7.28)

where w is some positive scalar field on H. Note that in the vacuum case, this relation is trivially fulfilled with w = 0.
An immediate consequence of (7.28) is the vanishing of the force surface density, since 
q(l) = 0:


q(W) = 0 . (7.29)

Accordingly, the Damour–Navier–Stokes Eq. (7.26) simplifies to


q∗Ll � = 2D� , (7.30)

i.e. the only term left in the right-hand side is the “pressure” gradient 2D�.
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Finally, we note that Eq. (7.28) can be recast by using Einstein equation (3.35) into

R(l, .) = ( 1
2R − 8�w)l , (7.31)

which implies

�∗R(l, ·) = 0 . (7.32)

7.4. Evolution of the transversal deformation rate in NEHs

After having considered the non-expanding limit of the Raychaudhuri and Damour–Navier–Stokes equations, let us
now turn to the evolution equation for the transversal deformation rate �, namely Eq. (6.46). Setting �= 0 in it, we get


q∗Ll � = 1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 4�

(

q∗T − T

2
q
)

− �� . (7.33)

As a check, we verify that this equation agrees with Eq. (3.9) of Ashtekar et al. [13], after the proper changes of notation
have been performed: Ashtekar’s S̃ab corresponds to our �ab, D̃a to 2Da , �̃a to �a , R̃ab to 2Rab and q̃a

c to qa

. Note

also that objects in Ashtekar et al. are generally defined only on H (or in an appropriate quotient space of it), whereas
we are considering four-dimensional objects.

7.5. Weingarten map and rotation 1-form on a NEH

We have already noticed (Remark 7.3) that the vanishing of the second fundamental form � on a non-expanding
horizon does not imply the vanishing of the Weingarten map �, because H is a null hypersurface. The expression of �

when � = 0 however simplifies [cf. Eq. (5.23)]:

� = 〈�, .〉l . (7.34)

Remark 7.6. Eq. (7.34) shows that, on a NEH, all the information about the Weingarten map is actually encoded in
the rotation 1-form �. Restricted to Tp(H), Eq. (7.34) implies

∀v ∈ Tp(H), ∇̂vl = 〈�, v〉l . (7.35)

Actually this last relation is that used by Ashtekar et al. [15,13,18] to define � for a NEH as a 1-form in T∗(H). It
is clear from Eq. (7.35) that, on a NEH, � depends only upon l (more precisely upon the normalization of l) and not
directly upon the 2-surfaces St induced by the 3 + 1 slicing. On the contrary, the Há "́iček 1-form � depends directly
upon St , since its definition (5.29) involves the orthogonal projector 
q onto St : � = 
q∗�.

We have seen that, for a NEH, the degenerate metric q does not vary along l [Eq. (7.12)]. It is then interesting to
investigate the evolution of � along l, i.e. to evaluate Ll �. Since l ∈ T(H), we may a priori consider two Lie
derivatives: the Lie derivative of � along l within the manifold M, denoted by Ll �, and the Lie derivative of � (or
more precisely of the pull-back �∗� of � onto H) along l within the manifold H, that we will denote by HLl �.
The relation between these two Lie derivatives is given in Appendix A. In particular Eq. (A.3) gives

�∗HLl � = �∗Ll (�∗�) . (7.36)

Since 〈�, k〉 = 0 [Eq. (5.28)], we have �∗� = �, so that Eq. (7.36) results in

�∗HLl � = �∗Ll � = �∗Ll (� − �k)

= �∗(Ll � − ∇l�k − �Ll k) , (7.37)
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where use has been made of Eq. (5.35). Now, by Cartan identity (1.26), Ll k = l · dk + d〈k, l〉 = l · dk (since
〈k, l〉 = −1). Using the Frobenius relation (5.39) to express dk, we get

Ll k = 1

2N2 ∇l ln

(
N

M

)
l . (7.38)

It is then obvious that

�∗Ll k = 0 (7.39)

since �∗l = 0 [Eq. (4.64)], so that Eq. (7.37) reduces to

�∗HLl � = �∗Ll � − ∇l�k , (7.40)

where use has been made of the property �∗k = k [Eq. (4.64)]. Using relation (4.57), we have �∗Ll � = 
q∗Ll �,
hence

�∗HLl � = 
q∗Ll � − ∇l�k . (7.41)

Substituting Eq. (7.30) for 
q∗Ll �, we obtain

�∗HLl � = 2D� − ∇l�k . (7.42)

Expanding the relation 2D� = 
q∗∇� [cf. Eq. (5.59)] by substituting � + 〈k, .〉l for 
q [Eq. (4.57)], we realize that the
right-hand side of the above equation is nothing but the projection on H of the spacetime gradient of �:

�∗HLl � = �∗∇� . (7.43)

We can rewrite this four-dimensional equation as a three-dimensional equation entirely within H, by means of the
induced connection ∇̂ introduced in Section 7.2:

HLl � = ∇̂� . (7.44)

This simple relation, which is of course valid only for a non-expanding horizon, has been obtained by Ashtekar et al.
[13] [cf. their Eq. (2.11)]. Its orthogonal projection onto the 2-surfaces St foliating H is the reduced Damour–Navier–
Stokes (7.30).

7.6. Rotation 2-form and Weyl tensor

7.6.1. The rotation 2-form as an invariant on H
In Remark 7.6, we have noticed that for a NEH, the rotation 1-form � is “almost” intrinsic to H, in the sense that

it does not depend upon the specific spacelike slicing St of H but only on the normalization of l. On the other side,
considering � as a 1-form in T∗(H) (more precisely considering the pull-back 1-form �∗�), its exterior derivative
within the manifold H, which we denote by Hd�, is fully intrinsic to H. It is indeed invariant under a rescaling of
the null normal l, as we are going to show. Consider a rescaling l′ = �l of the null normal, as in Section 5.8. Then �

varies according to Eq. (5.112), which we can write [via Eq. (4.60)],

�′ = � + d ln � + (∇k ln �)l . (7.45)

Taking the exterior derivative (within M) of this relation and using dd = 0, as well as dl = d� ∧ l [Eq. (2.17)], yields

d�′ = d� + [d(∇k ln �) + ∇k ln �d�] ∧ l . (7.46)

Let us consider the pull-back of this relation onto H [cf. Eq. (2.7)]. First of all, we have that the external differential
is natural with respect to the pull-back15

�∗d� = Hd� . (7.47)

15 More precisely, we should write �∗d� = Hd(�∗�), but the above remark about � “leaving essentially” in H allows us not to distinguish
between �∗� and �.
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It is straightforward to establish it by means of a coordinate system (x�) adapted to H (cf. Section 4.8):

∀ (u, v) ∈ Tp(H)2, �∗d�(u, v) = d�(�∗u, �∗v)
= (�
�� − ���
)(�∗u)
(�∗v)�

= (�A�B − �B�A)uAvB

= Hd�(u, v) . (7.48)

Taking into account Eq. (7.47) and the similar relation for d�′, as well as �∗l = 0, the pull-back of Eq. (7.46) onto H
results in

Hd�′ = Hd� , (7.49)

which shows the independence of the 2-form Hd� with respect to the choice of the null normal l. We call Hd� the
rotation 2-form of the null hypersurface H.

7.6.2. Expression of the rotation 2-form
Let us compute the rotation 2-form Hd� from Eq. (7.47), i.e. by performing the pull-back of the four-dimensional

exterior derivative d�. The latter is given by the Cartan structure equation (B.23) derived in Appendix B. Indeed, � is
closely related to the connection 1-form �0

0 associated with the tetrad (l, k, e2, e3), where (e2, e3) is any orthonormal
basis of Tp(St ) [cf. Eq. (B.6)]. When � vanishes on H (NEH), Eq. (B.23) simplifies to

d� = Riem(l, k, ., .) + A ∧ l , (7.50)

where A is a 1-form, the precise expression of which is given by Eq. (B.23) and is not required here.
The pull-back of Eq. (7.50) on H yields [taking into account Eq. (7.47) and �∗l = 0]

Hd� = �∗Riem(l, k, ., .) . (7.51)

Let us consider two vectors u and v tangent to H. In the tetrad (e�) = (l, k, e2, e3) of Appendix B, they do not have
any component along k and expand as

u = u0l + uaea and v = v0l + vaea . (7.52)

Then Eq. (7.51) leads to

Hd�(u, v) = Riem(l, k, uaea + u0l, vbeb + v0l)

= Riem(l, k, uaea, v
beb) + (u0va − v0ua)Riem(l, k, l, ea) , (7.53)

where we have taken into account the antisymmetry of the Riemann tensor with respect to its last two arguments. Let
us evaluate the last term in the above equation. By virtue of the symmetry property of the Riemann tensor with respect
to the permutation of the first pair of indices with the second one, we can write Riem(l, k, l, ea) = Riem(l, ea, l, k).
Then we may express Riem(l, ea, l, k) by plugging the vector pair (l, k) in Cartan’s structure equation (B.27) derived
in Appendix B. Notice that, since we are dealing with a NEH, we can set to zero all the terms involving �ab in the
right-hand side of Eq. (B.27), but not the term in the left-hand side, since the derivative of � in directions transverse
to H is a priori not zero. However, d(�abeb) = d�ab ∧ eb + �abdeb = d�ab ∧ eb and 〈eb, l〉 = 0 and 〈eb, k〉 = 0, so
that the left-hand side of Eq. (B.27) vanishes when applied to (l, k). Consequently, one is left with

Riem(l, k, l, ea) = − ∇l(∇ea� − �a) − �b
a0(∇eb

� − �b)

= 〈∇l(� − 2D�), ea〉 , (7.54)
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where we have used 〈� − d�, l〉 = � − ∇l� = 0 [Eq. (2.22)] to get the first line and � = �aea and 2D� = (∇ea�)ea

to get the second one. Now 〈∇l
2D�, ea〉 is the component along ea of the 1-form 
q∗∇l

2D�. Let us evaluate the latter
(using index notation):

q

��

�∇�(
2D
�) = q


��
�∇�(q

�

∇��)

= q

��

�[∇�(k
��
 + ��k
)∇�� + q�


∇�∇��]
= q


�{����∇�k
∇�� + q�

[∇�(��∇��) − ∇���∇��]}

= q

�{��
 + q�

�[∇�� − (��
� + ����)∇��]}

= ��� + 2D�� − ��
�∇�� − ���

= 2D�� − ��
�∇�� . (7.55)

For a NEH, the term involving ��
� vanishes, so that one is left with


q∗∇l
2D� = 2D� . (7.56)

Now, let us use the Damour–Navier–Stokes Eq. (7.30) to replace 2D� and get


q∗∇l
2D� = 
q∗Ll � . (7.57)

Substituting this last relation for ∇l
2D� into Eq. (7.54) yields

Riem(l, k, l, ea) = 〈∇l� − Ll �, ea〉 . (7.58)

Now, by expressing the Lie derivative in terms of the connection ∇, one has immediately the relation (using 
� = 0)


q∗(∇l� − Ll �) = −� · 
� = 0 . (7.59)

Thus we conclude that, for a NEH,

Riem(l, k, l, ea) = 0 . (7.60)

Consequently, there remains only one term in the right-hand side of Eq. (7.53), which we can write, taking into account
that the orthogonal projections of u and v onto Tp(St ) are expressible as 
q(u) = uaea and 
q(v) = vaea ,

Hd�(u, v) = Riem(l, k, 
q(u), 
q(v)) , (7.61)

Since u and v are any vectors in Tp(H), we conclude that the following identity between 2-forms holds:

Hd� = 
q∗Riem(l, k, ., .) . (7.62)

This relation considerably strengthens Eq. (7.51): the presence of the operator 
q∗ means that the 2-form Hd� acts only
within the subspace Tp(St ) of Tp(H). Now since the vector space Tp(St ) is of dimension two, the space of 2-forms
on it is of dimension only one and is generated by e2 ∧ e3. Thus, because of the antisymmetry in the last two indices
of the Riemann tensor, Eq. (7.62) implies Hd� = ae2 ∧ e3, with the coefficient a being simply Riem(l, k, e2, e3).
Moreover, since (e2, e3) is an orthonormal basis of Tp(St ) (e2 and e3 can be permuted if necessary to match the
volume orientation) we have

e2 ∧ e3 = 2ε , (7.63)

where 2ε is the surface element of St induced by the spacetime metric [cf. Eq. (5.75)]. Consequently, we have

Hd� = a 2ε with a := Riem(l, k, e2, e3) . (7.64)
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Actually, the coefficient a can be completely expressed in terms of the Weyl tensor C: replacing the Riemann tensor in
Eq. (7.64) by its decomposition (1.19) in terms of the Ricci and Weyl tensors yields, thanks to Eq. (7.32)

a = C(l, k, e2, e3). (7.65)

In order to make the link with previous results in the literature, let us express a in terms of the complex Weyl scalars
of the Newman–Penrose formalism introduced in Section 4.6.2. Expanding e2 and e3 in terms of m and m̄ by inverting
Eqs. (4.42) and (4.43), and using the cyclic property in the last three slots of the Weyl tensor (inherited from property
(1.16) of the Riemann tensor), we get

a = 1

i
[C(l, m, m̄, k) − C(l, m̄, m, k)] . (7.66)

From definition (4.50) of the Weyl scalars �n, the coefficient a is written in terms of the imaginary part of �2, so that

Hd� = 2 Im �2
2ε . (7.67)

This relation has been firstly derived in the seventies by Há "́iček (cf. Eq. (23) in Ref. [82]) and special emphasis has
been put on it by Ashtekar et al. [15,13,18]. More precisely, Há "́iček has derived Eq. (7.67) in the case �= 0, for which
� coincides with �. However, since (i) Hd� does not depend on the normalization of l and (ii) it is always possible
to rescale l to ensure � = 0 [cf. Eq. (2.26)], the demonstration of Há "́iček is fully general.

Remark 7.7. Let us compute the Lie derivative of � along l within the manifold H from Eq. (7.64), by means of
Cartan identity (1.26):

HLl � = l · Hd� + Hd〈�, l〉 = a 2ε(l, .)︸ ︷︷ ︸
=0

+Hd� = ∇̂� . (7.68)

Thus we recover the evolution equation (7.44) as a consequence of Eq. (7.64).

7.6.3. Other components of the Weyl tensor
We have just shown that the component C(l, k, e2, e3) = 2 Im �2 of the Weyl tensor with respect to the tetrad

(l, k, e2, e3) provides the proportionality between the 2-forms Hd� and 2ε. Let us now investigate some other com-
ponents of the Weyl tensor.

Setting � = 0 in the evolution equation (6.27) for � yields


q∗Riem(l, ., l, .) = 0 . (7.69)

Making use of property (7.32), we rewrite this expression as

∀a, b ∈ {2, 3}, C(l, ea, l, eb) = 0 . (7.70)

Moreover, from Eq. (7.60) and again Eq. (7.32), we get

∀a ∈ {2, 3}, C(l, ea, l, k) = 0 , (7.71)

where we have made use of the symmetries of the Weyl tensor. From Eqs. (4.42) and (4.43) together with (4.50), the
above relations imply the vanishing of two of the complex Weyl scalars:

�0 = �1 = 0 . (7.72)

This means that the NEH structure sets strong constraints on the Weyl tensor evaluated at H. These constraints are
physically relevant. On the one hand, the Weyl components �0 and �1 are associated with the ingoing transversal and
longitudinal parts of the gravitational field [159]. Their vanishing is consistent with the quasi-equilibrium situation
modelled by NEHs, since no dynamical gravitational degrees of freedom fall into the black hole by crossing the horizon.
On the other hand, the change 
�2 of the Weyl scalar �2 under a Lorentz transformation (i.e. either a boost or a rotation)
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of the tetrad (l, k, e2, e3), turns out to be a linear combination of scalars �0 and �1 [45]. Consequently, as long as
we choose the first vector in the null tetrad to be the l normal to H, �2 is an invariant. In particular this means that
the value of �2 does not depend on the chosen null normal, therefore guaranteeing its invariance under the choice of
the spacelike slicing. Finally, we point out that the vanishing of �0 and �1 could have been obtained directly as an
application of the Goldberg–Sachs theorem, which establishes the equivalence between �0 =�1 =0 and the existence
of a geodesic (� = 0), shear-free null vector l (see [45]; as we mentioned above and will discuss in more detail in
Section 8.2, a NEH always admits a null normal with vanishing non-affinity coefficient �). In particular, this means
that the Weyl tensor is of Petrov type II on H [10,11].

7.7. NEH-constraints and free data on a NEH

7.7.1. Constraints of the NEH structure
Let us determine which part of the geometry of a NEH can be freely specified. As we shall see, such a part is

essentially given by fields living on the spatial slices St of the horizon, that can be considered as initial data. This is
specially important in the present setting, since it perfectly matches with the 3 + 1 point of view we have adopted.

As discussed in Remark 7.5, the geometry of a NEH is characterized by the pair (q, ∇̂). However, in order to build
a NEH one cannot make completely arbitrary choices for q and ∇̂ if H is a null hypersurface within a spacetime
satisfying Einstein equation. The reason is that q, ∇̂ and the Ricci tensor R must satisfy certain relations, as established
in the previous sections. Following [13,111] any geometrical identity involving q, ∇̂ and R on H will be referred to as
a constraint of the NEH structure (or NEH-constraint). Such geometrical identities can be obtained by evaluating the
change of q and ∇̂ along the integral lines of a null normal l.

Regarding q, the NEH condition (7.12) directly provides the constraint SLlq = 0. In order to cope with the

constraints associated with the evolution of ∇̂, we follow an analysis which dwells directly on the spatial slicing of H.
As explained in Section 4.2, the foliation (St ) of H is preserved by the flow of l due to the normalization (4.6). The
pull-back of the 1-form k on H, �∗k, is also preserved by the flow of l:

HLl �∗k = 0 . (7.73)

This follows directly from Eq. (7.39) and relation (A.4) between HLl and Ll . Eq. (7.73) can also be obtained by
simply noticing that, according to Eq. (4.34), �∗k is (minus) the pull-back to H of the differential of t.

Following Ref. [111], let us determine the different objects composing H’s connection ∇̂ [this is also performed in
Appendix B; see Eqs. (B.6)–(B.10)]. Considering an arbitrary vector field v ∈ T(H), ∇̂v can be decomposed in the
following parts:

q

a qb

�∇̂
v� = 2Da(q
b

v
) (spatial.spatial) ,

q

ak�∇̂
v� = 2Da(v


k
) − q

av

�∇
k� (spatial.null) ,

�
∇̂
v� = Ll v� + v
�
�� (null.arbitrary) .

(7.74)

From this decomposition and taking into account expression (5.86) for the gradient of k, we note that ∇̂v on each
slice St can be reconstructed if (2D, �, �) are known on St . Likewise, the invariance of the foliation (St ) under l

permits to express the evolution of ∇̂ in terms of the evolution of (2D, �, �) or, equivalently, of (q, �, �, �). Since we
want to emphasize the 3 + 1 point of view, we adopt the second set of variables, which are fields intrinsic to St . The
NEH-constraints are therefore given by the previously derived equations (7.12), (7.30) [or (7.44)] and (7.33):

SLlq = 0


q∗Ll � = 2D� (HLl � = ∇̂�)


q∗Ll � = 1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 4�

(

q∗T − T

2
q
)

− ��
. (7.75)

Notice that the geometry on H does not enforce any evolution equation for the non-affinity parameter �. In fact, the
NEH geometry constrains neither the value of � on St nor its evolution. This is a consequence of the freedom to rescale
l in the NEH structure (see below in relation with the gauge ambiguity in the choice of initial free data).
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Fig. 15. Reconstruction of the NEH from the free data. Left: choice of free data on St . Center: free data as fields on H. Right: evolution of the free
data to a infinitesimally close surface St+
t .

Remark 7.8. We have defined the constraints on the NEH structure as identities relating q, ∇̂ and R. In fact, components
of the Ricci tensor parallel to H actually constrain the null geometry via Einstein equation. However, we have derived
in previous subsections other kind of geometric relations like (7.67) or conditions like (7.72). They involve some of the
components of the Weyl tensor, i.e. the part of the Riemann that is not fixed by Einstein equation. In particular, once
the geometry (q, ∇̂) is given, the components �0, �1 and the imaginary part of �2 are fixed. In this sense, they could
be considered rather as constraints for the 4-geometry containing a NEH.

7.7.2. Reconstruction of H from data on St . Free data
Let us describe how a NEH may be reconstructed from data on an initial spatial slice St . We proceed in three steps

(see Fig. 15). Firstly, a free choice for the values of (q, �, �, �) on St is made, considering them as objects intrinsic
to St . Secondly, these objects are regarded as fields living in H by imposing, on the slice St , the vanishing of their
corresponding null components:

l · q = 0, l · � = 0, l · � = 0 . (7.76)

Finally, the value of these fields is calculated in an infinitesimally close slice St+
t by employing Eqs. (7.75). The
value of � on St+
t can be chosen freely again. We note by passing that the expression ∇̂l=l⊗� [Eq. (7.25)], which
can be seen as a constraint on the NEH geometry, is automatically satisfied by following the above procedure, since l
is torsion free (being normal to H) and we construct a vanishing �. It is not an independent constraint.

We conclude that the free data for the null NEH geometry are given by

NEH-free data: (q|St
, �|St

, �|St
, �|H) . (7.77)

That is, the initial data q, � and � on St , together with the function � on H, can be freely specified. This is in contrast
with the 3 + 1 Cauchy problem, where the initial data on the spatial slice �t are in fact constrained (cf. Section 3.6).
Once the free data are given, the full geometry in H can be reconstructed by evolving these quantities along l, this null
normal being determined through Eq. (4.13) by the additional structure provided by the slicing (�t ). Therefore, for a
given null geometry (q, ∇̂), their initial data (q|St

, �|St
, �|St

, �|H) are associated with a particular l = N(n + s)
(see below).

Gauge freedom in the choice of the free data. Even though each specific choice of data in (7.77), together with
a slicing (�t ), fixes the NEH geometry, there are different choices that actually define the same NEH structure:
there exists a degeneracy in the free data that can be referred to as a gauge freedom. This degeneracy presents two
aspects, the first one linked to the choice of the null normal, and the second one to the slicing of H once l is fixed
(see Fig. 16):

(a) If we start from a fixed slice S0, our choice of (q, �, �, �) is, as mentioned above, associated with a particular null
vector l. However, the NEH geometry is not changed under a rescaling � of the null normal, l′ = �l. Under this
rescaling, the fields (q, �, �, �) change according to the transformations given in Table 1. The resulting intrinsic
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Fig. 16. On the left the active aspect of the gauge freedom, linked to the choice of the null normal, and on the right the passive aspect, associated
with the choice of a initial slice.

null geometry (q, ∇̂) is the same, even though the slicings (St ) and (St ′) of H induced by the transport of S0
along l and l′ will in general differ. We will call this ambiguity the active aspect of the gauge freedom. It is
associated with the fact that different slicings (�t ) fix (in general) different null normals l via Eq. (4.13), and it is
a natural gauge freedom when one actually constructs H starting from a slice S0 as in a Cauchy problem.

(b) Even though a slicing (�t ) fixes l the reverse is not true, since this null normal is compatible with different spatial
slicings. Keeping l fixed, we can consider initial slices S0 and S′

0 in H belonging to different slicings (St ) and
(St ′) of H compatible with l via (4.6). The corresponding level functions t and t ′ are related by ∇̂t = ∇̂t ′ − ∇̂g,
where HLl g = 0. This change in the slicing does not affect q,16 l, � and consequently �, but induces via
Eq. (4.34) the transformations (cf. Eq. (3.10) in [13])

k → k + ∇̂g, � → � − �∇̂g, � → � + ∇̂∇̂g . (7.78)

This aspect of the gauge freedom, that we can refer to as passive and which corresponds to a coordinate choice in
H, is natural when H is a hypersurface existing a priori, its slicings only entering in a second step once l is fixed.
It is the aspect discussed in Refs. [13,108].

In brief, from a 3 + 1 perspective, in both cases the underlying source of degeneracy in the free data is related to the
choice of a specific slicing of H. When there is no canonical manner of fixing neither the initial slice nor the null
vector l, as it is the case in a purely intrinsic formulation of the geometry of H, both sources of gauge freedom are
simultaneously present17 (see discussion in Section VI.A.2 of Ref. [111]).

7.7.3. Evolution of ∇̂ from an intrinsic null perspective
Following the 3 + 1 approach adopted in this article, the previous discussion on the NEH-constraints has made

explicit use of a spatial slicing of H. However, the time evolution of the connection ∇̂ can be described in a more
intrinsic manner. In order to prepare the notion of (strongly) isolated horizon in Section 9.1, we briefly comment on it.

The evolution of the connection ∇̂ along l can be written (in components) as follows (see Refs. [13,111])

[HLl , ∇̂�]�� = −N���
�
 (7.79)

16 Note that although the metric q (as an object acting on T(H)) does not change, the projector 
q on the slices St does change: 
q → 
q − l∇̂g,
as follows from Eq. (4.57).

17 We have discussed here the gauge freedom in the determination of intrinsic geometrical objects on S0. Of course, regarding their specific
coordinate expression, there exists an additional underlying freedom related to the choice of coordinate system on S0.



230 E. Gourgoulhon, J.L. Jaramillo / Physics Reports 423 (2006) 159 –294

for any 1-form � ∈ T∗(H), where

N�� = ∇̂(���) + ���� + 1
2 (R�� − 2R��) . (7.80)

Together with the evolution for q in Eq. (7.12), these evolution equations constitute geometrical identities involving
only q, ∇̂ and R, i.e. they provide the NEH constraints.

Following the procedure in the isolated horizon literature [13,111], we introduce the following tensor on H:

S := �∗∇k , (7.81)

where k is associated with a foliation compatible with l. According to Eq. (4.34), �∗k is exact on H implying that
S is symmetric. In addition, 
q∗S = � and l · S = � (see Eqs. (5.80) and (5.86), respectively). From the discussion in
Sections 7.7.1 and 7.7.2, it follows that the evolution of ∇̂ is given by that of the pair (q, S). Making � equal to k in
Eq. (7.79), one obtains

HLl S�� = N�� , (7.82)

thus providing the evolution equation for S. The NEH-constraints are now

SLlq = 0 , (7.83)
HLl S�� = ∇̂(���) + ���� + 1

2 (R�� − 2R��) . (7.84)

Contracting the second one with l, Eq. (7.44) for the evolution of � is recovered, whereas the projection onto a slice
St leads to the evolution (7.33) for �.

8. Isolated horizons I: weakly isolated horizons

8.1. Introduction

The NEH notion introduced in the previous section, represents a first step toward the quasi-local characterization
of a black hole horizon in equilibrium. As we have seen, this is achieved essentially by imposing a condition on the
degenerate metric q, namely to be time-independent [Eq. (7.12)].

This minimal geometrical condition captures some fundamental features of a black hole in quasi-equilibrium. On
the one hand, it is sufficiently flexible so as to accommodate a variety of interesting physical scenarios. But on the
other hand, such a structure is not tight enough to determine some geometrical and physical properties of a black hole
horizon. From the point of view of the geometry of H as a hypersurface in M, the NEH notion by itself provides
a limited set of tools to extract information about the spacetime containing the black hole. For instance, it does not
pick up any particular normalization of the null normal nor suggest any concrete foliation of H, something that was
accomplished in the previous sections by using the additional structure (�t ). Since in the spacetime construction as a
Cauchy problem, the 3 + 1 foliation is actually dynamically determined, it would be very useful to dispose of a slicing
(St ) motivated from an intrinsic analysis of H for employing it as an inner boundary condition for (�t ). Regarding the
determination of physical black hole parameters, a point of evident astrophysical interest, a NEH does not determine
any prescription for the mass, the angular momentum or, more generally, for the black hole multipole moments.

In order to address these issues, i.e. the discussion of the horizon properties from a point of view intrinsic to H,
we need a finer characterization of the notion of quasi-equilibrium. Following Ashtekar et al. [13], this demands the
introduction of additional structures on H. After imposing the degenerate metric q to be time-independent, a natural
way to proceed in order to further constrain the horizon geometry consists in extending this condition to the rest of the
geometrical objects on H, in particular to the induced connection ∇̂. This strategy directly leads to the introduction of
a hierarchy of quasi-equilibrium structures on the horizon, which turns out to be very useful for keeping control of the
physical and geometrical hypotheses actually assumed. A particularly clear synthesis of the resulting formalism can be
found in Refs. [111,107].

The pair of fields (q, ∇̂), or equivalently (q, �, �, �) (see Section 7.7), characterizes the geometry of a NEH (cf.
Remark 7.5). From a 3 + 1 perspective, and following the strategy previously outlined, a natural manner of obtaining
different degrees of quasi-equilibrium for the horizon would consist in imposing the time independence of different
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combinations of the fields (q, �, �, �). However, the resulting notions of horizon quasi-equilibrium would be slicing-
dependent. Even though in Section 9.2 we will revisit this idea, we rather proceed here by constructing the new structures
on H on the grounds of fields intrinsic to H. Once the time independence of q has been used to define a NEH, this
means imposing time independence on the full connection ∇̂ or, in a intermediate step, on its component �. This defines
the three levels in the (intrinsic) isolated horizon hierarchy.

We separate the study of the isolated horizons in two sections. In the present one, we focus on the intermediate level
resulting from the introduction, in a consistent way, of a time-independent rotation 1-form �. This second level in the
isolated horizon hierarchy leads to the notion of weakly isolated horizon (WIH). After introducing in Section 8.2 its
definition and straightforward consequences, Sections 8.3, 8.4 and 8.5 are devoted to different implications on the null
geometry of H. Finally Section 8.6 briefly presents how a WIH structure permits to determine the physical parameters
associated with the black hole horizon. The stronger level in the isolated horizon hierarchy, which results from a full
time-independent ∇̂, will be discussed in Section 9, where we will also comment on other developments naturally
related to the isolated horizon structures.

8.2. Basic properties of weakly isolated horizons

8.2.1. Definition
As already noticed, the NEH notion is independent of the rescaling of the null normal l. On the contrary, imposing

the constancy of the rotation 1-form � [the part of ∇̂ along l, cf. Eq. (7.74)] under the flow of the null normal, does
depend on the actual choice for l. This is a consequence of the transformation of � under a rescaling of l (cf. Table 1):

�
l→�l−→ � + �∗d ln � . (8.1)

If we consider a null normal l such that HLl �=0 then, after a rescaling of l by some non-constant �, the new rotation
1-form will not be time-independent in general. In order to make sense of condition HLl � = 0, we must restrict the
set of the null normals for which it actually applies. From Eq. (8.1) we conclude that if � is invariant under a given
null normal l, then it is also invariant under any constant rescaling of it (this could be relaxed to time-independent
functions). This is formalized by the following definitions [15,13]:

(i) Two null normals l and l′ are said to be related to each other if and only if l′ = cl with c a positive constant. This
defines an equivalence relation whose equivalence classes are denoted by [l].

(ii) A weakly isolated horizon (WIH) (H, [l]) is a NEH H endowed with an equivalence class [l] of null normals
such that

HLl � = 0 . (8.2)

We comment on some consequences of this definition.

1. Extremal and non-extremal WIH. As a consequence of the transformation rule for � under a rescaling of l
(cf. Table 1), two null normals l and l′ belonging to the same WIH class have non-affinity coefficients �(l) and �(l′)
related by18

�(l′) = c�(l) , (8.3)

where c is the constant linking the two null vectors: l′ = cl. This implies that there is no canonical value of the
non-affinity coefficient � on a given WIH. This reflects the absence of canonical representative in the class [l]. We
have already presented a solution to this point, relying on the 3 + 1 spacelike slicing in Section 4.2. We will present
another solution, intrinsic to H, in Section 8.6. The transformation law (8.3) means that, on a given NEH, the WIH
structures are naturally divided in two types: those with vanishing �(l), that will be referred as extremal WIHs, and

18 In this section, since we will deal with different null normals at the same time, we make explicit the dependence of the non-affinity coefficient
on l.
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those with �(l) �= 0, non-extremal WIHs. This terminology arises from the Kerr spacetime, where one can always
choose the null normal l to let it coincide with a Killing vector field. Then �(l) is nothing but the surface gravity of
the black hole [cf. Eq. (2.44) in Example 2.5 for the non-rotating case and Eq. (D.30) in Appendix D for the general
case]. Extreme Kerr black holes are those for which the surface gravity vanishes. As shown by Eq. (D.30), this
corresponds to the angular momentum parameter a/m = 1. They are not expected to exist in the Universe, because
it is not possible to make a black hole rotate faster than a/m= 0.998 by standard astrophysical processes (i.e. infall
of matter from an accretion disk [164]). In this article, we will focus on the non-extremal case, and refer the reader
to [13,111] for the general case.

2. Constancy of the surface gravity on H. From the NEH Eq. (7.67)

l · Hd� = 0 , (8.4)

and using the Cartan identity (1.26) on H:

0=HLl � = l · Hd� + Hd〈l, �〉 = Hd�(l) ⇔ ∇̂�(l) = 0 . (8.5)

Therefore, the non-affinity coefficient of a given l is a constant on H. This property, that is referred to as the zeroth
law of black hole mechanics, characterizes [l] as associated with a WIH structure. It will be discussed further in
Remark 8.3 below.

3. Any NEH admits a WIH structure. We have just seen that the class [l] associated with l is a WIH structure if and
only if �(l) is a constant on H. In Sections 7.7 and 7.7.2 we established that a given NEH geometry is determined
by the set of fields (q, �, �(l), �), where �(l) is an arbitrary function, and also by any other set obtained from
this one by applying the transformations in Table 1. This was called the active aspect of the gauge freedom in the
NEH-free data, and it simply corresponds to a rescaling by � of the null normal l. Therefore if, according to Eq.
(2.26), we choose � satisfying

�′ = ∇l� + ��(l) (8.6)

with �′ constant on H, then [l′] given by l′ = �l constitutes a WIH class (in particular, making �′ = 0 shows that
any NEH admits an extremal horizon; Section III.A of Ref. [13] firstly shows the existence of an extremal WIH for
any NEH, and then constructs from it a family of non-extremal ones). As a consequence, the addition of a WIH does
not represent an actual constraint on the null geometry of H. It rather distinguishes certain classes of null normals.

4. Infinite freedom of the WIH structure. Not only it is always possible to choose a WIH structure on a NEH, but there
exists actually an infinite number of non-equivalent WIHs. Reasoning for the non-extremal case, if l is such that
�(l) is a non-vanishing constant on H and t is a coordinate on H compatible with l, i.e. HLl t = 1, then the class
[l′] associated with the vector l′ defined by

l′ = (1 + Be−�(l)t )l (8.7)

HLl B = 0 , (8.8)

is distinct from the class [l] (for � := 1 + Be−�(l)t is not constant) and also defines a WIH. This follows from
�(l′) = �(l) = const. Using the slicing (St ) induced on H from the 3 + 1 decomposition, the functions B in
Eq. (8.7) have actually support on the sections St and parametrize the different WIH structures. In an analogous
manner for the extremal case, �(l) = 0, the non-equivalent rescaled null normal l′ = Al with A a non-constant
function on St , is also associated with a non-equivalent extremal WIH.

8.2.2. Link with the 3 + 1 slicing
Since a WIH structure does not further constrain the geometry of H, from a quasi-equilibrium point of view a WIH

is not more isolated than a NEH. However, this notion presents a remarkable richness as a structural tool. In this sense
its interest is two-fold, both from a geometrical and physical point of view. In addition, this concept provides a natural
framework to discuss the interplay between the horizon H and the spatial 3 + 1 foliation (�t ), something specially
relevant in our approach. In this last sense, the issue of the compatibility between the structures intrinsically defined
on H and the additional one provided by the 3 + 1 slicing of the spacetime, is naturally posed.
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Given a WIH (H, [l]), a 3 + 1 slicing (�t ) is called WIH-compatible if there exists a representative l in [l] such
that the associated level function t evaluated on the horizon H constitutes a natural coordinate for l, i.e. Llt = 1
[99]. Note that the representative l is then nothing but the null normal associated with the slicing (St ) of H by the
normalization (4.6).

Given independently a NEH H and a 3 + 1 slicing of M, there is no guarantee that there exists a WIH structure on
the NEH such that (�t ) is WIH-compatible. If such a WIH exists, l is tied to the t function and therefore to the slicing.
If not, no relation exists between that WIH and (�t ). Therefore, even though the choice of a specific WIH structure
on our NEH does not affect the intrinsic geometry of the horizon, demanding the 3 + 1-slicing to be WIH-compatible
represents an actual restriction on the 3 + 1 description of spacetime (see Section 11.3.1). And this fact is crucial in
our approach: some of the possible spacetimes slicings are directly ruled out.

We have noticed in Remark 7.6 that, on a NEH, the Há "́iček 1-form � (more concretely its divergence) is an object
directly depending upon the 3 + 1 slicing, whereas the rotation 1-form � depends only upon the normalization of l.
Let us then investigate the consequences of the WIH condition on �. From Eq. (7.40), we have

HLl �=HLl � − (HLl �(l))�
∗k , (8.9)

where we have considered both � and � as a 1-forms in T∗(H) (identifying them with their pull-back �∗� and �∗�).
In view of the above relation, we deduce from Eqs. (8.2) and (8.5) that

((H, [l]) is a WIH) ⇐⇒
{
HLl � = 0
HLl �(l) = 0

. (8.10)

Note that HLl �(l) = 0 is listed here, along with HLl � = 0, as a sufficient condition to have a WIH, but once the
WIH structure holds, one has actually the much stronger property of constancy of �(l) on all H [zeroth law, Eq. (8.5)].

8.2.3. WIH-symmetries
The discussion of the physical parameters of the black hole horizon in Section 8.6 demands the introduction of the

notion of a symmetry related to a WIH horizon. We present a brief account of it, with emphasis in the non-extremal
case and refer the reader to Refs. [12,107] for details and extensions.

A symmetry of a WIH is a diffeomorphism of H preserving the relevant structures of the WIH. Infinitesimally this
is captured as follows: a vector field W tangent to H is said to be an infinitesimal WIH-symmetry of (H, [l]), if it
preserves the equivalence class of null normals, the metric q and the 1-form �, namely

HLW l = const · l, HLW q = 0 and HLW � = 0 . (8.11)

In the considered non-extremal case, the general form of such a WIH symmetry is given by (see Section III in [12])

W = cWl + bWS , (8.12)

where cW and bW are constant on H and the vector field S, satisfying l · S = 0, is an isometry on each section (St , q).
From this general form of an infinitesimal symmetry, and according to the number of independent generators in the
associated Lie algebra of symmetries, one can distinguish different universality classes of WIH-symmetries. Since
l ∈ [l] is an infinitesimal symmetry by construction, the Lie algebra (and therefore the Lie group) of WIH-symmetries
is always at least one-dimensional:

(a) Class I. The symmetry Lie algebra is generated by l together with the infinitesimal rotations acting on the 2-sphere
St . The resulting group is the direct product of SO(3) and the translations in the l direction. This case corresponds
to the horizon of a non-rotating black hole.

(b) Class II. The symmetry group is now the direct product of the translations along l and an axial SO(2) symmetry on
St . It corresponds to an axisymmetric horizon and represents the most interesting physical case, since it corresponds
to a black hole with well-defined non-vanishing angular momentum (see Section 8.6).

(c) Class III. The symmetry group is one-dimensional (translations along l). It corresponds to the general distorted
case.

Note that I is a special case of II, and the latter is a special case of III.
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8.3. Initial (free) data of a WIH

As commented in the point 3, after the WIH definition, the geometry of a WIH as a null hypersurface is that of a
NEH. In particular, the free data of a WIH are essentially those presented in Section 7.7 for a NEH. The only difference
is the choice of a null normal l such that the zeroth law (8.5) is satisfied and, consequently, �(l) is constant on H, �o:

WIH-free initial data : (q|St
, �|St

, �|St
, �o) . (8.13)

We note that, since in a WIH the null normal [l] is fixed up to a constant, the gauge freedom in the WIH-free data
concerns mainly what we called the passive aspect in Section 7.7.2 . The active one reduces to constant rescalings of
�(l) and �. Once these free data are fixed on St , the reconstruction of the WIH on H proceeds as in Section 7.7.2.
The only subtlety now enters in the third step represented in Fig. 15, when the fields on the slice St are transported to
the next slice. In the construction of the WIH not only the metric q is Lie dragged by l, but also the Há "́iček form �
and the non-affinity coefficient �o, as shown by Eq. (8.10). Now, the only field evolving in time is �.

In view of Eq. (7.33) and the time-independence of q (hence of 2D and 2R), � and �, the time dependence of � can be
explicitly integrated if we assume that the projection of the four-dimensional Ricci tensor (or the matter stress-energy
tensor via the Einstein equation) is time-independent, i.e.

�∗Ll R = 0 . (8.14)

In fact, this condition is actually well-defined on a NEH, i.e. it does not depend on the choice of the null normal l.
This follows from property (7.32). Condition (8.14) is rather mild and is obviously satisfied in a vacuum spacetime. If
we deal with a WIH built on a NEH that fulfills (8.14), then in the evolution of � dictated by Eq. (7.33) the only terms
which depend on time are � and HLl �. In this situation, and assuming a non-extremal WIH (�(l) �= 0), this equation
can be straightforwardly integrated [13], resulting in

� = e−�(l)t�0 + 1

�(l)

[
1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 4�

(

q∗T − T

2
q
)]

, (8.15)

where �0 is the integration constant, a time-independent symmetric tensor, and t is a coordinate on H compatible with
l via Eq. (4.6), i.e. Ll t = 1.

8.4. Preferred WIH class [l]

We have seen that a NEH admits an infinite number of WIH structures which, in the non-extremal case and according
to (8.7), are parametrized by functions B defined on St . The question about the existence of a natural choice among
them is naturally posed.

In case we dispose of an a priori slicing (�t ) of M, a slicing (St ) of the horizon is determined independently of
the geometrical structures defined on H, as discussed in Section 4. Such a slicing fixes the null normal l via the
normalization (4.6) [or, equivalently, the slicing fixes the lapse N and N determines l by Eq. (4.13)]. If the slicing is
a WIH-compatible one, a particular class [l] is chosen. If not, such a slicing does not help in making such a choice.

More interesting is, however, the opposite situation, which occurs whenever the 3 + 1 slicing (�t ) is determined in
a dynamical way. In such a context, an intrinsic determination of a preferred WIH class helps in the very construction
of the 3 + 1 slicing. In fact, if such a WIH class is provided together with a definite initial cross-section S0, then the
slicing (St ) of H is completely determined,19 and can be used as a boundary condition to fix (�t ).

From an intrinsic point of view, fixing the class [l] reduces to choosing the function B in Eq. (8.7). Such a choice
can be made by imposing a condition on a scalar definable in terms of the fields defining the WIH geometry. Following
[13], an appropriate scalar in this sense is provided by the trace of HLl � which, on a NEH, corresponds to the

19 We understand here the slicing (St ) of H as the set of slices St . The global constant ambiguity in the WIH class affects the rate at which
the null generator on H traverses this ensemble (thus determining the associated lapse N on H up to constant), but does not change the ensemble
itself.
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Lie derivative in the l direction of the expansion �(k) associated with the ingoing null normal k [cf. Eq. (5.87)].
Contracting Eq. (7.33) with q yields

Ll �(k) = 2D
�
 + �
�
 − 1
2

2R + 1
2q
�R
� − ��(k) . (8.16)

We start with a WIH with null normal l and free data (q, �, �, �(l)). Firstly we notice that, if condition (8.14) holds,
the value of Ll �(k) at t = 0 resulting from Eq. (8.15) satisfies (where �0


� are constant)

Ll �(k)|t=0 = −�(l)(q

��0


�) . (8.17)

Now we search a transformation of (q, �, �, �(l)) to new free data corresponding to another WIH built on the same
NEH, such that the new (q′, �′, �′, �(l′)) make Ll′ �(k′) to vanish via the “primed” Eq. (8.16). In the non-extremal
case, this is achieved by a rescaling l′ = �l with

� = (1 + Be−�(l)t ) , (8.18)

with t a coordinate compatible with l, i.e. an active transformation of the free data. Up to some caveats we shall mention
below, this permits to fix the function B and therefore the WIH class (we adapt the discussion in [13,108], where it is
carried out in terms of the tensor N�� introduced in Section 7.7.3).

According to Table 1 and using the coefficient � given by Eq. (8.18), the transformations of the objects in the right-
hand side of Eq. (8.16) are parametrized by the functions B. We make explicit these transformations in a first order
expansion in the parameter B, and evaluate the transformed fields on the 2-surface S0 (i.e. we set t = 0):

2D
 → 2D
′

 = 2D
 , (8.19)

�
 → �′

 = �
 +

2D
B

1 + B
≈ �
 + 2D
B , (8.20)

�(l) → �(l′) = �(l) , (8.21)

�(k) → �(k′) = �(k)

1 + B
≈ �(k) − B�(k) . (8.22)

Introducing these transformed fields in the (transformed) Eq. (8.16) and gathering together the terms that expand
Ll �(k) by using again the “non-primed” Eq. (8.16), we obtain

(2D

2D
 + 2�


2D

 + D
�
 + �
�
 − 1

2
2R + 1

2q
�R
�)B = −Ll �(k)

∣∣
t=0 . (8.23)

Following Ashtekar et al. [13] we denote the operator acting on B as M. Making use of Eq. (8.17), we finally find the
following condition on B:

MB = �(l)(q

��0


�) . (8.24)

A NEH is called generic if it satisfies condition (8.14) and if it admits a null normal l with constant �(l) �= 0 such that
its associated M is invertible [13].

If a NEH is generic, Eq. (8.24) admits a unique solution B which is inserted in the rescaling (8.18) of l for finding the
null vector l′ which satisfies Ll′ �(k′) = 0. The main point to retain from this discussion is the fact that the condition
Ll �(k) = 0, together with �(l) = const, fixes a unique WIH structure on the NEH (cf. [13]).

8.5. Good slicings of a non-extremal WIH

Fixing the WIH class determines the foliation of H if an initial cross-section is provided. This is particularly
interesting for the construction, from a Cauchy slice, of a spacetime containing a WIH. However, in more general
problems in which no initial slice is singled out, simply demanding the slicing of H to be compatible with the
chosen WIH class, is not enough to fix (St ) (this corresponds to the passive aspect of the gauge freedom discussed in
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Section 7.7.2). It is worthwhile to consider if a particular slicing associated with a WIH class can be chosen in a natural
way. Even though in Section 11.3 we will provide a more intuitive presentation of this issue in terms of the 3 + 1
decomposition, we briefly show here the intrinsic approach followed in Refs. [13,108,111].

The foliation (St ) is fixed by providing a function t on H, that can be seen as the restriction to H of a scalar field
defined in the whole spacetime M, and whose inverse images do foliate H. According to Eq. (4.34), fixing such a
function t entails a specific choice of k [see Remark 4.2 for further insight on the relation between k and the foliation
(St )]. If we fix a WIH class, for instance following the procedure explained in the previous section, the rotational
1-form � is completely determined in this class, according to transformation rule in Table 1. Consequently, for a
non-extremal horizon � = const �= 0, and taking into account Eq. (5.35), fixing k (or equivalently the slicing on H)
translates into specifying the Há "́iček form �.

Fixing (St )

(H, [l]) non-extremal WIH

}
⇔ fixing Há "́iček 1-form � . (8.25)

This will be the starting point of the discussion in Section 11.3.3. Here we briefly comment on an intrinsic procedure
to fix �. Firstly we note that, on a WIH with k satisfying HLl k = 0 (as it is the case), we have Ll � = 0. In addition
〈�, l〉=0, so � projects to the sphere obtained as the quotient of H by the trajectories of the vector field l [cf. Remark
2.8 for a brief comment on this construction, but in terms of vectors in Tp(H)].

In general, a 1-form � on a sphere S2 can always be decomposed in

� = �div-free + �exact , (8.26)

where 2D ·�div-free = 0 and �exact = 2Df for some function f on S2. This is a specific case of the general expression,
known as Hodge decomposition for p-forms defined on a compact manifold provided with a non-degenerate metric
(see for instance Refs. [46] or [124]). The divergence-free part of the Há "́iček 1-form is determined by Eq. (7.67) that,
together with �(l) = const and Eq. (5.39), implies

d�div-free = 2 Im �2
2ε . (8.27)

Again in the context of the Hodge decomposition, the divergence-free part can always be written as

�div-free = 
2Dh·2ε (8.28)

for a certain function h. In terms of h, Eq. (8.27) results in the Laplace equation on the sphere

2�h = 2 Im �2 , (8.29)

which completely fixes �div-free. In order to consider the exact part of �, we take the divergence of Eq. (8.26),
resulting in

2�f = 2D · �exact = 2D · � . (8.30)

Whereas the divergence-free part of � is fixed by the WIH geometry, its divergence is not constrained by the null
geometry. Therefore, in order to fix the exact part we must make a choice for the value 2D · �. Therefore f encodes
the passive gauge freedom in the determination of the foliation (St ).

A natural condition [13] consists simply in choosing f = 0, i.e. 2D · � = 0, which implies the vanishing of �exact.
However, such a choice does not lead to the usual foliations in the case of a rotating Kerr metric [108,18]. A choice
that permits to recover the Kerr–Schild slicing of the horizon (cf. Appendix D), and which is motivated by the extremal
Kerr black hole, is given by the Pawlowski gauge [108,18]:

2D · � = − 1
3

2� ln |�2| , (8.31)

where the complex Weyl scalar �2 has been defined by Eq. (4.50).

Remark 8.1. As we saw in Section 7.7, the discussion of the free data associated with the null geometry involves a
slicing of H. Since in this article we are working with the additional structure provided by the slicing (St ), it was
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appropriate for us to carry out such analysis in the context of a NEH. However, if no extra structure is added to that
intrinsically defined onH, a WIH is needed in order to define a slicing ofH (in the non-extremal case) as shown above.
In such an approach, this Section 8 on WIH would probably offer a more natural setting for the general discussion on
the free data, as done in Ref. [13].

8.6. Physical parameters of the horizon

Having discussed the applications of the WIH structure for analyzing the geometry of H as a hypersurface in M,
let us turn our attention to the determination of the physical parameters associated with the black hole horizon.20

The introduction of a WIH structure on H permits to associate a quasi-local notion of mass and angular momentum
with the black hole, independently of its environment. Such quasi-local notions are of fundamental astrophysical
relevance for the study of black holes. Regarding the mass, the ADM mass of an asymptotically flat spacetime (see the
textbooks [167] or [139] for a brief presentation of the different notions of mass in general relativity) accounts for the
total mass included in a spacelike slice �t . However, in a multi-component system it does not allow to determine which
part is properly associated with the black hole and which part corresponds to the binding energy or the gravitational
radiation.

Remark 8.2. There exist in the literature other quasi-local approaches to prescribe the physical parameters associated
with spatially bounded regions. See in this sense the review [158]. Let us highlight Brown and York work [35], where
a review of the existing literature can also be found, and Refs. [92,116] for recent developments in the notion of
quasi-local mass. Here we simply present the approach followed in Refs. [15,12], developed in the framework of quasi-
equilibrium black hole horizons modeled by null surfaces. For an extension of the discussion to the dynamical regime,
see Ref. [17].

The strategy to determine the quasi-local parameters is also geometrical, but relying on techniques which are rather
different from the ones introduced in the present article, where we have focused on the characterization of the geometry of
H as a hypersurface embedded in spacetime. The setting for the discussion of the physical parameters is provided by the
so-called Hamiltonian or symplectic techniques (see for instance Refs. [1,8,80] for general presentations).As in standard
classical mechanics, physical parameters are characterized as quantities conserved under certain transformations, which
in the present case are related to symmetries of the horizon (see Section 8.2).

More specifically, one considers the phase space � of solutions to the Einstein equation containing a WIH (H, [l]) in
its interior. That is, each point of � is a Lorentzian manifold (M, g) endowed with a WIH (H, [l]). Diffeomorphisms of
M preserving H and such that their restriction to H implement a WIH-symmetry, induce canonical transformations
on � (when some additional non-trivial conditions are fulfilled; see Appendix C). The functions on � generating
these canonical transformations are identified with the physical quantities. A systematic discussion of these tools lays
beyond the scope of this article. A brief account of them, organized in terms of (relevant) examples rather than a formal
presentation, can be found in Appendix C.

8.6.1. Angular momentum
Following Ashtekar et al. [13], we restrict ourselves to those horizons H which admit a WIH of class II (see Section

8.2). Therefore, there exists an axial vector field 
 on H which is a SO(2) isometry of the induced metric q and is
normalized in order to have a 2� affine length. Noting that this vector field 
 presents in fact the standard form (8.12)
(with c
 = 0, b
 = 1), a conserved quantity in � associated with the horizon H can be defined (see Appendix C). This
quantity, denoted as JH and identified with the angular momentum of the horizon, has the explicit form21

JH = − 1

8�G

∫
St

〈�, 
〉2ε = − 1

8�G

∫
St

〈�, 
〉2ε = − 1

4�G

∫
St

f Im �2
2ε , (8.32)

20 As commented in the Introduction, in this review we do not discuss the electromagnetic properties of a black hole. In particular, in this section
we restrain ourselves to solutions without matter. For a more general study (incorporating electromagnetic and Yang–Mills fields) see Refs. [10,12].

21 In the expressions for the physical parameters we reintroduced explicitly the Newton constant G.



238 E. Gourgoulhon, J.L. Jaramillo / Physics Reports 423 (2006) 159 –294

where the second equality holds thanks to 
 ∈ Tp(St ), and in the third equality we have used the fact that, since

 is a divergence-free vector, there exists a function f such that 
=2 
Df · 2ε [analogue to Eq. (8.28)]. Using then
Eq. (7.67) and an integration by parts leads to the third form for JH. We note that this expression justifies the rotation
1-form terminology introduced in Section 7.5 for �.

If the vector 
 can be extended to a stationary and axially symmetric neighborhood of H in M, representing the
corresponding rotational Killing symmetry, then expression (8.32) can be shown to be equivalent to the Komar angular
momentum [106,12] (see also expression (10.21) and, for instance, [139]). We point out that the integral (8.32) is well
defined even if 
 is not a WIH-symmetry (in fact, the divergence-free property is enough to guarantee the independence
of (8.32) from the cross-section St of H [14,18]). However, in the absence of a symmetry, it is not so clear how to
associate physically this value with a physical parameter.

8.6.2. Mass
The definition of H’s mass is related to the choice of an evolution vector t. In order to have simultaneously a

notion of angular momentum, we restrict ourselves again to horizons of class II and choose a fixed axial symmetry 


on H. Since we want the restriction of t on H to generate a WIH-symmetry of (H, [l]), we demand, according to
expression (8.12),

(t + �(t)
)|H ∈ [l] , (8.33)

where �(t) is a constant on H. Once these boundary conditions for t are set, the determination of the expression for
the mass proceeds in two steps.

1. First Law of Thermodynamics
As a result of demanding t to be associated with a conserved quantity Et

H in the phase space �, it can be shown
[12] that the function Et

H must depend only on two parameters defined entirely in terms of the horizon geometry: the
area, aH = ∫

St

2ε, of the 2-slice St (constant, as a consequence of the NEH geometry) and the angular momentum
JH defined in Eq. (8.32). In fact, the variation of Et

H with respect to these parameters must satisfy [12]


Et
H = �(t)(aH, JH)

8�G

aH + �(t)(aH, JH)
JH . (8.34)

This expression can be interpreted as a first law of black hole mechanics (see Remark 8.3 below), where Et
H is an

energy function associated with the horizon.22 Note that �(t)(aH, JH) and �(t)(aH, JH) are constant on a given
horizon H, where aH and JH have a definite value; in Eq. (8.34), aH and JH are rather parameters in the phase
space � (see Appendix C).

However, this result does not suffice to prescribe a specific expression for the mass of the black hole. In fact, since in
condition (8.33) we have not made an explicit choice for the representative l ∈ [l], the evolution vector t has not been
completely specified. Therefore, the functional forms of �(t)(aH, JH), �(t)(aH, JH) and Et

H are not fixed. However,
once their dependences on aH and JH are specified, they turn out to be the same for every spacetime in �, no matter
how distorted is the WIH or how dynamical is the neighboring spacetime. This is a non-trivial result.

2. Normalization of the Energy function
The second step consists precisely in fixing the functional forms of the physical parameters. In the space � of

solutions to the Einstein equation containing a WIH, there exists a subspace constituted by stationary spacetimes (the
Kerr family, in fact parametrized by the area and angular momentum), where the existence of an exact rotational
spacetime Killing symmetry tKerr provides a natural choice for the representative in [l]. This fixes the evolution vector
t on H as well as the functional dependence of �(t) and �(t) for this family. If we impose the functional forms of
the physical parameters, forms which are the same for any spacetime in �, to coincide with those of the Kerr family
when we restrict � to its submanifold of stationary solutions, this completely determines their dependence on aH
and JH (the biparametric nature of the Kerr family is crucial for this). This is not an arbitrary choice but a consistent
normalization.

22 In Eq. (8.34), �(t) = 〈t − q∗t, �〉, and a more precise meaning for the 
 symbol in this context can be found in Appendix C.
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Defining the areal radius of the horizon RH by

R2
H := aH

4�
= 1

4�

∫
St

2ε , (8.35)

the horizon black hole physical parameters can be expressed as

MH(RH, JH) := MKerr(RH, JH) =
√

R4
H + 4G2J 2

H

2GRH
,

�H(RH, JH) := �Kerr(RH, JH) = R4
H − 4G2J 2

H

2R3
H

√
R4
H + 4GJ 2

H

,

�H(RH, JH) := �Kerr(RH, JH) = 2GJH

RH

√
R4
H + 4GJ 2

H

.

(8.36)

8.6.3. Final remarks
The following results can be retained from the previous discussion:

(a) Explicit quasi-local expressions for the physical parameters associated with the black hole. Their determination
proceeds by firstly calculating RH and JH from the geometry of H,23 via evaluation of expressions (8.32) and
(8.35). These values are then plugged into (8.36).

(b) Even though we need a WIH structure on H in order to derive the physical parameters, the final expressions only
depend on the NEH geometry, and not on the specific chosen WIH. This is straightforward for the radius RH,
since it only depends on the 2-metric induced on St . Regarding the angular momentum, the value of JH through
Eq. (8.32) does not depend on the null normal l chosen on the NEH. Given a null normal l, a different one l′ is
related to l by the rescaling l′ = �l for some function � on H. Using the transformation rule for � in Table 1, the
difference between J ′

H and JH, calculated respectively with l and l′ is given by

J ′
H − JH = − 1

8�G

∫
S

〈2D(ln �), 
〉2ε = 1

8�G

∫
S

(ln �)d(
 · 2ε) = 0 , (8.37)

where we have firstly integrated by parts and then used that 
, being an isometry of q, is a divergence-free vector
(or straightforwardly, d(
 · 2ε) = L


2ε − 
 · d(2ε) = 0, since L
q = 0). Therefore, it makes sense to refer to
JH as the angular momentum of a NEH and, in fact, its very notation makes sense.

(c) A by-product of the Hamiltonian analysis with implications for the null geometry of a non-extremal WIH (H, [l]),
is the singularization of a specific null normal l0 in [l]. In any non-extremal WIH class [l] there is a unique
representative such that its associated non-affinity coefficient coincides with the surface gravity of the Kerr family.
In terms of an arbitrary null normal l in [l], and according to transformations in Table 1,

l0 = �H(RH, JH)

�(l)

l . (8.38)

The choice of a physical normalization for the null normal permits, on the one hand, to refer to its non-affinity
coefficient �0 = �H(RH, JH) as the horizon surface gravity. On the other hand, such a normalization can be
conveniently exploited for the determination of the horizon slicing as discussed in Sections 8.4 and 8.5. See in this
sense Section 11.3. More generally, expression (8.33) can be used to set boundary conditions for certain fields on
H (see Section 11).

23 In this article we are not including the electro-magnetic field. In the context of the Einstein–Maxwell theory, the resulting expressions for the
horizon angular momentum and mass include an additional term corresponding to the electromagnetic field (see Ref. [12]). In the even more general
Einstein–Yang–Mills case, implications on the mass of the solitonic solutions in the theory follow from the analysis of the first law in the isolated
horizon framework [18].
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Remark 8.3. A major motivation for introducing the WIH structure on H is the extension of the black hole mechanics
laws beyond the situation in which the horizon is embedded in a stationary spacetime [20]. The thermodynamical
aspects of black hole horizons represent a cornerstone in understanding the physics of Gravity, both at the classical
and the quantum level [168,131] (for the case of black hole binaries, see Ref. [71]). In this article, we have focused
on those applications of isolated horizons to the null geometry of a hypersurface representing a black hole horizon
in quasi-equilibrium inside a generally dynamical spacetime, and mainly aiming at their astrophysical applications
in numerical relativity. However, the implications of this formalism go far beyond this aspect and, in particular, its
results in black hole mechanics offer a link to the applications in quantum gravity. See the review [18] for a detailed
account. We have seen how the constancy of the surface gravity �(l) on the horizon, the zeroth law, follows from the
WIH definition [see Eq. (8.5)], whereas the first law results from the introduction of a consistent notion of energy
associated with the horizon [Eq. (8.34)]. In order to discuss the second law, linked to the increasing law of the area, one
should go beyond the quasi-equilibrium regime and enter into the properly dynamical one (see Section 9.3 for a brief
outline of this regime). As a by-product, dynamical horizons provide another version of the first law [17], associated
with the evolution (a process) of a single system—Clausius–Kelvin’ sense—, whereas Eq. (8.34) dwells on (horizon)
equilibrium states—Gibbs’ sense—in the phase space �.

9. Isolated horizons II: (strongly) isolated horizons and further developments

9.1. Strongly isolated horizons

After introducing the NEHs and WIHs, the third and final level in the isolated horizon hierarchy of intrinsic structures
capturing the concept of black hole horizon in quasi-equilibrium, is provided by the notion of strongly isolated horizon,
or simply isolated horizon (IH). We continue the strategy outlined at the beginning of Section 8. Consequently, starting
from a NEH, we demand the full connection ∇̂ to be time-independent.

Following Ashtekar et al. [15], a Strongly IH is defined as a NEH, provided with a WIH-equivalence class [l]
such that

[HLl , ∇̂] = 0 . (9.1)

The consequences of imposing this structure on H can be analyzed in terms of the constraints and free data of the
null geometry. From the discussion in Section 7.7.3, the time independence of ∇̂ implies the vanishing of HLl S in
Eq. (7.84), that is

∇̂(���) + ���� + 1
2 (R�� − 2R��) = 0 . (9.2)

In terms of the decomposition (7.74) of ∇̂, the time independence of S implies the WIH condition HLl � = 0 (i.e.
HLl � = 0,HLl �(l) = 0) together with the vanishing of 
q∗Ll �. That is, an IH is characterized by the constraints

HLl q=HLl � = 
q∗Ll � = 0 , (9.3)

where the only difference with respect to the WIH case discussed in Section 8.3 is the time independence of �. From
Eq. (7.33), it follows

�� = 1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 4�

(

q∗T − T

2
q
)

. (9.4)

In contrast with the NEH and WIH cases, where the initial data fields (q, �, �o, �) can be freely specified on a given
cross-section, in the IH case Eq. (9.4) sets a constraint on the IH initial data. We note by passing that this is in complete
analogy with the 3 + 1 spacetime case where initial data (�, K) are constraint by Eqs. (3.37) and (3.38).

We comment on the non-extremal case and, for completeness at the level of basic definitions, also on the extremal
case. Regarding the non-extremal case �o �= 0, the IH constraint can be straightforwardly solved. In fact, once the
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fields q and � and the constant �o are freely chosen, the field � is fixed by Eq. (9.4). Therefore, the free data are given
in this case by

non-extremal IH-free data : (q|St
, �|St

, �o �= 0) , (9.5)

The � needed for reconstructing the full connection ∇̂ is then given by Eq. (9.4).
In the extremal case, �o = 0, the situation changes. The vanishing of the left-hand side in Eq. (9.4) leaves � as a free

field on the initial cross-section St . The right-hand side becomes a constraint on (q|St
, �|St

)

1

2
Kil(2D, �) + � ⊗ � − 1

2
2R + 4�

(

q∗T − T

2
q
)

= 0 . (9.6)

The initial data are given in this case by

extremal IH-initial data : (q|St
, �|St

, �|St
, �o = 0)

where q|St
and �|St

satisfy Eq. (9.6)
. (9.7)

9.1.1. General comments on the IH structure
In simple terms, an isolated horizon is a NEH in which all the objects defining the null geometry (q, ∇̂) are time-

independent. It represents the maximum degree of stationarity for the horizon defined in a quasi-local manner. However,
the notion of IH is less restrictive than that of a Killing horizon, which involves also the stationarity of the neighboring
spacetime. In fact, a Killing horizon is a particular case of an isolated horizon, but the reverse is not true. One can have
an IH such that no spacetime Killing vector can be found in any neighborhood of the horizon. Consequently, an IH
permits to model situations with a stationary horizon inside a truly dynamical spacetime. Interestingly, non-trivial exact
examples of this situation are provided in [110], in the context of a local analysis, and globally by the Robinson–Trautman
spacetime (see [47]). This flexibility of the IH structure is important for its applications in dynamical astrophysical
situations.

In contrast with a WIH structure, an IH represents an actual restriction on the geometry of a NEH. In other words,
if we start with an arbitrary NEH, it is not guaranteed that a null normal l can be found such that condition (9.1)
is satisfied. An IH is in particular a WIH. Reasoning in terms of initial data as in point 3. of Section (8.2), given an
arbitrary l on a NEH with associated data (q|St

, �|St
, �St

, �(l)), a function � can always be found such that the
fields transformed under the rescaling l → l′ = �l correspond to WIH free data (cf. Table 1). That is, �(l′) = const
(let us assume �(l′) �= 0 for definiteness). If the transformed fields satisfy (9.4), they correspond to the initial data of
an IH. If not, the remaining freedom in these data corresponds to a new transformation l′ → l′′ = �′l′ with �′

�′ = 1 + Be−�(l′)t , (9.8)

where B is a function on St and HLl′ t = 1. Substituting the transformed fields into (9.4) leads to three independent
equations for a single variable B. If the system has no solution, this means that the NEH does not admit any IH. In
general the choice of B only permits to cancel a scalar obtained from HLl � (this was in fact the strategy in Section
8.4 to fix the WIH class). A similar argument applies in the extremal case. An analysis of the necessary conditions for
a NEH to admit an IH can be found in A.2. of Ref. [13].

A posteriori analysis of black hole spacetimes. The interest of applying the geometrical tools discussed so far in
numerical relativity is twofold. On the one hand, they can be used to set constraints on the fields entering in the numerical
construction of a spacetime. This will be discussed in some detail in Section 11, mainly involving the NEH and WIH
structures. On the other hand, they can be employed to extract physics in an invariant manner out of already constructed
spacetimes. In fact, even though it could happen (but it remains to be studied) that the IH level is not flexible enough
in order to accommodate astrophysically realistic initial situations, it is very well suited for the a posteriori analysis of
the dynamical evolution toward stationarity after a stellar collapse or a black hole merger.

In this sense, we briefly comment on the possibility of constructing a coordinate system in an invariant way for a
neighborhood of the horizon H (in fact, only WIH notions are involved). This can be specially relevant for comparing
results between different numerical simulations. Once a WIH class is fixed (using for instance results in Section 8.4;
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see also Section 11.3), we can choose a vector l in [l] [for instance via Eq. (8.38)] and a compatible slicing of H (see
Section 8.5). Then, coordinates (t, �, �) can be chosen on H, up to a re-parametrization of (�, �) on the cross-sections
St . In order to construct the additional coordinate outside the horizon, we choose the only vector k normal to St that
satisfies k ·l=−1. The affine parameter r of the only geodesic passing through a given (generic) point in H (with r =r0
and derivative −k on that point) provides a coordinate in a neighborhood of H. The rest of the coordinates (t, �, �) are
Lie-dragged along these geodesics. An analogous procedure can be followed in order to construct invariantly a tetrad in
a neighborhood of H. Details of this construction can be found in [13,11,108]. In particular, a near horizon expansion
of the metric in such a (null) tetrad can be found in [11].

Another example of a posteriori extraction of physics is provided in [65,108]. This reference presents an algorithm
for assessing the existence of the horizon axial symmetry 
 entering in the expression for the angular momentum (8.32).
In case this symmetry actually exists, 
 is explicitly reconstructed permitting the coordinate-independent assignation
of mass and angular momentum to the horizon (the algorithm can also be used to look for approximate symmetries in
case of small departs from axisymmetry).

9.1.2. Multipole moments
In this section we address an important point from the point of view of applications and whose physical interpretation

is quite straightforward. As in Section 8.6, we only consider the horizon vacuum case (see Ref. [14] for the inclusion of
electromagnetic fields). In analogy with the source multipoles of an extended object in Newtonian gravity, which encode
the distribution of matter of the source, the geometry of an IH permits to define a set of mass and angular momentum
multipoles which characterize the black hole (whose horizon is in quasi-equilibrium) as a source of gravitational field
(see [14]).

As we saw in Section 8.6, a meaningful notion of angular momentum can be associated with the horizon if we
impose its transversal sections St to admit an axial symmetry 
, i.e. if the horizon is of class II in the terminology of
Section 8.6 (the requirement on the Killing character of 
 can be relaxed to a divergence-free condition; see in this
sense the discussion following Eq. (3.18) in Ref. [14]). In the same spirit, the discussion here applies only to class II
horizons (and its subclass I). We limit ourselves again to the non-extremal case.

As we have shown in Section 9.1, the geometry of a non-extremal IH is determined by the free data (q, �) on a
cross-section St (the different constant values of � change the representative of [l], but not the IH geometry). We
must therefore characterize these two geometrical objects. The main idea is to identify two scalar functions, associated
respectively with q and �, such that they encode the geometrical information of these initial data [remember that
only the divergence-free part of � is a geometrical object in the sense of being independent of the cross section; see
discussion in Section 8.5 or transformation rules (7.78)] Multipoles are then given by the coefficients in the expansion
of these scalars in a spherical harmonic basis. This can actually be achieved in an invariant manner. In this section we
simply present a brief account of the results in [14], referring the reader to this reference for details.

The metric q. On a sphere S2, the geometrical content of a metric q can be encoded in a scalar function, such as its
scalar curvature 2R . The crucial remark is that, given a metric on S2 with an axial symmetry 
 (i.e. 
 is a Killing vector
on S2 with closed orbits and vanishing exactly on two points), a particular coordinate system (�, �) can be constructed
in an invariant manner,24 where the 2-metric is written as

q = (RH)2(f −1 sin2 � d� ⊗ d� + f d� ⊗ d�) , (9.9)

with f = q(
, 
)/(RH)2 and RH is given by Eq. (8.35). The function f is related to the Ricci scalar 2R by

2R = − 1

(RH)2

d2f

d(cos �)2 . (9.10)

Therefore, from the knowledge of 2R the metric q can be reconstructed by using Eqs. (9.9) and (9.10). The round
metric q0

q0 = (RH)2(d� ⊗ d� + sin2 � d� ⊗ d�) (9.11)

24 This coordinate system plays a fundamental role in the discussion of IH multipoles. However, the technical details of its construction go
beyond the scope of this section, mainly focused in presenting the final expressions for the multipoles. We refer the reader to Ref. [14] for a complete
presentation.
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is obtained by making f = sin2 � and has the same volume element, d2V ≡ 2ε0 = (RH)2 sin2 � d� ∧ d�, than the
physical metric q.

The Háj́iček 1-form �
As shown in Section 8.5 the divergence-free part �div-free of the Há "́iček 1-form is completely characterized by

Im �2, whereas its exact part �exact is a gauge term related to the foliation in H, but without affecting the intrinsic
geometry of the horizon.

Therefore, the geometry of the IH is encoded in the pair (2R, Im �2) (together with the radius RH). In order to
characterize these fields, and taking advantage of the invariant coordinate system previously introduced, an expansion
in spherical harmonics Ylm(�, �) can be performed. Due to the axial symmetry, the only functions entering into the
decomposition are Yl0(�), which do not depend on �. Since the volume element 2ε, corresponding to q, coincides with
the volume 2ε0 = d2V associated with the round metric q0, the spherical harmonics are the standard ones, normalized
according to∫

St

Yn0(�)Ym0(�) d2V = (RH)2
nm . (9.12)

We define the two series of numbers In, Ln as

In := 1

4

∫
St

2RYn0(�) d2V , (9.13)

Ln := −
∫
St

Im �2Yn0(�) d2V . (9.14)

These are geometrical dimensionless quantities that measure, respectively, the distortions and rotations of the horizon
with respect to the round metric. We see explicitly that even the strongest notion of quasi-equilibrium that we have
introduced, i.e. the IH structure, is rich and flexible enough so as to model physically interesting scenarios. If the two
series In and Ln are given, the full isolated horizon geometry can be reconstructed from

2R = 4

(RH)2

∞∑
n=0

InYn0(�) , (9.15)

Im �2 = − 1

(RH)2

∞∑
n=0

LnYn0(�) . (9.16)

We note that in a NEH, the information about q and � is also encoded invariantly in (2R, Im �2) [together with the
invariant coordinate system where q takes the form (9.9)]. Therefore, it makes sense to define In and Ln for a NEH. In
this case, however, the full geometry cannot be reconstructed since the information on � is missing.

In order to obtain physical magnitudes that one can associate with the mass and rotation multipoles of the horizon,
one must rescale In and Ln with dimensionful parameters. Motivated by heuristic considerations based in the analogy
with magnetostatics and electrostatics in flat spacetime (see [14]), together with the results for the angular momentum
JH and mass MH presented in Section 8.6, rotation multipoles are defined as [14]

Jn :=
√

4�

2n + 1

Rn+1
H

4�G
Ln = −Rn+1

H

8�G

∫
St

(2ε
�2D�Pn(cos �))�
 d2V , (9.17)

resulting J0 = 0 and J1 = JH. The mass multipoles are then introduced as

Mn :=
√

4�

2n + 1

MHRn
H

2�
In =

√
4�

2n + 1

MHRn
H

2�

∫
St

(2RYn0(�)) d2V , (9.18)

where MH is given by expression (8.36), resulting M0 = MH and M1 = 0 (centre of mass frame).
These source multipoles present a vast domain of applications [14,18] ranging from the description of the motion

of a black hole inside a strong external gravitational field, the study of the effects on the black hole induced by a
companion or the invariant comparison at sufficiently late times of the numerical simulations of black hole spacetimes
having suffered a strongly dynamical process (numerical simulations in Refs. [19,27] show that the isolated horizon
notion becomes a good approximation quite fastly after the black hole formation).



244 E. Gourgoulhon, J.L. Jaramillo / Physics Reports 423 (2006) 159 –294

9.2. 3 + 1 slicing and the hierarchy of isolated horizons

The stratification of the IH hierarchy in NEH, WIH and IH can be defined in terms of the null geometry because the
structures on which the time independence is imposed, i.e. q, � and ∇̂, are intrinsic to H.

However, as indicated at the beginning of Section 8, when a 3+1 perspective is adopted by introducing the additional
structure provided by the spatial slicing (�t ), new objects which are not intrinsic to H enter into scene. This is the
case of the Há "́iček 1-form � and �. The geometry of H can now be defined in terms of the initial values of these
fields on a given slice St . In this context, it seems natural to introduce progressive levels of horizon quasi-equilibrium
by demanding the time independence of different combinations of the fields (q, �, �, �).

This is a practical manner to proceed in the actual construction of the spacetime from a given initial slice. In
accordance with the discussion of NEH initial data in Section 7.7.2, we introduce the non-affinity coefficient � as an
initial data, even if this parameter can be gauged away by a rescaling of the null normal. As we will see in Section
11, such a rescaling actually contain relevant information on the 3 + 1 description, in particular on the lapse, when a
WIH-compatible slicing is chosen. In addition, we split tensor � in its trace and traceless (shear) parts

� = 1
2�(k)q + �(k) . (9.19)

Given a NEH and a specific null normal l, the fields capable of changing in time are (�, �, �(k), �(k)).
Let us denote by the letters A, B, C, D the four conditions

A : HLl � = 2D� = 0; B : HLl � = 0 ;

C : HLl �(k) = 0; D : HLl �(k) = 0 . (9.20)

A NEH endowed with a null normal l will be called a (A, B, . . .)-horizon if conditions A, B, . . . are satisfied.
As an example, a (A, B)-horizon is simply a WIH, whereas a (A, B, C, D)-horizon is a (strongly) IH. It is important

to underline that this terminology makes no sense from a point of view intrinsic to H. Even more, due to the gauge
freedom in the set of initial data, some of these (A, B, . . .)-horizons actually correspond to the main intrinsic object (for
instance, a (B)-horizon is simply a NEH where we have chosen l in such a way that � is time-independent, although
it can depend on the angular variables on St ).

The only aim of such a decomposition of the horizon quasi-equilibrium conditions, is to classify the different potential
constraints on the null geometry of H that one would straightforwardly find in the 3 + 1 spacetime construction. In
any case, it turns out to be useful for keeping track of the structures that are actually imposed in the construction of the
horizon (see Section 11).

9.3. Departure from equilibrium: dynamical horizons

This article deals with the properties of a black hole horizon in equilibrium, following a quasi-local perspective.
The basic idea is to consider an apparent horizon S in a spatial slice �t , and then assume that this apparent horizon
evolves smoothly into other apparent horizons (see discussion in Section 7.1.2). The hypersurfaceH defined in this way
constitutes the quasi-local characterization of the black hole. The key element associated with the quasi-equilibrium of
this apparent-horizon world-tube is the null character of H. In this section we briefly indicate how these quasi-local
ideas have been extended in the literature to the regime in which the black hole horizon is dynamical (see Refs. [18,31]
for recent reviews).

The horizon is in quasi-equilibrium if neither matter nor radiation actually cross it [31,32]. Motivated by Hawking’s
black hole area theorem [87] for event horizons, the world-tube H corresponds to a quasi-equilibrium situation if the
volume element of the apparent horizons remains constant (this implies that the area is constant, but the converse is
not true in general). On the contrary, the dynamical case corresponds to an increasing area along the evolution of the
world-tube. These considerations on the rate of change of the area, translate into the metric type of H as follows. Under
the physically reasonable assumption Lk�(l) < 0 (a necessary condition for the spheres inside the apparent horizon to
be future-trapped), a vector z tangent to H and normal to the apparent horizon sections St is either null or spacelike
(see [93,65,108]). The volume element of the apparent horizons is constant, corresponding to the quasi-equilibrium
case, if and only if z is everywhere null on H, i.e. if H is null hypersurface [108,65] (cf. Eq. (5.74)). If z is everywhere
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spacelike, and �(k) < 0, then the area of the horizons actually increases. In the intermediate cases, with �(k) < 0, the
area is never decreasing.

The properly dynamical regime can be quasi-locally characterized by the notion of dynamical horizon introduced
by Ashtekar et al. [16,17]. A dynamical horizon is a spacelike hypersurface in spacetime that is foliated by a family of
spheres (St ) and such that, on each St , the expansion �(l) associated with the outgoing null normal l vanishes and
the expansion �(k) associated with the ingoing null normal k is strictly negative. This is a particular case of the previous
notion of trapping horizon introduced by Hayward [93] and commented at the end of Section 7.1.2. In particular,
it is directly related to future outer trapping horizons, whose definition coincides with that of dynamical horizons
once the spacelike nature of H has been substituted by the condition Lk�(l) < 0. This last condition can be crucial
to ensure that trapped surfaces (i.e. having both �(l) < 0 and �(k) < 0) exist inside H [148]. A future outer trapping
horizon can be a null or spacelike hypersurface (more generally, the vector z can be either null or spacelike), potentially
permitting a clearer description of the transition from the equilibrium to the dynamical situation [33]. Let us note
that the Damour–Navier–Stokes equation discussed in Section 6.3 has been recently extended to future outer trapping
horizons and dynamical horizons [76].

We can think of implementing Hayward’s dual null construction, since in our approach we have extended k outside
H. For doing this, we demand the null field k to be normal to a null hypersurface H′, in such a way that S=H∩H′.
From Frobenius’s identity (see Section 5.3; in particular Eq. (5.39) and Remark 5.1), it follows

d ln

(
N

M

)
= �k + �l . (9.21)

On the one hand, this can be used as a constraint between the lapse N and M [the latter being a function of the 3-metric �, as
a consequence of Eq. (4.19)]. On the other hand, since k is null and hypersurface-normal, it is pre-geodesic (Section 2.5).
This can be checked explicitly in Eq. (5.44) by noting that, due to (9.21), we have ∇k ln(N/M)=k·d ln(N/M)=−�, so
∇kk=(�/N2)k. Consequently, H′ provides the surface t =const parametrized by (r, �, �) in the invariant construction
of the coordinate system on a neighborhood of H, presented at the end of Section 9.1.1.

10. Expressions in terms of the 3 + 1 fields

10.1. Introduction

Hitherto we have used the 3 + 1 foliation of spacetime by the spacelike hypersurfaces (�t ) only (i) to set the
normalization of the normal l to the null hypersurface H (by demanding that l is the tangent vector of the null
generators of H when parametrizing the latter by t [Eq. (4.5)]), and (ii) to introduce the ingoing null vector k and the
associated projector onto H, �. In the present section, we move forward in our “3 + 1 perspective” by expressing all
the fields intrinsic to the null hypersurface H, such as the second fundamental form � or the rotation 1-form �, in
terms of the 3 + 1 basics objects, like the extrinsic curvature tensor K, the lapse function N or the timelike unit normal
n. In this process, we benefit from the four-dimensional point of view adopted in defining �, �, and other objects
relative to H, thanks to the projector �.

10.2. 3 + 1 decompositions

10.2.1. 3 + 1 expression of H’s fields
We have already obtained the 3 + 1 decomposition of the null normal l [Eq. (4.13)]. By inserting it into Eq. (5.13),

we get

��� = ∇
��q


�q�

� = ∇
[N(n� + s�)]q

�q�

�

= N(∇
n� + ∇
s�)q


�q�

� = N(∇
n� + ∇
s�)	


�	�

�q�
�q�

�

= N(−K�� + D�s�)q�
�q�

� , (10.1)
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where we have used n�q
�
� = 0 and s�q

�
� = 0 to get the second line and Eqs. (3.15) and (3.8) to get the third one.

Hence the 3 + 1 expression of the second fundamental form:

��� = N(D
s� − K
�)q


�q�

� , (10.2)

or equivalently (taking into account the symmetry of � and K):

� = N
q∗(Ds − K) . (10.3)

Contracting Eq. (10.2) with q�� gives the expansion scalar [cf. Eq. (5.65)]:

� = Nq
�(D
s� − K
�) = N(	
� − s
s�)(D
s� − K
�)

= N(D
s
 − K − s
 s�D
s�︸ ︷︷ ︸
=0

+K
�s

s�) , (10.4)

hence

� = N(Dis
i + Kij s

isj − K) , (10.5)

or equivalently

� = N(D · s + K(s, s) − K) . (10.6)

We then deduce the 3 + 1 expression of the non-affinity parameter � via Eq. (5.69):

� = ∇ · l − � = ∇
[N(n
 + s
)] − �

= �
∇
 ln N + N(−K + ∇
s
) − N(Dis
i + Kij s

isj − K)

= �
∇
 ln N + N(∇
s
 − Dis
i − Kij s

isj ) . (10.7)

Now, by taking the trace of D�s
� = 	


�	�
�∇
s� [cf. Eq. (3.8)], we get the following relation between the 3-dimensional

and 4-dimensional divergences of the vector s

Dis
i = 	


�∇
s� = ∇
s
 + n
n�∇
s� = ∇
s
 − n
s�∇
n�

= ∇
s
 − s�D� ln N , (10.8)

where we have used n�s
� = 0 and Eq. (3.20). Substituting Eq. (10.8) for Dis

i into Eq. (10.7) leads to

� = �
∇
 ln N + siDiN − NKij s
isj , (10.9)

or equivalently,

� = ∇l ln N + DsN − NK(s, s) . (10.10)

To compute the 3 + 1 expression of the rotation 1-form, the easiest manner is to start from expression (5.41) for �

and to replace in it k from Eq. (4.29):

�� = �
∇
k� = �
∇


(
1

N
n� − 1

2N2 ��

)
= − 1

N2 �
∇
Nn� + 1

N
�
(−K
� − n
D� ln N) + 1

N3 �
∇
N�� − 1

2N2 ���

= D� ln N − K�
s
 + 1

N

(
�
∇
 ln N − �

2

)
s� − �

2N
n� , (10.11)
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where we have used Eqs. (3.18) and (2.21) to get the second line. Substituting Eq. (10.9) for � in the s� term yields

�� = D� ln N − K�
s
 + 1

2
(n
∇
 ln N + Kij s

isj )s� − �

2N
n� , (10.12)

or equivalently,

� = D ln N − K(s, .) + 1

2
[∇n ln N + K(s, s)]s − �

2N
n . (10.13)

The 3 + 1 expression of the Há "́iček 1-form � is then immediately deduced from �� = �
q

� along with n�q



� = 0

and s�q


� = 0

�� = 2D� ln N − K
�s

q�

� , (10.14)

or equivalently,

� = 2D ln N − 
q∗K(s, .) . (10.15)

In Appendix D, the above formulæ are evaluated in the specific case where H is the event horizon of a Kerr black hole,
with a 3 + 1 slicing linked to Kerr coordinates. In particular the standard value of � (called surface gravity in that case)
is recovered from Eq. (10.10). Moreover the Há "́iček 1-form computed from Eq. (10.15), once plugged into formula
(8.32), leads to the angular momentum JH = am (where a and m are the standard parameters of the Kerr solution), as
expected.

Let us now derive the 3 + 1 expression of the transversal deformation rate �. Similarly to the computation leading
to Eq. (10.1), we have, thanks to Eqs. (5.80) and the 3 + 1 expression (4.27) of k,

��� = ∇
k�q


�q�

� = ∇


[
1

2N
(n� − s�)

]
q


�q�
�

= 1

2N
(∇
n� − ∇
s�)q



�q�

� + 0 . (10.16)

Hence

��� = − 1

2N
(D
s� + K
�)q



�q�

� , (10.17)

or equivalently (taking into account the symmetry of � and K):

� = − 1

2N

q∗(Ds + K) . (10.18)

Contracting (10.17) with q�� gives the transversal expansion scalar [cf. Eq. (5.87)]:

�(k) = − 1

2N
(Dis

i − Kij s
isj + K) , (10.19)

or equivalently

�(k) = − 1

2N
(D · s − K(s, s) + K) . (10.20)
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10.2.2. 3 + 1 expression of physical parameters
In Section 8.6 physical parameters have been associated with H, when the latter constitutes a NEH. More specif-

ically, we proceeded by firstly characterizing the radius RH and the angular momentum JH in terms of geometrical
objects on H through Eqs. (8.35) and (8.32), respectively, and then we introduced expressions for the mass, surface
gravity and angular velocity through (8.36). In an analogous manner, in Section 9.1.2 mass and angular momentum
multipoles Mn and Jn have been expressed in terms of geometrical multipoles In and Ln through Eqs. (9.17)–(9.18) and
Eqs. (9.13)–(9.14).

Regarding their expressions in terms of 3 + 1 fields, RH and In are already in an appropriate form, since they are
completely defined in terms of the metric q living on St ⊂ �t . In order to obtain a 3 + 1 expression for the angular
momentum we make use of Eq. (10.14), obtaining

JH = 1

8�G

∫
St

�
s�K
� d2V . (10.21)

Regarding Ln and Jn, the relation Hd� = 2 Im �2
2ε, which follows from (7.67) and (7.73), permits to express

Im �2 = 1

2
2ε
� 2D
�� . (10.22)

Making use again of (10.14), Jn reads

Jn =
√

4�

2n + 1

Rn+1
H

8�G

∫
St

2D
(2ε
�s�K��)Yn0(�) d2V . (10.23)

10.3. 2+1 decomposition

As discussed in Section 4.2, each spatial hypersurface �t can be foliated in the vicinity ofH by a family of 2-surfaces
(St,u) defined by u = const and such that the intersection St of �t with the null hypersurface H is the element u = 1
of this family. The foliation (St,u) induces an orthogonal 2+1 decomposition of the three-dimensional Riemannian
manifold (�t , �), in the same manner that the foliation (�t ) induces an orthogonal 3 + 1 decomposition of the four-
dimensional Lorentzian manifold (M, g), as presented in Section 3. The 2+1 equivalent of the unit normal vector n is
then s and the 2+1 equivalent of the lapse function N is the scalar field M defined by Eq. (4.17). Indeed we have shown
the relation s = MDu [Eq. (4.19)], which is similar to relation (3.1) between n and dt . The only difference is a sign
factor, owing to the fact that n is timelike, whereas s is spacelike.

10.3.1. Extrinsic curvature of the surfaces St

The second fundamental form (or extrinsic curvature) of St , as a hypersurface of (�t , �), is the bilinear form

H0 :Tp(�t ) × Tp(�t ) −→ R

(u, v) �−→ u · D
q(v)s .
(10.24)

Notice the similarity with Eq. (3.13) defining the extrinsic curvature K of �t and with Eq. (5.9) defining the second
fundamental form � of H. Following our four-dimensional point of view, we extend the definition of H0 to Tp(M)×
Tp(M), via the mapping 
�∗ [cf. Eq. (3.5)]:

H := 
�∗H0 . (10.25)

Then, for any pair of vectors (u, v) in Tp(M), H(u, v) = 
�(u) · D
q(v)s. Actually the projector 
� in front of u is not
necessary since D
q(v)s is tangent to �t , so that we can write

H :Tp(M) × Tp(M) −→ R

(u, v) �−→ u · D
q(v)s .
(10.26)

In index notation,

H�� = D
s�q

� . (10.27)
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We have, for any (u, v) ∈ Tp(M) × Tp(M),

H(
q(u), 
q(v)) = 
q(u) · D
q(v)s (10.28)

= (
�(u) − 〈s, u〉s) · D
q(v)s
= H(u, v) , (10.29)

for s · s = 1 implies s · D
q(v)s = 0. Combining (10.28) and (10.29), we realize that

H = 
q∗Ds , (10.30)

or equivalently

H�� = D�s
q

�q�

� , (10.31)

which strengthens Eq. (10.27). Since Ds = 
�∗∇s [cf. Eq. (3.9)] and 
q∗
�∗ = 
q∗, we obtain from Eq. (10.30) that

H = 
q∗∇s . (10.32)

Substituting Eq. (4.16) for s in this expression leads to

H�� = ∇�(N∇
t + M∇
u)q

�q�

�

= (∇�N∇
t + N∇�∇
t + ∇�M∇
u + M∇�∇
u)q

�q�

�

= (N∇�∇
t + M∇�∇
u)q

�q�

� , (10.33)

where we have used q

�∇
t = −N−1q


�n
 = 0 and q

�∇
u = e−�q


��
 = 0. Since ∇�∇
f = ∇
∇�f for any scalar
field f (vanishing of ∇’s torsion), Eq. (10.33) allows us to conclude that the bilinear form H is symmetric. This property,
which is shared by the other second fundamental forms K and �, arises from the orthogonality of s with respect to
some surface (St ) and is a special case of what is referred to as the Weingarten theorem.

Expanding the 
q in the definition (10.27) of H leads to

H�� = D
s�q

� = D
s�(	



� − s
s�) = D�s� − s
D
s�s� . (10.34)

Let us evaluate the “acceleration” term s
D
s� which appears in this expression. We have

s
D
s� = s
	�

	�

�∇�s� = s�∇�s�	�
� , (10.35)

hence

Dss = 
�∗∇ss . (10.36)

∇ss is easily expressed in terms of the exterior derivative of s: indeed, (s · ds)� = s
(∇
s� − ∇�s
) = s
∇
s�, since
s
∇�s
 = 0 for s has a fixed norm. Thus Eq. (10.36) becomes

Dss = 
�∗(s · ds) = 
�∗[s · d(Ndt + Mdu)]
= 
�∗[s · (dN ∧ dt + dM ∧ du)]
= 
�∗(〈dN, s〉dt − 〈dt, s〉︸ ︷︷ ︸

=0

dN + 〈dM, s〉 du − 〈du, s〉︸ ︷︷ ︸
=M−1

dM)

= 〈dN, s〉 
�∗dt︸︷︷︸
=0

+〈dM, s〉 
�∗du︸︷︷︸
=M−1s

−M−1
�∗dM

= − 
�∗d ln M + 〈d ln M, s〉s = −
q∗d ln M , (10.37)

from which we conclude that

Dss = −2D ln M , (10.38)
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which is a relation similar to Eq. (3.20). If we use it to replace s
D
s� in Eq. (10.34) and use the symmetry of H, we
get [compare with (3.18)]

H�� = D�s� + s�
2D� ln M (10.39)

or equivalently,

H = Ds + 2D ln M ⊗ s . (10.40)

Again note the sign differences with Eq. (3.19).
The mean curvature of St , as a surface embedded in (�t , �), is given by half the trace of 
H:

H := tr 
H = H


 = g
�H
� = q
�H
� = qabHab = Ha

a . (10.41)

From Eq. (10.40), H is equal to the three-dimensional divergence of the unit normal to St :

H = D · s . (10.42)

Remark 10.1. We recover immediately from this expression that for a sphere in the Euclidean space R3, the mean
curvature is nothing but the inverse of the radius. Indeed Eq. (10.42) yields H = 2/R, where R is the radius of the
sphere. In the Riemannian 3-manifold (�t , �), H may vanish if St is a minimal surface, in the very same manner that K
vanishes if �t is a maximal hypersurface of spacetime. Note that minimal surfaces have been used as inner boundaries
in the numerical construction of black initial data by many authors [122,114,34,49,53,50,136,64,77,79].

10.3.2. Expressions of � and � in terms of H

Combining Eqs. (10.30) and (10.3), we get an expression of the second fundamental form of H (associated with
l) in terms of the second fundamental form of the 2-surface St embedded in �t (i.e. H) and the second fundamental
form of the 3-surface �t embedded in M (i.e. K):

� = N(H − 
q∗K) . (10.43)

Similarly, expression (10.18) for the transversal deformation rate � becomes

� = − 1

2N
(H + 
q∗K) . (10.44)

As a check of formulæ (10.43) and (10.44), we can compare them with those in Eq. (29) of Cook and Pfeiffer [54],
after having noticed that the null normal vector l′ used by these authors is l′ = l̂ = (

√
2N)−1l, with l̂ defined by

Eq. (4.14); this results in a second fundamental form �′ = (
√

2N)−1� and a transversal deformation rate �′ = √
2N�

[cf. the scaling laws in Table 1].25

Remark 10.2. Replacing � and � by the expressions (10.43) and (10.44), as well as l and k by their expressions in
terms of n and s [Eqs. (4.13) and (4.27)], into formula (5.83) for the second fundamental tensor of the 2-surface St

(cf. Remark 5.4) results in

K	
�� = −(
q∗K)��n	 − H��s	 . (10.45)

This expression has the same structure than Eq. (5.83), describing K in terms of the timelike–spacelike pair of normals
(n, s), whereas Eq. (5.83) describes K in terms of the null–null pair of normals (l, k).

25 Also note that Cook and Pfeiffer [54] define � and � (denoted by them � and �́ respectively) by � = 1/2
q∗Ll g and � = 1/2
q∗Lkg, [their
Eqs. (24) and (25)], whereas we have established that � = 1/2
q∗Ll q and � = 1/2
q∗Lkq [our Eqs. (5.56) and (5.78)]. It can be seen easily that
both expressions for � and � coincide, thanks to the operator 
q∗ and the relation q = g + l ⊗ k + k ⊗ l.
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In Appendix D, formulæ (10.43) and (10.44) are used to evaluate � and � in the specific case of the event horizon
of a Kerr black hole. In particular Eq. (10.43) leads to � = 0 as expected for a stationary horizon.

Thanks to Eq. (10.42), expressions (10.6) and (10.20) for the expansion scalars � and �(k) become

� = N (H − K + K(s, s)) (10.46)

and

�(k) = − 1

2N
(H + K − K(s, s)) . (10.47)

Remark 10.3. Eqs. (10.43) and (10.46) constitute a 2+1 writing of � and �. We have obtained a different (but
equivalent !) 2+1 writing in Section 5.5, via Eqs. (5.62) and (5.77).

10.4. Conformal decomposition

10.4.1. Conformal 3-metric
In many modern applications of the 3+1 formalism in numerical relativity, a conformal decomposition of the spatial

metric � is performed. This includes the 3+1 initial data problem, following the works of Lichnerowicz [113] andYork
and collaborators [170,129,173,137] and the time evolution schemes proposed by Shibata and Nakamura [150] and
Baumgarte and Shapiro [24], as well as the recent constrained scheme based on Dirac gauge proposed by Bonazzola
et al. [29]. The conformal decomposition consists in writing

� = �4�̃ , (10.48)

where � is some scalar field. Very often, � is chosen so that �̃ is unimodular. As shown in Ref. [29], this can be achieved
without making � and �̃ tensor densities by introducing a background flat metric f on �t . The conformal factor � is
then defined by

� =
(

det 	ij

det fij

)1/12

, (10.49)

where det 	ij (resp. det fij ) is the determinant of the components of � (resp. f) with respect to a coordinate system (xi)

on �t . The quotient of the two determinants is independent of the coordinates (xi), so that � is a genuine scalar field
and �̃ a genuine tensor field. The unimodular character of �̃ then translates into

det 	̃ij = det fij , (10.50)

with det fij = 1 if (xi) are coordinates of Cartesian type.
Let us denote by D̃ the connection on �t compatible with the metric �̃. The D-derivative and D̃-derivative of any

vector v ∈ T(�t ) or any 1-form � ∈ T∗(�t ) are related by

Div
j = D̃iv

j + Cj
kiv

k and Di�j = D̃i�j − Ck
ji�k , (10.51)

with

Ck
ij := 1

2	kl(D̃i	lj + D̃j 	il − D̃l	ij )

= 2(D̃i ln �
k
j + D̃j ln �
k

i − D̃k ln �	̃ij ) . (10.52)

For any tensor field T on �t , we define D̃T as a tensor field on M by

D̃T = 
�∗�t D̃T , (10.53)

where �t D̃T is the original definition of the D̃-derivative of T within the manifold �t , as introduced above. Actually Eq.
(10.53) allows us to manipulate D̃-derivatives as four-dimensional objects, as we have done already for D-derivatives.
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10.4.2. Conformal decomposition of K
In addition to the conformal decomposition of the spatial metric �, the conformal 3 + 1 formalism is based on a

conformal decomposition of �t ’s extrinsic curvature K:

K =: ��Ã + 1
3K� , (10.54)

where Ã captures the traceless part of K: 	ij Ãij = 	̃ij Ãij = 0 and the exponent � is usually chosen to be −2 or
4. The choice � = −2 has been introduced by Lichnerowicz [113] and is called the conformal transverse-traceless
decomposition of K [51,171]; it leads to an expression of the momentum constraint (3.38) which is independent of �
for maximal slices (K = 0) in vacuum spacetimes. It has been notably used to get the Bowen–York semi-analytical
initial data for black hole spacetimes [34]. The choice � = 4 is called the physical transverse–traceless decomposition
of K [51,129] and leads to an expression of Ã in terms of the time derivative of the conformal metric, the shift vector
and the lapse function which is independent of � [Eq. (10.58) below]. This choice has been employed mostly in time
evolution studies [150,24,29]. In the present article, we do not choose a specific value for �, so that the results are valid
for both of the cases above.

Let us consider a coordinate system (xi) on each hypersurface �t so that (x�)=(t, xi) constitute a smooth coordinate
system on M. We denote the shift vector of these coordinates by �. The coordinate time vector is then t = Nn + �

[Eq. (3.24)] and we define the time derivative of the conformal metric �̃ by

˙̃� := Lt �̃ . (10.55)

Written in terms of tensor components with respect to (xi), this definition becomes

˙̃	ij := �	̃ij

�t
= −	̃ik 	̃j l

�	̃kl

�t
, (10.56)

where the second equality follows from 	̃ik 	̃kj = 
i
j . The trace of relation (3.42) between the extrinsic curvature K and

the time derivative of the metric � leads to the following evolution equation for the conformal factor �

�

�t
ln � − L� ln � = 1

6
(D̃ · � − NK) , (10.57)

whereas its traceless part gives a relation between Ã and ˙̃	:

Ã = �4−�

2N

[
Kil(D̃, �̃) − 2

3
(D̃ · �)�̃ − ˙̃	

]
, (10.58)

where D̃ denotes the connection associated with the conformal metric �̃ and �̃ is the 1-form dual to the shift vector via
the conformal metric:

�̃ := �̃(�, .) = �−4� , (10.59)

or in index notation:

�̃i := 	̃ij�
j = �−4�j . (10.60)

Inserting Eq. (10.58) into Eq. (10.54) leads to the following expression of the extrinsic curvature:

K = �4

2N

[
Kil(D̃, �̃) + 2

3
(NK − D̃ · �)�̃ − ˙̃	

]
, (10.61)

which is independent of �.
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10.4.3. Conformal geometry of the 2-surfaces St

The conformal metric �̃ induces an intrinsic and an extrinsic geometry of the 2-surfaces St ⊂ �t . First of all, the
vector normal to St and with unit length with respect to �̃ is

s̃ := �2s . (10.62)

We denote by s̃ the 1-form dual to it with respect to the metric �̃26

s̃ := �̃(s̃, .) = �−2�(s, .) = �−2s , (10.63)

or in components,

s̃� := 	̃�
s̃
 = �−2s� . (10.64)

Combining Eqs. (4.19) and (10.62), we get

s̃ = M̃Du , (10.65)

with

M̃ := �−2M . (10.66)

Let us notice that the orthogonal projector onto the 2-surface St is the same for both metrics � and �̃:


q = 
� − 〈s, .〉s = 
� − 〈s̃, .〉s̃ . (10.67)

As a hypersurface of �t endowed with the conformal metric �̃, the first fundamental form of St is

q̃ = �−4q = �̃ − s̃ ⊗ s̃ , (10.68)

and its second fundamental form is defined by a formula similar to Eq. (10.26), with D replaced by D̃, s replaced by s̃
and the scalar product [simply denoted by a dot in Eq. (10.26)] taken with �̃:

H̃ :Tp(M) × Tp(M) −→ R

(u, v) �−→ �̃(u, D̃
q(v)s̃) .
(10.69)

In index notation, one has

H̃�� = 	̃�
q�
�D̃�s̃


 = D̃�s̃�q�
� . (10.70)

Similarly to H, H̃ is symmetric and we have the following property:

H̃ = 
q∗D̃s̃ . (10.71)

The “acceleration” D̃s̃s̃ is given by a formula similar to Eq. (10.38)

D̃s̃s̃ = −2D̃ ln M̃ , (10.72)

where 2D̃ denotes the connection associated with the conformal metric q̃ in St . The 2D̃-derivatives of a tensor field can
be expressed in terms of D̃ by a projection formula identical to Eq. (5.59), except for ∇ in the right-hand side replaced
by D̃. It is actually easy to establish Eq. (10.72) from Eq. (10.38): the D-derivative and D̃-derivative of the 1-form s are
related by Eq. (10.51). Substituting �2s̃j for sj [Eq. (10.64)], we get

Disj = �2(D̃i s̃j − 2s̃i D̃j ln � + 2s̃kD̃k ln �	̃ij ) , (10.73)

from which we obtain skDksi = s̃kD̃ks̃i − 2D̃i ln � + 2s̃kD̃k ln �s̃i . Substituting Eq. (10.38) for skDksi and replacing
M by �2M̃ then leads to Eq. (10.72).

26 This notation does not follow the underlining convention stated in Section 1.2.1 [cf. Eq. (1.10)], namely s̃ is not the dual to s̃ provided by the
metric g (=� on �t ).
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Expressing q�
� = 	�

� − s̃�s̃� in Eq. (10.70) and using Eq. (10.72) together with the symmetry of H̃ leads to

H̃�� = D̃�s̃� + s̃�
2D̃� ln M̃ , (10.74)

or

H̃ = D̃s̃ + 2D̃ ln M̃ ⊗ s̃ . (10.75)

Let us denote by H̃ the trace of H̃ with respect to the conformal metric �̃:

H̃ := 	̃ij H̃ij . (10.76)

We then have, similarly to Eq. (10.42),

H̃ = D̃ · s̃ . (10.77)

If we substitute Ds in Eq. (10.30) by its expression (10.73) in terms of D̃s̃ and compare with Eq. (10.71), we get

H = �2[H̃ + 2(D̃s̃ ln �)q̃] . (10.78)

The trace of this equation writes

H = �−2(H̃ + 4D̃s̃ ln �) . (10.79)

10.4.4. Conformal 2 + 1 decomposition of the shift vector
As in Section 10.4.2, we consider a coordinate system (xi) on �t and the associated shift vector �. In Section 4.8

we have already introduced the 2 + 1 orthogonal decomposition of � with respect to the surface St [cf. Eq. (4.67)]:

� = bs − V with V ∈ Tp(St ) . (10.80)

Let us re-write this decomposition as

� = b̃s̃ − V , (10.81)

with

b̃ := �−2b = �̃(s̃, �) = 〈s̃, �〉 . (10.82)

If (t, xi) constitutes a coordinate system stationary with respect to H, then b = N on H [Eq. (4.79)], so that

((x�) stationary w.r.t. H) ⇐⇒ b̃
H= N�−2 , (10.83)

where
H= means that the equality holds only on H.

As a consequence of Eq. (10.81), the 1-form �̃ defined by Eq. (10.59) has the 2 + 1 decomposition

�̃ = b̃s̃ − Ṽ , (10.84)

with

Ṽ := �̃(V, .) = �−4V . (10.85)

In index notation:

�̃i := b̃s̃i − Ṽi with Ṽi = 	̃ijV
j = �−4Vi . (10.86)

From this expression and Eq. (10.74), we get

D̃i �̃j + D̃j �̃i = b(2H̃ij − s̃i
2D̃j ln M̃ − s̃j

2D̃i ln M̃) + s̃i D̃j b̃ + s̃j D̃i b̃ − D̃i Ṽj − D̃j Ṽi (10.87)
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and

D̃i�
i = b̃H̃ + s̃i D̃i b̃ − 2D̃aV

a − V a2D̃a ln M̃ . (10.88)

Injecting these last two relations into expression (10.61) of the extrinsic curvature, we get

Kij = �4

2N

[
b(2H̃ij − s̃i

2D̃j ln M̃ − s̃j
2D̃i ln M̃) + s̃i D̃j b̃ + s̃j D̃i b̃ − D̃i Ṽj

−D̃j Ṽi + 2

3
(NK − b̃H̃ − s̃kD̃kb̃ + 2D̃aV

a + V a2D̃a ln M̃)	̃ij − ˙̃	ij

]
. (10.89)

We deduce immediately from this expression the scalar K(s, s) which appears in formulae of Section 10.2 and 10.3:

K(s, s) = 1

N

[
1

3
(2s̃kD̃kb̃ − 2V a2D̃a ln M̃ + NK − b̃H̃ + 2D̃aV

a) − 1

2
˙̃	kl s̃

k s̃l

]
. (10.90)

We deduce also from Eq. (10.89) that

Kkls
kql

i = �2

2N
(2D̃i b̃ − b̃ 2D̃i ln M̃ − s̃k2D̃kṼl q

l
i + H̃ikV

k − ˙̃	kls
k ql

i) (10.91)

and

Kkl q
k
i q

l
j = �4

2N

[
2b̃H̃ij − 2D̃i Ṽj − 2D̃j Ṽi − ˙̃	kl q

k
i q

l
j + 2

3
(NK − b̃H̃ − s̃kD̃kb̃

+2D̃aV
a + V a2D̃a ln M̃)q̃ij

]
. (10.92)

10.4.5. Conformal 2 + 1 decomposition of H’s fields
We are now in position to give expressions of the various fields related to H’s null geometry in terms of conformal

2 + 1 quantities. First of all, replacing K(s, s) by formula (10.90) in Eq. (10.10) leads to

�= �
∇
 ln N + �−2s̃kD̃kN + 1
2

˙̃	kl s̃
k s̃l

+ 1
3 (b̃H̃ − NK + 2V a2D̃a ln M̃ − 2D̃aV

a − 2s̃kD̃kb̃) .
(10.93)

For a coordinate system stationary with respect to H, one has b̃
H= N�−2 [Eq. (10.83)] and l

H= t + V [Eq. (4.80)],
so that the above expression can be written as

�
H,sc= �

�t
ln N + V a2D̃a ln N + �−2s̃kD̃kN + N

3
(�−2H̃ − K)

+1

2
˙̃	kl s̃

k s̃l + 2

3

(
V a2D̃a ln M̃ − 1

2
2D̃aV

a − s̃kD̃kb̃

)
,

(10.94)

where
H,sc= means that the equality holds only on H and for a coordinate system stationary with respect to H.

Next, replacing H by formula (10.79) and K(s, s) by formula (10.90) in Eq. (10.46) leads to

�= N�−2(4s̃kD̃k ln � + 2
3 H̃ ) − 1

2
˙̃	kl s̃

k s̃l

+ 1
3 [(N�−2 − b̃)H̃ + 2s̃kD̃kb̃ − 2V a2D̃a ln M̃ + 2D̃aV

a − 2NK] .
(10.95)

For a coordinate system stationary with respect to H, this expression simplifies somewhat, thanks to relation (10.83):

�
H,sc= N�−2(4s̃kD̃k ln � + 2

3 H̃ ) − 1
2
˙̃	kl s̃

k s̃l

+ 2
3 (s̃kD̃kb̃ − V a2D̃a ln M̃ + 1

2
2D̃aV

a − NK) .
(10.96)
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The expression of H’s second fundamental form � in terms of the conformal 2 + 1 quantities is obtained by replacing
H and 
q∗K in Eq. (10.43) by their expressions (10.78) and (10.92):

�= �4{(N�−2 − b̃)H̃ + 1
2 Kil(2D̃, Ṽ) + 1

2 
q∗ ˙̃	 + [2N�−2D̃s̃ ln �

+ 1
3 (b̃H̃ + D̃s̃b̃ − NK − 2D̃ · V − 2D̃V ln M̃)]q̃} ,

(10.97)

or, in index notation,

�ab = �4{(N�−2 − b̃)H̃ab + 1
2 (2D̃aṼb + 2D̃bṼa) + 1

2
˙̃	kl qk

a ql
b

+ [ 1
3 (b̃H̃ + s̃kD̃kb̃ − NK − 2D̃aV

a − V a2D̃a ln M̃) + 2N�−2s̃kD̃k ln �]q̃ab} . (10.98)

For a coordinate system stationary with respect to H, Eq. (10.97) simplifies to

�
H,sc= �4{ 1

2 Kil(2D̃, Ṽ) + 1
2 
q∗ ˙̃	 + [2N�−2D̃s̃ ln �

+ 1
3 (b̃H̃ + D̃s̃b̃ − NK − 2D̃ · V − 2D̃V ln M̃)]q̃}

. (10.99)

The shear tensor of St is deduced from Eqs. (10.95) and (10.97) by � = � − 1/2�q [Eq. (5.64)]:

� = �4

2

{
Kil(2D̃, Ṽ) − (2D̃ · V)q̃ + 
q∗ ˙̃	 + 1

2
˙̃	(s̃, s̃)q̃

+2(N�−2 − b̃)

(
H̃ − 1

2
H̃ q̃

)}
,

(10.100)

or in index notation

�ab = �4

2

{
2D̃aṼb + 2D̃bṼa − (2D̃cV

c)q̃ab + ˙̃	kl

(
qk

aql
b + 1

2
s̃k s̃l q̃ab

)
+ 2(N�−2 − b̃)

×
(

H̃ab − 1

2
H̃ q̃ab

)}
. (10.101)

For a coordinate system stationary with respect to H, this expression becomes very simple:

�
H,sc= �4

2

[
Kil(2D̃, Ṽ) − (2D̃ · V)q̃ + 
q∗ ˙̃	 + 1

2
˙̃	(s̃, s̃)q̃

]
. (10.102)

Note that Kil(2D̃, Ṽ) − (2D̃ · V)q̃ is the conformal Killing operator associated with the metric q̃ and applied to V.
Let us now give the 2+1 conformal decomposition of the transversal deformation rate �. From Eq. (10.47), its trace

becomes

�(k) = − 1

N

{
2�−2

(
s̃kD̃k ln � + 1

3
H̃

)
+ 1

4N
˙̃	kl s̃

k s̃l + 1

3

[(
b̃

N
− �−2

)
H̃

2

+ K + 1

N

(
V a2D̃a ln M̃ − 1

2
2D̃aV

a − s̃kD̃kb̃

)]}
,

(10.103)
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which for a coordinate system stationary with respect to H results in

�(k)
H,sc= − 1

N

{
2�−2

(
s̃kD̃k ln � + 1

3
H̃

)
+ 1

4N
˙̃	kl s̃

k s̃l

+1

3

[
K + 1

N

(
V a2D̃a ln M̃ − 1

2
2D̃aV

a − s̃kD̃kb̃

)]}
.

(10.104)

Replacing H and 
q∗K in Eq. (10.44) by their expressions (10.78) and (10.92) yields

� = − �4

2N2

{
(N�−2 + b̃)H̃ − 1

2

[
Kil(2D̃, Ṽ) + 
q∗ ˙̃	

]
+
[

2�−2D̃s̃ ln �

+1

3
(NK − b̃H̃ − D̃s̃b̃ + 2D̃ · V + 2D̃V ln M̃)

]
q̃
}

.

(10.105)

The conformal 2 + 1 expression of Há "́iček’s form is obtained by inserting Eq. (10.91) into Eq. (10.15):

� = 2D̃ ln N + �2

2N
[b̃ 2D̃ ln M̃ − 2D̃b̃ − H̃(V, .) + 
q∗D̃s̃Ṽ

+
q∗ ˙̃	(s̃, .)] .

(10.106)

For a coordinate system stationary with respect to H, one has b̃
H= N�−2 [Eq. (10.83)], so that the above expression

results in

�
H,sc= 1

2
2D̃ ln(�2NM̃) + �2

2N
[
q∗D̃s̃Ṽ + 
q∗ ˙̃	(s̃, .) − H̃(V, .)] . (10.107)

10.4.6. Conformal 2 + 1 expressions for �, � and � viewed as deformation rates of St ’s metric
As already noticed in Remark 10.3, we have obtained 2+1 expressions of � and � in Section 5.5 [cf. Eqs. (5.62) and

(5.77)]. These expressions involve the time derivative of St ’s metric q, whereas the expressions derived above involve
the time derivative of the conformal 3-metric �̃. Therefore it is worth performing a conformal decomposition of the
equations of Section 5.5, since they will lead to expressions letting appear time derivatives different than to those found
above.

Let us start from Eq. (5.62) for �. The first term in the right-hand side is conformaly decomposed as


q∗Lt q = 
q∗Lt (�
4q̃) = �4[
q∗Lt q̃ + 4(Lt ln �)q̃] , (10.108)

where we have used 
q∗q̃ = q̃. The second term in the right-hand side of Eq. (5.62) involves 2DaVb + 2DbVa . Now
similarly to relation (10.51),

2DaVb = 2D̃aVb − 2Cc
baVc , (10.109)

with
2Cc

ba := 1
2qcd(2D̃aqdb + 2D̃bqad − 2D̃dqab)

= 2(2D̃a ln �qc
b + 2D̃b ln �qc

a − 2D̃
c

ln �q̃ab) . (10.110)

Combining with Vb = �4Ṽb [Eq. (10.85)], we get

2DaVb = �4[2D̃aṼb + 2 2D̃a ln �Ṽb − 2 2D̃b ln �Ṽa + 2(V c2D̃c ln �)q̃ab] . (10.111)

Hence
2DaVb + 2DbVa = �4[2D̃aṼb + 2D̃bṼa + 4(V c2D̃c ln �)q̃ab] . (10.112)
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Finally the 2 + 1 split of the last term in Eq. (5.62) is nothing than Eq. (10.78). Inserting this last relation, as well as
Eqs. (10.108) and (10.112) into Eq. (5.62) leads to

� = �4

2
{
q∗Lt q̃ + 4(Lt ln �)q̃ + Kil(2D̃, Ṽ) + 4(2D̃V ln �)q̃

+2(N�−2 − b̃)[H̃ + 2(D̃s̃ ln �)q̃]} ,

(10.113)

or in index notation

�ab = �4

2
{Lt q̃
�q



a q�

b + 4(Lt ln �)q̃ab + 2D̃aṼb + 2D̃bṼa + 4(V c2D̃c ln �)q̃ab + 2(N�−2 − b̃)

× [H̃ab + 2(s̃kD̃k ln �)q̃ab]} . (10.114)

Contracting this equation with qab leads immediately to an expression for the expansion scalar �:

� = 1
2 q̃
�Lt q̃
� + 4Lt ln � + 2D̃aV

a + 4V a2D̃a ln �
+(N�−2 − b̃)(H̃ + 4s̃kD̃k ln �) .

(10.115)

We then obtain the shear tensor � by forming � − �/2q from Eqs. (10.113) and (10.115). All the terms involving ln �
cancel and there remains

� = �4

2

{

q∗Lt q̃ − 1

2
(q̃
�Lt q̃
�)q̃ + Kil(2D̃, Ṽ) − (2D̃ · V)q̃

+2(N�−2 − b̃)

(
H̃ − 1

2
H̃ q̃

)}
,

(10.116)

or, in index notation

�ab = �4

2

{
Lt q̃
�q



a q�

b − 1

2
(q̃
�Lt q̃
�)q̃ab + 2D̃aṼb + 2D̃bṼa − (2D̃cV

c)q̃ab

+2(N�−2 − b̃)

(
H̃ab − 1

2
H̃ q̃ab

)}
. (10.117)

If one uses a coordinate system stationary with respect to H, the above equations simplify somewhat, thanks to the
vanishing of N�−2 − b̃ [Eq. (10.83)]:

�
H,sc= �4

2
[
q∗Lt q̃ + 4(Lt ln �)q̃ + Kil(2D̃, Ṽ) + 4(2D̃V ln �)q̃] , (10.118)

�
H,sc= 1

2 q̃
�Lt q̃
� + 4Lt ln � + 2D̃aV
a + 4V a2D̃a ln � , (10.119)

�
H,sc= �4

2

[

q∗Lt q̃ − 1

2
(q̃
�Lt q̃
�)q̃ + Kil(2D̃, Ṽ) − (2D̃ · V)q̃

]
. (10.120)

Moreover, in the case of a coordinate system (t, xi) adapted to H, the term q̃
�Lt q̃
� can be expressed in terms of
the variation of determinant q̃ of the conformal 2-metric components q̃ab in this coordinate system:

q̃
�Lt q̃
� = Lt ln q̃ . (10.121)

Remark 10.4. Eqs. (10.113), (10.115) and (10.116) constitute 2+1 expressions of respectively �, � and � in terms of
Lt q̃ and (for � and � only) Lt ln �. On the other side, Eqs. (10.97), (10.95) and (10.100), provide the same quantities
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�, � and � in terms of Lt �̃. The equivalence between the two sets can be established in view of the two identities:


q∗Lt �̃ = 
q∗Lt q̃ , (10.122)

Lt ln � = b̃D̃s̃ ln � − 2D̃V ln � + 1
6

(
b̃H̃ + D̃s̃b̃ − NK − 2D̃ · V − 2D̃V ln M̃

)
. (10.123)

The first identity is an immediate consequence of q̃ = �̃ − s̃ ⊗ s̃ [Eq. (10.68)] and 
q∗s̃ = 0, whereas the second identity
is nothing but the 2 + 1 split of D̃i �

i in the expression of Lt ln � as given by Eq. (10.57) [cf. Eq. (10.88)].

11. Applications to the initial data and slow evolution problems

Let us apply the results of previous sections to derive inner boundary conditions for the partial differential equations
arising from the 3 + 1 decomposition of Einstein equation. More specifically, we consider the problem of constructing
numerically, within the 3 + 1 formalism, a spacetime containing a black hole in quasi-equilibrium by employing some
excision technique. By excision is meant the removal of a 2-sphere St and its interior from the initial Cauchy surface
�t . If we ask St to represent the apparent horizon [160,120,57] of a black hole in quasi-equilibrium,27 the quasi-local
tools presented previously are very well suited to set the appropriate values, or more generally constraints, to be satisfied
by the 3 + 1 fields on this inner boundary.

Two most important physical problems where these boundary conditions can be naturally applied are:

(i) The construction of initial data for binary black holes in quasi-circular orbits. By quasi-circular is meant orbits for
which the decay due to gravitational radiation can be neglected. This is a very good approximation for sufficiently
separated systems and the spacetime can then be considered as being endowed with a helical Killing vector (see
e.g. Refs. [77,71] for a discussion).

(ii) The slow dynamical evolution of spacetimes containing a black hole (more precisely, slow evolution of initial
data containing a marginally trapped surface). For concreteness, the system of coupled elliptic equations in the
minimal no-radiation approximation proposed in Ref. [144] (a gravitational analog of the magneto-hydrodynamics
approximation in electromagnetism), provides an appropriate framework for implementing the isolated horizon
prescriptions as inner boundary conditions. Alternatively, the fully constrained evolution scheme presented in Ref.
[29] (or approximations based on it) can also prove to be useful, provided appropriate quasi-equilibrium initial free
data are chosen on the initial slice.28

11.1. Conformal decomposition of the constraint equations

The Hamiltonian and momentum constraint equations arising from the 3 + 1 decomposition of Einstein equation
have been presented in Section 3.6 [Eqs. (3.37) and (3.38)]. Besides we have introduced in Section 10.4 a conformal
decomposition of the 3-metric � [Eq. (10.48)] and the extrinsic curvature K of the hypersurface �t [Eq. (10.54)].
Let us examine the impact of these decompositions on the constraint equations.

11.1.1. Lichnerowicz–York equation
From the conformal decomposition � = �4�̃ [Eq. (10.48)], the Ricci scalar 3R associated with � is related to the

Ricci scalar 3R̃ related to �̃ by 3R = �−4 3R̃ − 8�−5D̃kD̃
k�, so that the Hamiltonian constraint (3.37) becomes the

Lichnerowicz–York equation for �:

D̃kD̃
k� −

3R̃

8
� + 1

8
Ãij Ã

ij�2�−3 +
(

2�E − K2

12

)
�5 = 0 , (11.1)

27 One can also set the excised sphere St inside the horizon [147,4,5], instead of prescribing it to be the actual apparent horizon. In such a
case one must find numerically the apparent horizon (see [162,163] and references therein), or even the event horizon [112,63,44], and then the
quasi-local techniques in this article can be used in an a posteriori analysis, rather than as inner boundary conditions.

28 If the initial data encode modes whose evolution propagate towards the horizon and eventually fall into it, the enforcing of isolated horizon
conditions would lead to an ill-posed problem. Therefore initial data must be carefully chosen so as to minimize these perturbations (e.g. making
them smaller than the numerical noise).
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where use has been made of the conformal decomposition (10.54) of K and Ãij is related to Ãij by means of the
conformal metric:

Ãij := 	̃ik 	̃j lÃkl . (11.2)

For a fixed conformal metric �̃ and a fixed Ã, Eq. (11.1) is a non-linear equation for �; it has been first derived and
analyzed by Lichnerowicz [113] in the special case �=−2, K =0 and E=0 or const. The negative sign of the exponent
2� − 3 in this case is crucial to guarantee the existence and uniqueness of the solution to this equation. It has been
extended to the case K �= 0 and discussed in great details by York [171,174].

11.1.2. Conformal thin sandwich equations
We place ourselves in the framework of the conformal thin sandwich approach to the 3 + 1 initial data problem

developed by York and Pfeiffer [173,137,174,51]. Regarding the problem of binary black hole on close circular orbits,
this approach has led to the most successful numerical solutions to date [79,54,7]. It is based on the transformation
of the momentum constraint equation (3.38) into an elliptic equation for the shift vector �.29 Indeed inserting the
expression (10.61) for K into Eq. (3.38) yields

D̃kD̃
k�i + 1

3D̃iD̃k�
k + 3R̃i

k�
k = 16��4NJ i + 4

3ND̃iK − D̃k
˙̃	ij

+2N��−4ÃikD̃k ln(N�−6)
, (11.3)

where 3R̃i
j := 	̃ik3R̃ij , 3R̃ij being the Ricci tensor of the connection D̃ compatible with �̃, and

˙̃	ij := �	̃ij

�t
= −	̃ik 	̃j l ˙̃	kl , (11.4)

where ˙̃	kl is the quantity introduced in Eq. (10.55). Notice that the quantity Ãij which appears in Eq. (11.3) is considered
as a function of the shift vector according to

Aij = 1

2N��−4

(
D̃i�j + D̃j�i − 2

3
D̃k�

k 	̃ij + ˙̃	ij

)
, (11.5)

which follows from Eq. (11.2), (10.58) and (11.4).
When solving the initial data problem with the Hamiltonian constraint under the form of the Lichnerowicz–York

equation (11.1) and the momentum constraint under the form of the vector elliptic (11.3), one can choose freely the
conformal 3-metric �̃, its time derivative ˙̃	 and the trace of �t ’s extrinsic curvature, K. Prescribing in addition the value
of the time derivative K̇ =�K/�t , leads to the extended conformal thin sandwich formalism as presented in Ref. [137].
Indeed prescribing K̇ leads to a “constraint” on the lapse function N, which can be derived by taking the trace of the
dynamical Einstein equation (3.41):

D̃kD̃
kN + 2D̃k ln �D̃kN = �4

{
N

[
4�(E + S) + K2

3

]
−K̇ + �kD̃kK

}
+ N�2�−4ÃklÃ

kl .

(11.6)

To summarize, in the extended conformal thin sandwich framework, the free data (modulo boundary values of the
constraint parameters) are the fields (�̃, ˙̃	, K, K̇) on some spatial hypersurface �0. The elliptic equations (11.1), (11.3)
and (11.6) are to be solved for the conformal factor �, the shift vector � and the lapse function N. One then gets a valid
initial data set (�0, �, K), i.e. a data set satisfying the Hamiltonian and momentum constraints. Moreover the initial
time development of these initial data will be such that K̇ takes the prescribed value. One should note that according
to a recent study [138], the uniqueness of a solution (�, N, �) of the extended conformal thin sandwich equations is

29 Likewise, York’s original approach [171,174] reduces the resolution of the momentum constraint to an analogous vectorial elliptic equation;
see [137,135] for the discussion of the relation between both approaches.
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not guaranteed: for some choice of free data (�̃, ˙̃	, K, K̇), two distinct solutions (�, N, �) have been found in a spatial
slice where no sphere has been excised.

However, a unique solution of the extended conformal thin sandwich has been found for problems of direct astrophys-
ical interest, like binary neutron stars [23,78,117,166] or binary black holes [79,54]. Moreover, this method of solving
the initial data problem has been recognized to have greater physical content than previous conformal formulations
[113,129,171,51], because it allows a direct control on the time derivative of the conformal metric. In particular, in a
quasi-equilibrium situation, it is natural to choose ˙̃	 = 0 and K̇ = 0 to guarantee that the coordinates are adapted to the
approximate Killing vector reflecting the quasi-equilibrium (see Refs. [52,151]).

In the rest of this section, we translate the isolated horizon geometrical conditions into boundary conditions for the
constrained parameters of the conformal thin sandwich formulation. We separate this analysis in NEH (Section 11.2)
and WIH boundary conditions (Section 11.3). Possible boundary conditions from the complete (strong) IH structure
will not be considered in this review.

11.2. Boundary conditions on a NEH

As seen in Section 7, a NEH is characterized by the vanishing of its second fundamental form � [see Eq. (7.11)].
According to the transformation rules in Table 1 under rescalings of l, the condition �=0 is independent of the specific
choice for the null normal l. Using the decomposition (5.64) of �, this condition translates into the vanishing of the
expansion � and shear � associated with l.

11.2.1. Vanishing of the expansion: � = 0
Imposing this condition on a sphere St defines it as a marginally outer trapped surface in �t (see Section 7.1.2). If in

addition �(k) �0, it corresponds to a future marginally trapped surface. In this second case, we find from Eqs. (10.46)
and (10.47)

K(s, s) − K = �

2N
+ N�(k) �0 . (11.7)

If St is the outermost marginally trapped surface, then it is properly called an apparent horizon (see again Section
7.1.2). The condition � = 0 can be expressed in a variety of forms. A convenient expression follows from Eq. (10.46)
when substituting the conformal decomposition of the metric �:

4s̃i D̃i ln � + D̃i s̃
i + �−2Kij s̃

i s̃j − �2K = 0 . (11.8)

If the conformal and 2 + 1 decomposition for K is included, it follows from Eq. (10.95)

N�−2(4s̃kD̃k ln � + 2
3 H̃ ) − 1

2
˙̃	kl s̃

k s̃l

+ 1
3 [(N�−2 − b̃)H̃ + 2s̃kD̃kb̃ − 2V a2D̃a ln M̃ + 2D̃aV

a − 2NK] = 0 .
(11.9)

An alternative expression, that exploits the relation between the expansion � and the time evolution of the volume
element, follows by substituting the value for Lt � provided by (10.57) into Eq. (10.115)

4(�i D̃i� + (N�−2 − b̃)s̃i + V i)D̃i�
+�[ 2

3 (D̃i�
i − NK) + 2D̃aV

a + 1
2 q̃
�Lt q̃
� + (N�−2 − b̃)H̃ ] = 0 .

(11.10)

Eqs. (11.8)–(11.10) can be seen as boundary conditions for the conformal factor � in the resolution of the Hamiltonian
constraint in a conformal decomposition, i.e. Eq. (11.1) [see however the end of Section 11.4 for other possibilities].
They express the same geometrical condition in terms of different sets of fields. The appropriate form to be used must
be chosen according to the details of the problem we want to solve. Finally, we note that the boundary condition � = 0
has been extensively studied in the literature (see [160] for a numerical perspective and [120,57] for an analytical one).
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11.2.2. Vanishing of the shear: �ab = 0
From Eq. (10.116), the vanishing of the shear � translates into

0 = (Lt q̃ab − 1
2 (Lt ln q̃)q̃ab)︸ ︷︷ ︸

I: initial free data

+ (2D̃aṼb + 2D̃bṼa − (2D̃cV
c)q̃ab)︸ ︷︷ ︸

II: intrinsic geometry of St

+ (N�−2 − b̃)(H̃ab − 1
2 q̃abH̃ )︸ ︷︷ ︸

III: “ extrinsic” geometry of St

. (11.11)

Defining, from Parts I and III in the previous equation, the symmetric traceless tensor

Cab := −
[
(Lt q̃ab − 1

2 (Lt ln q̃)q̃ab) + (N�−2 − b̃)(H̃ab − 1
2 q̃abH̃ )

]
, (11.12)

we can write Eq. (11.11) as

q̃bc
2D̃aV

c + q̃ac
2D̃bV

c − q̃ab
2D̃cV

c = Cab . (11.13)

If we contract with 2D̃
a

and use the Ricci equation (1.14) (properly contracted), we get

q̃bc
2D̃

a2D̃aV
c + 2R̃dbV

d = 2D̃
a
Cab . (11.14)

Finally, defining C̃a
b := q̃caCbc, we obtain the following elliptic equation for V a on St :

2�̃V a + 2R̃a
bV

b = 2D̃
b
C̃Cb

a . (11.15)

Once we have solved this equation on the sphere, we employ the solution as a Dirichlet boundary condition for the
tangential part of the shift V. Therefore, the vanishing of the shear (vanishing of two independent functions) can be
completely attained by an appropriate choice of the (two-dimensional) vector V. An important particular case occurs
when we enforce the vanishing of Parts (I + II) and III separately. The vanishing of Part III is motivated in the literature
in two different manners. On the one hand, this term cancels if we demand the coordinate radius of the horizon to remain
fixed in a dynamical evolution [cf. Eq. (4.79)], something desirable from a numerical point of view. On the other hand,
in order to make tractable the analytical study on the well-posedness of the initial data problem with quasi-equilibrium
boundary conditions, results in the literature proceed by decoupling the momentum constraint from the Hamiltonian
one. In particular, in this strategy, Part III must vanish on its own; if this is not the case, the presence of the conformal
factor � in the coefficient multiplying the extrinsic geometry part would couple the equation on � with the equation
on �.

Vanishing of Part (I + II)
If Part III is zero, the vanishing of (I + II) is obtained by solving Eq. (11.15) with a traceless symmetric tensor

Cab in Eq. (11.12) completely characterised by the traceless part of Lt q̃ab. A specially important case corresponds to
the choice ˙̃� = 0 motivated by bulk quasi-equilibrium considerations [52,151]. In this case, the condition (I + II) = 0
reduces to

q̃bc
2D̃aV

c + q̃ac
2D̃bV

c − q̃ab
2D̃cV

c = 0 , (11.16)

which states that V = −
q(�) is a conformal Killing vector with respect to the metric q̃, and hence to the (conformally
related) metric q. These boundary conditions [generally (I + II) = 0] can be found in Refs. [54,99,58] (see also Ref.
[66] for a previous related work).

Remark 11.1. In the case of a stationary spacetime (M, g), it is natural to choose coordinates such that t coincides
with the Killing vector associated with stationarity. Then Part I in Eq. (11.11) vanishes identically. Moreover if we ask
H to be preserved by the spacetime symmetry, it must be transported to itself by t, which implies that t is tangent to

H. Hence, from Eqs. (4.77) and (4.79), b
H= N . This results in the vanishing of Part III. Therefore for the choice of t
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as a Killing vector in a stationary spacetime, the NEH condition reduces to the vanishing of Part II. As shown above,
this implies that V is a conformal Killing vector of (St , q). In the case where H is a black hole event horizon, this
result is linked to a first step in the demonstration of Hawking’s strong rigidity theorem [88–90], which states that a

stationary event horizon which is not static must be in addition axisymmetric. Indeed in the present case, l
H= t + V

[Eq. (4.68) with b
H= N ] and either V = 0 or V is a conformal symmetry of (St , q). Via Hawking’s theorem, this

conformal symmetry is then extended to a full symmetry (i.e. axisymmetry) of (M, g). In particular l is then a Killing
vector, hence the name rigidity: H’s null generators cannot move independently of the spacetime symmetries.

Vanishing of Part III
Two manners of imposing the vanishing of the Part III in Eq. (11.11) follow from the motivations presented after

Eq. (11.15):

(a) If we choose a coordinate system stationary with respect to the horizon (see Section 4.8), then Eq. (10.83) auto-
matically implies the vanishing of the coefficient (N�−2 − b̃). Therefore, the Dirichlet condition for the radial part
of the shift

b̃ = N�−2 , (11.17)

together with (I + II) = 0, guarantees the vanishing of the shear. This is the choice in [54,99].
(b) Even though the previous Dirichlet condition for the radial part of the shift b̃ is well motivated (since choosing

a stationary coordinate system with respect to H is convenient from a numerical point of view), it presents the
following problem for the solution of the constraints. If the value of b̃ is fixed on the boundary St , we loose control
on the value of its radial derivative s̃ · D̃b̃ on St . In particular, this means via Eq. (10.90), that we cannot prescribe
the sign of K(s, s). On the one hand, Eq. (11.7) then implies that we cannot guarantee St to be a future marginally
trapped surface. On the other hand and perhaps more importantly, the positivity of the conformal factor � cannot be
guaranteed when solving the Hamiltonian constraint, since the sign of K(s, s) appearing in the “apparent horizon”
boundary condition (11.8), must be controlled in order to apply a maximum principle to Eq. (11.1). This problem is
discussed in Ref. [58]. The solution proposed there for guaranteeing the vanishing of Part III consists in choosing
initial free data �̃ such that

H̃ab − 1
2 q̃abH̃ = 0 , (11.18)

is satisfied. This condition on the extrinsic curvature of the sphere St , i.e. on the shape of St inside �t , is known as
the umbilical condition. The boundary condition for the radial part of the shift is obtained in Ref. [58] by imposing

K(s, s) = h1 , (11.19)

where h1 is a given function on St that can be considered as a free data on �t . Using Eq. (10.90), this condition
is expressed as a mixed condition on b̃

2s̃kD̃kb̃ − b̃H̃ = 3Nh1 − 2D̃kV
k − 2V kD̃s̃ s̃k − NK . (11.20)

Note the change of sign convention in the tangential part of the shift V with respect to [58], where in addition a
maximal slicing K = 0 is assumed.

Finally, we emphasize the fact that, in order to enforce the NEH structure, it is enough to impose the appropriate
boundary conditions for the conformal factor and the tangential part of the shift: Eq. (11.8) for � and Eq. (11.15) for
V. Besides, a boundary condition for the normal part of the shift can be provided by making a choice relative to the
coordinate system, Eq. (11.17), or by fixing K(s, s) on St through Eq. (11.20) [i.e. fixing �(k) in the maximal slicing
case; cf. Eq. (11.7)]. In brief, the NEH structure together with an (additional) appropriate choice for b̃, permit to fix
boundary conditions for � and �. In other words, this first level in the isolated horizon hierarchy provides enough
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number of inner boundary conditions for addressing the resolution of the constraint equations, as exploited by Cook
and Pfeiffer [54] (see also Ref. [7]). Incorporating Eq. (11.6) for the lapse in the construction of initial data (see
Section 11.1.2) demands, in principle, some additional geometrical structure on H. This is considered in next section.

11.3. Boundary conditions on a WIH

In Section 8 we showed how the addition of a WIH structure on a NEH permits to fix the foliation (St ) of the
underlying null hypersurface H in an intrinsic manner. This determination of the foliation proceeded in two steps:
firstly, by choosing a particular WIH class [l] (Section 8.4) and, secondly, by choosing a foliation (St ) compatible
with that class (Section 8.5). This procedure in two steps is necessary when adopting an approach strictly intrinsic to
the null surface, since in this case there is no privileged starting slice S0 in H. In brief, simply fixing l does not
determines the foliation. This represents what we referred in the Introduction (Section 1) as an “up-down”approach.

The situation changes completely when adopting a 3 + 1 point of view. A main feature in this case is the actual
construction of the spacetime starting from an initial Cauchy slice �0, which is then evolved by using Einstein equations.
In this setting, in which �0 is given, fixing the lapse determines the foliation of M. Moreover, fixing the evolution
vector l on H does fix the lapse on S0 and consequently the foliation, in contrast with the intrinsic approach to the
geometry of H in the previous paragraph.30 This constitutes the “down-up” strategy mentioned in the Introduction.

Even though we adopt here the “down-up” approach, the organization of this section rather follows the conceptual
order dictated by the intrinsic geometry of H. Firstly we derive the implications of the choice of a WIH-compatible
slicing. Then we apply the prescription in Section 8.4 for specifying a particular WIH and, finally, we revisit Section 8.5
and its determination of the foliation once the WIH class is chosen. As a result, we present different boundary values
for the lapse associated with each step.

11.3.1. WIH-compatible slicing: � = const. Evolution equation for the lapse
Given an arbitrary but fixed WIH (H, [l]), demanding the slicing defined by N to be WIH-compatible (see Section

8.2) requires the non-affinity coefficient � associated with the null vector l = N(n + s) ∈ [l] to be constant. Under
the condition � = const on the whole H, the null normal l actually builds a WIH structure31 or, in the language of
Section 9.2, an (A, B)-horizon. If, motivated by the discussion in Section 8.6, we choose the representative l0 ∈ [l]
with non-affinity coefficient given by the Kerr surface gravity, �0 = �H(RH, JH), then it follows directly from
Eq. (10.9)

�H(RH, JH) = HLl ln N + siDiN − NKij s
isj . (11.21)

This is an evolution equation for N on H (see [99]). As such, it can be employed to fix the values of N along the horizon
H once the lapse has been freely chosen on a initial slice. This can be useful for fixing Dirichlet inner boundary
conditions in the slow dynamical evolution of a quasi-equilibrium black hole (e.g. the evolution of a black hole during
a late ringing down phase). On the contrary, in the context of the construction of initial data, Eq. (11.21) by itself does
not prescribe a boundary condition for the lapse in Eq. (11.6). This is precisely due to the presence of the HLl ln N

term, which cannot be expressed in terms of the data on an initial slice. This is in agreement with the fact that imposing
the slicing to be WIH-compatible, through � = �H, does not determine the WIH class. A gauge choice has to be made
to fix, up to a constant, l and therefore the family of slices (St ) (cf. footnote 31, Sections 8.4 and 8.5, as well as the
rest of this section).

Consequently, if we are indeed interested in using Eq. (11.21) for fixing a boundary condition for the lapse on the
horizon, we are obliged to make a choice for the value of HLl N on S0. In the quasi-equilibrium context, it is natural
to demand the lapse not to evolve: HLl N = 0. More generally, writing HLl N = h2, with h2 a function to be

30 As we have seen in Section 4.2 the converse is also true onH: fixing the foliation (St ) not only fixes the lapse (up to a “time” reparametrization)
but also the null normal l. This is in contrast with the bulk case, where (�t ) fixes N but not the evolution vector t due to the shift ambiguity. The
difference relies on the existence of a single null direction in H.

31 Note that the condition � = const does not fix the WIH on H, since a transformation (8.7) changes the WIH without affecting the constancy
of �. In this section we are assuming a given [l]; in Section 11.3.2 the choice of a particular [l] is revisited.
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prescribed on S0, Eq. (11.21) leads to the mixed boundary condition on S0

Eq. (11.21)

+HLl N = h2

}
�⇒ �H(RH, JH) = siDiN − NKij s

isj + h2 . (11.22)

In this case, considered as a condition only on S0, the corresponding l = N(n + s) is associated only with an
infinitesimal (A)-horizon. Finally, another manner of looking at (11.21) consists in freely prescribing the values for N
along the horizon H and consider Eq. (11.21) as a constraint on the rest of the fields, e.g. on the value of Kij s

isj (see
Example 11.2 below).

11.3.2. Preferred WIH class: Ll �(k) = 0
In Section 8.4 we prescribed a specific choice [l] of non-extremal WIH class among those that can be implemented

on a generic NEH. This was achieved by imposing the derivative along l of the expansion associated with the ingoing
null vector k, �(k), to vanish. In fact, such a condition could have been generalized to

Ll �(k) = h3 , (11.23)

with �(l) = const, where the choice of h3 corresponds to the choice of gauge in the WIH structure [different choices
for the function h3 fix distinct values for the function B in the transformation (8.18); the choice h3 = 0 corresponds to
an (A, B, C)-horizon, again in the language of Section 9.2].

In a 3 + 1 formulation where a given starting slice S0 is specified and a WIH class is fixed, the choice of the only
representative l ∈ [l] characterized by �(l) = �H(RH, JH) determines the slicing on H. Therefore, a condition on
the lapse must follow from Eq. (11.23). If we substitute expressions (10.15) and (10.20) in Eq. (8.16), we obtain indeed

2D
2D
N − 2K
�s
�2D



N

+(−2D
�
(q


�K
�s
�) + q
�(K
�s

�)(K��s�) − 1
2

2R + 1
2q
�R
�)N

+�H(RH,JH)
2 (D
s
 − K
�s


s� + K) = Nh3 .

(11.24)

This equation can be used as a boundary condition for the lapse on a cross-section S0 of H. In this sense, it can be
employed in combination with Eq. (11.21): Eq. (11.24) fixes the initial value of N on S0 whereas Eq. (11.21) dictates
its “time” evolution. The freedom due to the presence of the HLl ln N term in Eq. (11.21) guarantees the compatibility
between both equations.

Cook [52] has proposed a condition32 very similar to Eq. (11.23) in order to fix the lapse on a initial slice S0. Using
the null normal normalized as in Eq. (4.14) together with its dual (4.26), i.e. l̂ := (n + s)/

√
2 and k̂ := (n − s)/

√
2,

and imposing

HL
l̂
�
(k̂)

= 0 (11.25)

on S0, leads to the condition on N proposed by Cook [52] and closely related to Eq. (11.24). Using Eqs. (4.13) and
(4.27), together with the transformation law for �

(k̂)
derived from Table 1, it follows

HLl �(k) = −(HLl ln N)�(k)+HL
l̂
�
(k̂)

, (11.26)

where in addition �(l) = const must be satisfied. Choosing as gauge condition in Eq. (11.23) h3 = −(HLl ln N)�(k),
both conditions (11.23) and (11.25) are the same. Note also that in Eq. (11.25) we can always keep �(l) constant as
long as we let HLl ln N to be determined by Eq. (11.21).

11.3.3. Fixing the slicing: 2D · � = h. Dirichlet boundary condition for the lapse
In Section 8.5 we concluded that, in the setting of an “up-down” approach, once a WIH class has been fixed on

H the choice of the exact part �exact of the Há "́iček form determines the foliation (St ). We argued that, since its

32 See Refs. [54,134] for a discussion on the degeneracy occurring when using this boundary condition in conjunction with other quasi-equilibrium
conditions.
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divergence-free part is fixed by relation (7.67), then the condition

2D · � = h4 , (11.27)

for some gauge choice of h4, actually fixes the foliation. From the 3 + 1 perspective,33 this conclusion is a straight-
forward consequence of Eq. (10.14). Indeed, contracting (10.14) with 2D



and inserting (11.27), we obtain

2� ln N = 2D
�
(q


�K
�s
�) + h4 . (11.28)

If we make now a gauge choice for h4 (satisfying
∫
St

h4
2ε = 0, e.g. h4 = 0 or the Pawlowski gauge as suggested in

Section 8.5), we dispose of an elliptic equation that fixes N on St up to a constant value (or a function constant on
St , if thinking in terms of H). This fixes the foliation (St ), understanding the latter as the ensemble of leaves in H
[distinct values of the integration “constant” only entail different “speeds” to go through the slicing (St )]. In particular,
the resulting lapse can be used as a Dirichlet boundary condition for the elliptic equation (11.6).

11.3.4. General remarks on the WIH boundary conditions
As we can see, all boundary conditions derived at the WIH level, and aimed at being imposed on a initial sphere

S0, involve the choice of some function hi that cannot be fixed in the context of the initial data problem. This
is the case of h2=HLl N in Eq. (11.22), which shows that the WIH structure, with its “constant surface gravity”
characterization, cannot be captured in terms of initial data. Regarding h3 in Eq. (11.24) and h4 in Eq. (11.28), they
are directly related to the gauge ambiguity in the free data of a WIH (more precisely to the active and passive versions
in Section 7.7.2, respectively). In sum, there exists an intrinsic ambiguity in the determination of the 2 + 1 slicing of
a WIH. In consequence, we can conclude that the WIH on its own does not permit to fully determine the boundary
conditions of the (extended) initial data problem and the prescription of an additional condition (a function on S0)
is unavoidable.34 Therefore the approach in Refs. [54,7], where an effective boundary condition on S0 is chosen for
the lapse, is fully justified from a geometrical point of view. Alternatively, we rather maintain here the geometrical
expressions derived in this section, and encode their effective character (as boundary conditions on S0) through the
free functions hi to be specified. Proceeding in this manner (i) the geometrical origin of the ambiguity is made explicit,
and (ii) we can make use of the geometrical nature of the expressions to rearrange the correspondences between the
different boundary conditions and the constrained parameter in the initial data problem, in such a way that the WIH
effective condition is not necessarily related to the lapse. We illustrate this second point in the following section.

11.4. Other possibilities

In the previous two sections we have translated the NEH and WIH geometrical characterizations into boundary
conditions on the constrained parameters of the initial data problem, with special emphasis in the conformal thin
sandwich approach. In particular, we have first interpreted Eq. (11.8) resulting from the vanishing of �(l) as a boundary
condition for the conformal factor �. The vanishing of the shear has translated into the boundary condition (11.15) for
the tangential part of the shift V, or simply into condition (11.16) if an additional condition on b̃ is enforced [either
Eq. (11.17) or Eq. (11.20) with the umbilical condition (11.18)]. Finally, WIH conditions in Section 11.3 are mainly
interpreted as boundary conditions for the lapse.

However, a key feature of the present geometrical approach is the fact that each (non-linear) boundary condition is
not necessarily associated with a single constrained parameter. It simply states a relation to be satisfied among different
3 + 1 fields. In case that such a correspondence between individual boundary conditions and individual constrained
parameters is actually needed, the above-mentioned identification is a well motivated possibility, but it is not the only

33 We acknowledge B. Krishnan for the discussion in this section.
34 Note that this conclusion refers specifically to the initial data problem. A WIH structure contains notions which are essentially dynamical

(“second derivatives” in time) and cannot be captured by the initial data . The WIH remains fully useful in the context of other problems. For instance,
if we rather search an appropriate foliation for pursueing an a posteriori analysis of a full spacetime (not only a 3-slice) containing a NEH H (for
instance the late time result of the numerical simulation of a collapse), in a first step we could disregard not WIH-compatible foliations. Then, after
fixing a single spatial slice, the foliation on H can be completely determined by using Eq. (11.21).
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Table 2
Boundary conditions (b. c.) on S0 derived in Section 11, together with their geometrical content

NEH b. c. �(l) = 0 4s̃i D̃i ln � + D̃i s̃
i + �−2Kij s̃i s̃j − �2K = 0 Eq. (11.8)

� = 0 2�̃V a + 2R̃a
b
V b = 2D̃

b
C̃b

a Eq. (11.15)

Non-eq. b. c. r = const b̃ = N�−2 Eq. (11.17)
Kij si sj = h1 2s̃kD̃k b̃ − b̃H̃ = 3Nh1 − 2D̃kV k − 2V kD̃s̃ s̃k − NK Eq. (11.20)

WIH b. c. HLl N = h2 �H(RH, JH) = siDiN − NKij si sj + h2 Eq. (11.22)
HLl �(k) = h3
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�K
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�) + h4 Eq. (11.28)

one. In order to facilitate the choice of other possible combinations, we recapitulate the boundary conditions presented
along Section 11 in the Table 2, where we make explicit the geometrical meaning of each of them. In particular,
they are classified in NEH boundary conditions, in WIH-motivated conditions (since, as we have seen in the previous
section, they do not actually construct a WIH) and a third set of boundary conditions, not necessarily related to a
quasi-equilibrium regime, that can also be used in general dynamical settings.35

As an illustration of a possible alternative combination of boundary conditions, we provide a simple example (see
Ref. [100]) which represents, at the same time, a non-trivial implementation of the isolated horizon boundary conditions
beyond the analytical stationary examples provided in the rest of the article.

Example 11.2. In the straightforward interpretation of Eqs. (11.22) and (11.28) in Section 11.3, they have been
proposed as alternative boundary conditions for N, between which we must choose. However, we have pointed out
that Eq. (11.22) can also be understood as fixing the value of Kij s

isj . In that case we can use it to determine the free
function h1 in boundary condition (11.20) for b̃. Therefore a particular combination of boundary conditions in Table 2
is given by: vanishing expansion for �, conformal Killing condition for V, condition (11.20) for b̃ with Kij s

isj fixed
by Eq. (11.22) with h2 = 0

Kij s
isj = 1

N
(siDiN − �H(RH, JH)) , (11.29)

and, finally, condition (11.28) for the lapse. Fig. 17 shows the maximum and minimum values of Kij s
isj during the

iteration of a numerical implementation of these boundary conditions [100], where we have chosen ˙̃	ij =K =0, 	̃ a flat

metric, V = const ·T � (a symmetry on S0) and h4 = 0 in Eq. (11.28), together with an integration constant C = ln 0.2
for ln N . Since this implementation is performed in maximal slicing, in particular the constructed quasi-equilibrium
horizon is a future marginally trapped surface.

In brief, keeping boundary conditions in geometrical form we gain in flexibility for combining them in different
manners. See Ref. [100] for other possibilities, in particular the enforcing of the vanishing of � as a condition on the
normal part of the shift, b̃, instead of a condition on �. In conjunction with Eq. (11.15) for V, this means that the NEH
condition � = 0 can be completely fulfilled by an appropriate choice of the shift �.

12. Conclusion

In this article, we have developed an approach to null hypersurfaces based on the 3 + 1 formalism of general
relativity, the main motivation being the application of the isolated horizon formalism to numerical relativity. Although
the geometry of a null hypersurface H can be elegantly studied from a purely intrinsic point of view, i.e. without

35 The condition for fixing the slicing 2D · � = h4 could also be included in this category but, since we have mainly used the Há "́iček 1-form
in the quasi-equilibrium context, we keep it as a WIH-motivated condition.
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Fig. 17. Values of max(Kij si sj ) and min(Kij si sj ) along the iteration of the simultaneous numerical implementation of Eqs. (11.22) and (11.28).

referring to objects defined outside H, the present 3 + 1 strategy proves to be useful, at least for two reasons. First of
all, any 3 + 1 spacelike slicing (�t ) provides a natural normalization of the null normal l to H, along with a projector
� onto H — fixing the ambiguities inherent to null hypersurfaces. Secondly, this permits to express explicitly H’s
intrinsic quantities in terms of fields of direct interest for numerical relativity; like the extrinsic curvature K of the
hypersurface �t and its the 3-metric � [or its conformal representation (�, �̃)]. In addition, we have adopted a fully
4-dimensional point of view, by introducing an auxiliary null foliation (Hu) in a neighborhood of H. Not only this
facilitates the link between the null geometry and the 3 + 1 description, but also reduces the actual computations to
standard four-dimensional tensorial calculus (e.g. involving the spacetime connection ∇) and four-dimensional exterior
calculus (e.g. the differential dl and dk of 1-forms associated with the null normal l and the ingoing null vector k,
in connection with Frobenius theorem related to the submanifolds H and St = H ∩ �t , or the decomposition of the
curvature tensor following from Cartan’s structure equations).

Thanks to the projector �, we have performed a 4-dimensional extension of H’s second fundamental form �, and of
the Há "́iček 1-form �. Besides, we have introduced as a basic object the transversal deformation rate �. By performing
various projections of the Einstein equation, we have recovered, in addition to the null Raychaudhuri equation, the
Damour–Navier–Stokes equation, and have derived an evolution equation for �. Independently of the Einstein equation,
the so-called tidal force equation (which involves the Weyl tensor) is recovered. All these equations constitute a set of
evolution equations along the null generators of H. They hold for any null hypersurface.

Following Há "́iček andAshtekar et al., we have then considered non-expanding null hypersurfaces (more specifically
non-expanding horizons) as a first step in the modelization of a black hole horizon in quasi-equilibrium. At this stage, a
new geometrical structure enters into the scene, namely the connection ∇̂ on H compatible with the degenerate metric
q and induced by the spacetime connection ∇. This can be achieved thanks to the vanishing of the second fundamental
form � for a non-expanding null hypersurface. The couple (q, ∇̂) then completely characterizes the geometry of a
non-expanding horizon. Once the null normal l is fixed by some 3 + 1 slicing (�t ), this geometry is encoded in
the fields (q, �, �, �) evaluated in a spatial cross-section St = H ∩ �t . The change in time of these quantities is
obtained by specializing the evolution equations to the case � = 0. A number of possible constraints then follow for
characterizing a horizon in quasi-equilibrium, beyond being simply non-expanding, leading to a hierarchy of structures
on H. In particular, an intermediate notion of quasi-equilibrium is provided by the weakly isolated horizon structure
introduced by Ashtekar et al. and defined by requiring (i) a time-independent � and (ii) � to be constant over H. This
permits a quasi-local expression of physical parameters, like mass and angular momentum and provides constraints
on the 3 + 1 slicing, even if it does not further constrain the geometry of H. On the contrary, the isolated horizon
structure, that requires all fields (q, �, �, �) to be time-independent, represents the maximal degree of equilibrium
imposed in a quasi-local manner. It really restricts H among all possible non-expanding horizons. It also provides
tools for extracting information in the neighborhood of H.

Thanks to explicit formulæ relating q, �, �, � and � to 3 + 1 fields, including the lapse function N and shift vector
�, we have then translated the isolated horizon hierarchy into inner boundary conditions onto an excised sphere in the
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spatial hypersurface �t . This permits us to study the problem of initial data and spacetime evolution in a constrained
scheme, making the links with existing results in numerical relativity. This connection with the 3 + 1 Cauchy problem
illustrates the “down-up” strategy mentioned in the Introduction, i.e. the description of the null geometry on H by
constructing it from initial data on a spacelike 2-surface. This provides an alternative point of view to the “up-down”
picture, generally considered in the isolated horizon literature, and in which data on spatial slices are determined a
posteriori from a given 3-geometry on H as a whole. In conclusion, the tools discussed in this article are aimed at
providing a useful setting for studying black holes in realistic astrophysical scenarios involving regimes close to the
steady state.
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Appendix A. Flow of time: various Lie derivatives along l

The choice (4.5) for l, as the tangent vector of H’s null generators associated with the parameter t, means that l can
be considered as the “advance-in-time” vector associated with t. This is also manifest in the relation 〈dt, l〉 = 1 [Eq.
(4.6)] or l= t+V+ (N −b)s [Eq. (4.68)], which shows that l is equal to the coordinate time vector t plus some vector
tangent to �t [namely V + (N − b)s]. Therefore in order to describe the “time evolution” of the objects related to H,
it is natural to introduce the Lie derivative along l. However, it turns out that various kinds of such Lie derivatives can
be defined. First of all, there is the Lie derivative along the vector field l within the spacetime manifold M, which is
denoted by Ll . But since l ∈ T(H), there is also the Lie derivative along the vector field l within the manifold H,
which we denote by HLl . Finally, since l Lie drags the 2-surfaces St (cf. Section 4.2 and Fig. 9), one may define
within the manifold St a Lie derivative “along l”, which we denote SLl. We present here the precise definitions of
these Lie derivatives and the relationships between them.

A.1. Lie derivative along l within H: HLl

Since l is a vector field on H, one may naturally construct the Lie derivative along l of any tensor field T on H.
This results in another tensor field on H, which we denote by HLl T. Now, we may extend T into a tensor field on M
thanks to the push-forward mapping �∗ for vectors [cf. Eq. (2.4)] and the operator �∗ for linear forms [cf. Eq. (4.58)].
It is then legitimate to ask for the relation between the Lie derivative Ll of this four-dimensional extension within the
manifold M, and HLl T.

Firstly we notice that both Lie derivatives coincide onto vectors:36

∀v ∈ T(H), HLl v = Ll v . (A.1)

36 More precisely we should write Eq. (A.1) as �H∗ Ll v = L�∗l �∗v, where �∗ is the push-forward operator associated with the embedding
of H in M (cf. Section 2.1), but according to our four-dimensional point of view, we do not distinguish between v and �∗v.
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Fig. 18. Geometrical construction showing that Ll v ∈ T(St ) for any vector v tangent to the 2-surface St : on St , a vector can be identified
by a infinitesimal displacement between two points, p and q say. These points are transported onto the neighboring surface St+
t along the field
lines of the vector field l (thin lines on the figure) by the diffeomorphism �
t associated with l: the displacement between p and �
t (p) is the
vector 
tl. The couple of points (�
t (p),�
t (q)) defines the vector �
t v(t) tangent to St+
t . The Lie derivative of v along l is then defined by
the difference between the value of the vector field v at the point �
t (p), i.e. v(t + 
t), and the vector transported from St along l’s field lines,
i.e. �
t v(t): Ll v(t + 
t) = lim
t→0[v(t + 
t) − �
t v(t)]/
t . Since both vectors v(t + 
t) and �
t v(t) are in T(St+
t ), it is then obvious that
Ll v(t + 
t) ∈ T(St+
t ).

This follows from the very definition of the Lie derivative (cf. Fig. 18). Let us now consider an arbitrary 1-form on H:
� ∈ T∗(H). Then invoking the Leibnitz rule on contractions and using the property (A.1)

∀ v ∈ T(H), 〈HLl �, v〉 = HLl 〈�, v〉 − 〈�,HLl v〉
= Ll 〈�, v〉 − 〈�, Ll v〉
= Ll 〈�∗�, v〉 − 〈�∗�, Ll v〉
= 〈Ll (�∗�), v〉 . (A.2)

We conclude that the 1-formsHLl � and Ll (�∗�) coincide onT(H). Therefore their extensions toT(M) provided
by the projector � also coincide, and we can write

∀� ∈ T∗(H), �∗HLl � = �∗Ll (�∗�) . (A.3)

By taking tensorial products, we above analysis can be extended straightforwardly to any field A of multilinear forms
acting on Tp(H), so that we get

∀A ∈ T∗(H)⊗n, �∗HLl A = �∗Ll (�∗A) . (A.4)

A.2. Lie derivative along l within St : SLl

We have seen in Section 4.2 that l Lie drags the 2-surfaces St : St+
t is obtained from the neighboring surface St

by an infinitesimal displacement 
tl of each point of St . As stressed by Damour [60], an immediate consequence of
this is that the Lie derivative along l of any vector tangent to St is a vector which is also tangent to St :

∀v ∈ T(St ), Ll v ∈ T(St ) . (A.5)

This is obvious from the geometrical definition of a Lie derivative (see Fig. 18). It can also be established “blindly”:
consider v ∈ T(St ); then l · v = k · v = 0, so that

l · Ll v = l · (∇lv − ∇vl) = l · ∇lv︸ ︷︷ ︸
=−v·∇ll

− l · ∇vl︸ ︷︷ ︸
=0

= − v · (�l) = 0 . (A.6)
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and

k · Ll v = k · ∇lv − k · ∇vl = −v · ∇lk + l · ∇vk = dk(v, l) . (A.7)

With expression (5.39) of the exterior derivative of k and the fact that 〈l, v〉 = 0 and 〈l, l〉 = 0, we get immediately

k · Ll v = 0 . (A.8)

Eqs. (A.6) and (A.8), by stating that Ll v is orthogonal to both l and k, show that Ll v is tangent to St [cf.
Eq. (4.31)], and therefore establish (A.5). Property (A.5) means that, although l /∈T(St ), Ll can be viewed as an
internal operator on the space T(St ) of vector fields tangent to St . We will denote it as SLl to stress this feature
and rewrite Eq. (A.5) as

∀v ∈ T(St ),
SLlv := Ll v ∈ T(St ) . (A.9)

The definition of SLl can be extended to 1-forms on St by demanding that the Leibnitz rule holds for the contraction
of a 1-form and a vector field: if � ∈ T∗(St ) is a 1-form on St , we define the Lie derivative SLl� of � along l as
the 1-form whose action on vectors is

∀v ∈ T(St ), 〈SLl�, v〉 := Ll 〈�, v〉 − 〈�,SLlv〉 . (A.10)

Note that the right-hand side of this equation is well defined since SLlv ∈ T(St ), so that we can apply the 1-form �

to it. We can extend the definition of the Lie derivative SLl to bilinear forms on St , and more generally to multilinear
forms, by means of Leibnitz rule:

SLl(�1 ⊗ �2) = SLl�1 ⊗ �2 + �1 ⊗ SLl�2 . (A.11)

Taking into account the property (A.9), which also holds for any tensorial product of vectors, we finally conclude that
the Lie derivative operator SLl is defined for any tensor field on St : it is internal to St in the sense that it transforms
a tensor field on St into another tensor field on St . This 2-dimensional operator has been introduced by Damour
[60,61] and called by him the “convective derivative”.

Now, any 1-form � ∈ T∗(St ) can also be seen as a 1-form on M thanks to the orthogonal projector 
q on T(St ) :
it is the 1-form 
q∗� defined by Eq. (5.11).37 Let us then investigate the relation between the “four-dimensional” Lie
derivative Ll 
q∗� and the “two-dimensional” one, SLl�. The first thing to notice is that the 1-forms Ll 
q∗� and

q∗SLl� coincide when restricted to T(St ). Indeed

∀ v ∈ T(St ), 〈Ll 
q∗�, v〉 = Ll 〈
q∗�, v〉 − 〈
q∗�, Ll v〉
= Ll 〈�, 
q(v)〉 − 〈�, 
q(Ll v)〉
= Ll 〈�, v〉 − 〈�, Ll v〉
= 〈SLl�, v〉 , (A.12)

where the third equality follows from property (A.5) and the fourth one from definition (A.10). Hence

∀� ∈ T∗(St ),
SLl� = (Ll 
q∗�)|T(St ) . (A.13)

Moreover,

∀� ∈ T∗(St ), 〈Ll 
q∗�, l〉 = Ll 〈
q∗�, l〉︸ ︷︷ ︸
=0

−〈
q∗�, Ll l︸ ︷︷ ︸
=0

〉

〈Ll 
q∗�, l〉 = 0 . (A.14)

37 In this appendix, we make a distinction between � ∈ T∗(St ) and 
q∗� ∈ T∗(M), whereas in the remaining of the article we use the same
symbol to denote both applications, considering � as the pull-back of 
q∗� by the embedding of St in M.
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Since 〈
q∗SLl�, l〉 = 0 (for 
q(l) = 0), we can combine Eqs. (A.13) and (A.14) in

∀� ∈ T∗(St ), (
q∗SLl�)|T(H) = (Ll 
q∗�)|T(H) . (A.15)

But regarding the direction transverse to H one has

∀� ∈ T∗(St ), 〈Ll 
q∗�, k〉 = Ll 〈
q∗�, k〉︸ ︷︷ ︸
=0

−〈
q∗�, Ll k︸ ︷︷ ︸
=[l,k]

〉

〈Ll 
q∗�, k〉 = 〈�, 
q([k, l])〉 , (A.16)

where [k, l] denotes the commutator of vectors k and l. The right-hand side of Eq. (A.16) is in general different from
zero. Indeed, a simple calculation using Eq. (5.39) shows that

[k, �]� = k
(∇
�� + ∇��
) − 1

2N2 ∇l ln

(
N

M

)
�� , (A.17)

so that

q�

[k, �]
 = k
q��(∇
�� + ∇��
) . (A.18)

For instance a sufficient condition for the right-hand side of Eq. (A.16) to vanish, and then Ll 
q∗� to coincide with

q∗SLl�, consists in demanding l to be a Killing vector of spacetime: ∇��� + ∇��� = 0.

Another writing of Eq. (A.13) is

∀� ∈ T∗(St ), 
q∗SLl� = 
q∗Ll 
q∗� , (A.19)

where each side of the equality is a 1-form on T(M) and the operators 
q∗ added with respect to Eq. (A.13) effectively
restrict the non-trivial action of these 1-forms to the subspace T(St ) of T(M).

By taking tensorial products, the above analysis can be extended easily to any multilinear form A acting on T(St ).
In particular Eq. (A.19) can be generalized to

∀A ∈ T∗(St )
⊗n, 
q∗SLlA = 
q∗Ll 
q∗A . (A.20)

Note the similarity between this relation and Eq. (A.4) for HLl .

Appendix B. Cartan’s structure equations

Many studies about null hypersurfaces and isolated horizons make use of the Newman–Penrose framework, which
is based on the complex null tetrad introduced in Section 4.6. An alternative approach is Cartan’s formalism which is
based on a real tetrad and exterior calculus (see e.g. Chapter 14 of MTW [123] or Chapter V.B of Ref. [46] for an
introduction). Cartan’s formalism is at least as powerful as the Newman–Penrose one, although it remains true that the
latter is well adapted to null surfaces.

B.1. Tetrad and connection 1-forms

In the present context, it is natural to consider the following bases for, respectively,T(M) (vector fields) andT∗(M)

(1-forms)

e� = (l, k, e2, e3) and e� = (−k, −l, e2, e3) , (B.1)

where e2 and e3 are two vector fields tangent to the 2-surface St which constitute an orthonormal basis of T(St )

(with respect to the induced Riemannian metric q of St ) and e2 and e3 are the two 1-forms in T∗(M) such that the
basis (e�) of T∗(M) is the dual of the basis (e�) of T(M), i.e. it satisfies

〈e�, e�〉 = 
�
� , (B.2)
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where 
�
� denotes the Kronecker symbol. The vector basis (e�) is usually called a tetrad, or moving frame or repère

mobile. Note that the ordering (e0 = l, e1 = k) and (e0 = −k, e1 = −l) has been chosen to ensure Eq. (B.2) for
�, � ∈ {0, 1}, by virtue of the fact that l and k are null vectors and satisfy l · k = −1 [Eq. (4.28)]. Note that the tetrad
(l, k, e2, e3) is the same as that used to construct the complex Newman–Penrose null tetrad in Section 4.6.

Thanks to properties (4.28) and (4.31), the metric tensor components with respect to the chosen tetrad are

g�� = g(e�, e�) =
⎛
⎜⎝

0 −1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠ . (B.3)

The connection 1-forms of the spacetime connection ∇ with respect to the tetrad (e�) are the sixteen 1-forms ��
�

defined by

∀v ∈ T(M), ∇ve� = 〈�

�, v〉e
 . (B.4)

The expansions of the connection 1-forms on the basis (e�) of T∗(M) define the connection coefficients38 ��
�	 of ∇

with respect to the tetrad (e�):

��
� = ��

�
e
 or ��
�	 = 〈e�, ∇e	e�〉 . (B.5)

By direct computations using the formulas of Section 5, we get

�0
0 = −�1

1 = � − N−2∇l�l , (B.6)

�1
0 = �0

1 = 0 , (B.7)

�a
0 = �1

a = (�a − ∇ea�)l + �abeb , (B.8)

�a
1 = �0

a = −�ak − N−2∇ea�l + �abeb , (B.9)

�b
a = −�a

b = −�b
a0k − �b

a1l + �b
acec , (B.10)

where � is related to the lapse N and the metric factor M by � = ln(MN) [Eq. (4.17)] and we have introduced the
abbreviation

� := 1

2
ln

(
N

M

)
. (B.11)

�a , �ab and �ab denote the components of respectively the Há "́iček 1-form �, the deformation rate � and transversal
deformation rate � with respect to the basis (ea) = (e2, e3) of T∗(St ):

� = �aea, � = �abea ⊗ eb and � = �abea ⊗ eb . (B.12)

Note that the above expressions are not restricted to T(St ) but do constitute four-dimensional writings of the 1-form
� and the bilinear forms � and �, since all these forms vanish on the vectors e0 =l and e1 = k [cf. Eqs. (5.14), (5.33),
and (5.80)]. Note also that since the basis (ea) is orthonormal, one has �a

b = �ab and �a
b = �ab.

The symmetries (or antisymmetries) of the 1-forms ��
� when changing the indices � and �, as expressed in Eqs.

(B.6)–(B.10), are due to the constancy of the components g�� of the metric tensor g in the basis e� ⊗ e� [cf. Eq. (B.3)].
Indeed this constancy, altogether with the metric compatibility relation dg�� = ��� + ��� (cf. e.g. Eq. (14.31b) of
MTW [123]), implies ��� = −���, where ��� := g�
�


�. In particular �2
2 = �3

3 = 0.

38 Note that we are following MTW convention [123] for the ordering of the indices �	 of the connection coefficients, which is the reverse of
Hawking and Ellis’ one [90].
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B.2. Cartan’s first structure equation

Cartan’s first structure equation states that the exterior derivative of each 1-form e� is a 2-form which is expressible
as a sum of exterior products involving the connection 1-forms:39

de� = e
 ∧ ��

 . (B.13)

These relations actually express the vanishing of the torsion of the spacetime connection ∇.
For � = 0, Eq. (B.13) results in

de0 = e0 ∧ �0
0 + e1 ∧ �0

1 + ea ∧ �0
a ,

−dk = − k ∧ (� − N−2∇l�l) + ea ∧ (−�ak − N−2∇ea�l + �abeb) ,

dk = k ∧ � − N−2∇l�k ∧ l + �aea︸ ︷︷ ︸
=�

∧k + N−2∇ea�ea ∧ l − �abea ∧ eb︸ ︷︷ ︸
=0

= k ∧ (� − �k) − k ∧ � + N−2(−∇l�k + ∇ea�ea) ∧ l

= N−2(−∇k�l − ∇l�k + ∇ea�ea) ∧ l ,

dk = N−2d� ∧ l , (B.14)

where we have used the symmetry of �ab, as well as the expression (5.35) of � in terms of � and k. Eq. (B.14) is
nothing but the Frobenius relation (5.39).

For � = 1, Eq. (B.13) results in

de1 = e0 ∧ �1
0 + e1 ∧ �1

1 + ea ∧ �1
a ,

−dl = − l ∧ (−� + N−2∇l�l) + ea ∧ [(�a − ∇ea�)l + �abeb] ,

dl = (� − � + ea∇ea�) ∧ l − �abea ∧ eb︸ ︷︷ ︸
=0

=(−�k + ea∇ea�) ∧ l

= (−∇l�k − ∇k�l + ∇ea�ea) ∧ l ,

dl = d� ∧ l , (B.15)

where we have used the symmetry of �ab, as well as Eqs. (5.35) and (2.22). Again, we recover a previously derived
Frobenius relation, namely Eq. (2.17).

Finally, for � = a = 2 or 3, Cartan’s first structure equation (B.13) results in

dea = e0 ∧ �a
0 + e1 ∧ �a

1 + eb ∧ �a
b

= − k ∧ [(�a − ∇ea�)l + �abeb] − l ∧ (−�ak − N−2∇ea�l + �abeb)

+ eb ∧ (−�a
b0k − �a

b1l + �a
bcec)

dea = (2�a − ∇ea�)l ∧ k + (�ab − �a
b0)e

b ∧ k + (�ab − �a
b1)e

b ∧ l + �a
bceb ∧ ec . (B.16)

B.3. Cartan’s second structure equation

Cartan’s second structure equation relates the exterior derivative of the connection 1-forms ��
� to the connection

curvature:

d��
� = R�

� − ��

 ∧ �


� , (B.17)

39 See Section 1.2.3 for our conventions regarding exterior calculus.
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where the R�
� are the sixteen curvature 2-forms associated with the connection ∇ and the tetrad (e�). They are defined

in terms of the spacetime Riemann curvature tensor (cf. Section 1.2.2) by

∀(u, v) ∈ T(M) × T(M), R�
�(u, v) := Riem(e�, e�, u, v) . (B.18)

Note that due to the symmetry property (1.15) of the Riemann tensor, there are actually only 6, and not 16, independent
curvature 2-forms. From Eq. (B.18), the curvature 2-forms can be expressed in terms of the components R�

�	
 of the
Riemann tensor with respect to the bases (e�) and (e�) [cf. Eq. (1.13)] as

R�
� = R�

�
�e
 ⊗ e� = 1
2 R�

�
�e
 ∧ e� , (B.19)

where the second equality follows from the antisymmetry of the Riemann tensor with respect to its last two indices;
it clearly exhibits that R�

� is a 2-form. Conversely, one may express the Riemann tensor in terms of the curvature
2-forms as

Riem = e
 ⊗ e� ⊗ R

� . (B.20)

For � = � = 0, Cartan’s second structure equation (B.17) results in

d�0
0 = R0

0 − �0
1 ∧ �1

0 − �0
a ∧ �a

0,

d(� − N−2∇l�l) = R0
0 − (−�ak − N−2∇ea�l + �abeb) ∧ [(�a − ∇ea�)l + �abeb] , (B.21)

where, according to definition (B.18) and to the symmetry property (1.15) of the Riemann tensor,

R0
0 = Riem(e0, e0, ., .) = Riem(−k, l, ., .) = Riem(l, k, ., .) . (B.22)

Expanding Eq. (B.21) [cf. Eq. (1.22)] and using Eq. (B.15) leads to

d� = Riem(l, k, ., .) − �b�b
aea ∧ k + �ac�

c
bea ∧ eb + {d(N−2∇l�) + N−2∇l�d� + �a(�a − ∇ea�)k

− [N−2∇eb
��b

a + (�b − ∇eb
�)�b

a]ea} ∧ l . (B.23)

For �= 0 and �= 1 (or �= 1 and �= 0), Cartan’s second structure equation (B.17) results in the trivial equation 0 = 0.
For � = 0 and � = a it gives

d�0
a = R0

a − �0
0 ∧ �0

a − �0
1 ∧ �1

a − �0
b ∧ �b

a ,

d(−�ak − N−2∇ea�l + �abeb) = R0
a − (� − N−2∇l�l) ∧ (−�ak − N−2∇ea�l + �abeb)

+ (�bk + N−2∇eb
�l − �bcec) ∧ (−�b

a0k − �b
a1l + �b

aded) . (B.24)

Expanding this expression and using Eqs. (B.14) and (B.15), as well as R0
a = −Riem(k, ea, ., .), leads to

d(�abeb) = − Riem(k, ea, ., .) + {N−2(�ad� + ∇ea�d� + ∇ea��) + d(N−2∇ea�)

+ [N−2(�a∇l� + ∇eb
��b

a0) − �b�b
a1]k + [�bc�

c
a1

− N−2(�ab∇l� + �c
ab∇ec�)]eb} ∧ l + [d�a + �a�

+ (�bc�
c
a0 − �c�

c
ab)e

b] ∧ k − �ab� ∧ eb − �bd �d
aceb ∧ ec . (B.25)

For �=1 and �=1, Cartan’s second structure equation yields the same result as for �=0 and �=0 (since �1
1 =−�0

0
and R1

1 = −R0
0), namely Eq. (B.23). For � = 1 and � = a, it writes

d�1
a = R1

a − �1
0 ∧ �0

a − �1
1 ∧ �1

a − �1
b ∧ �b

a

d[(�a − ∇ea�)l + �abeb] = R1
a + (� − N−2∇l�l) ∧ [(�a − ∇ea�)l + �abeb]

− [(�b − ∇eb
�)l + �bcec] ∧ (−�b

a0k − �b
a1l + �b

aded) . (B.26)
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Expanding this expression and using Eqs. (B.14) and (B.15), as well as R1
a = −Riem(l, ea, ., .), leads to

d(�abeb) = − Riem(l, ea, ., .) + {d(∇ea� − �a) + (�a − ∇ea�)(� − d�)

+ �b
a0(∇eb

� − �b)k + [N−2∇l��ab + �c
ab(�c − ∇ec�)

+ �c
a1�bc]eb} ∧ l + �bc�

c
a0eb ∧ k + �ab� ∧ eb − �bd �d

aceb ∧ ec . (B.27)

As an application of this relation, we can express the Lie derivative of the second fundamental form along l restricted
to the 2-plane T(St ), i.e. the quantity 
q∗Ll �. Indeed, by means of expansion (B.12), let us write Ll � as

Ll � = ea ⊗ Ll (�abeb) + �abLl ea ⊗ eb

= ea ⊗
⎡
⎣l · d(�abeb) + d 〈�abeb, l〉︸ ︷︷ ︸

=0

⎤
⎦+ �ab

⎛
⎝l · dea + d 〈ea, l〉︸ ︷︷ ︸

=0

⎞
⎠⊗ eb

= ea ⊗ [l · d(�abeb)] + �ab[(2�a − ∇ea�)l + (�a
c − �a

c0)e
c] ⊗ eb , (B.28)

where we have used Cartan’s identity (1.26) to get the second line and Cartan’s first structure equation (B.16) to get
the third one. Then

Ll �(ea, eb) = d(�acec)(l, eb) + �bc(�
c
a − �c

a0) . (B.29)

Applying the 2-form (B.27) to the couple of vectors (l, eb) results in

d(�acec)(l, eb) = −Riem(l, ea, l, eb) + �bc�
c
a0 + ��ab . (B.30)

Combining Eqs. (B.29) and (B.30) yields

Ll �(ea, eb) = ��ab + �ac�
c
b − Riem(l, ea, l, eb) . (B.31)

Hence


q∗Ll � = �� + � · 
� − 
q∗Riem(l, ., l, .) , (B.32)

i.e. we recover Eq. (6.27).
For � = a and � = 0, Cartan’s second structure equation yields the same result as Eq. (B.27), since �a

0 = �1
a and

Ra
0 = R1

a . For � = a and � = 1, it yields the same result as for � = 0 and � = a (since �a
1 = �0

a and Ra
1 = R0

a),
namely Eq. (B.25). Finally, for � = a and � = b, Cartan’s second structure equation writes

d�a
b = Ra

b − �a
0 ∧ �0

b − �a
1 ∧ �1

b − �a
c ∧ �c

b

d(−�a
b0k − �a

b1l + �a
bcec)

= �a
b − [(�a − ∇ea�)l + �acec] ∧ (−�bk − N−2∇eb

�l + �bded)

− (−�ak − N−2∇ea�l + �acec) ∧ [(�b − ∇eb
�)l + �bded ]

− (−�a
c0k − �a

c1l + �a
cded) ∧ (−�c

b0k − �c
b1l + �c

bf ef ) , (B.33)

which leads to

d(�a
bcec) = Riem(ea, eb, ., .) + {�a

b0N
−2d� + d�a

b1 + �a
b1d�

+ [(∇ea� − �a)�b + (�b − ∇eb
�)�a − �a

c0�c
b1 + �a

c1�c
b0]k

+ [�bc(�a − ∇ea�) + N−2(�a
c∇eb

� − �bc∇ea�)

− �a
c(�b − ∇eb

�) − �a
d1�d

bc + �a
dc�

d
b1]ec} ∧ l

+ [d�a
b0 + (�a

c�b − �a�bc − �a
d0�d

bc + �a
dc�

d
b0)e

c] ∧ k

+ (�a
d�bc − �a

c�bd + �a
f d �f

bc)e
c ∧ ed . (B.34)
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B.4. Ricci tensor

Having computed the tetrad components of the Riemann tensor via Cartan’s second structure equation, we can
evaluate the tetrad components of the Ricci by means of definition (1.17) of the latter:

R(e�, e�) = Riem(e
, e�, e
, e�) . (B.35)

For � = � = 0, we get

R(l, l) = Riem(e
, l, e
, l)

= − Riem(k, l, l, l)︸ ︷︷ ︸
=0

− Riem(l, l, k, l)︸ ︷︷ ︸
=0

+Riem(ea, l, ea, l)

= − Riem(l, ea, ea, l) , (B.36)

where we have used the symmetry property (1.15) of the Riemann tensor. Let us substitute Eq. (B.27) for Riem(l, ea, ., .).
We notice that the long term {. . .} ∧ l vanishes when applied to (ea, l), as the term eb ∧ ec. Moreover since 〈�, l〉 = �
[Eq. (5.5)], �ab
b

a = � [Eq. (5.65)] and �ab�b
a0 = 0 (by symmetry of �ab and antisymmetry of �b

a0 with respect
to the indices a and b), we get

R(l, l) = d(�abeb)(ea, l) + �� . (B.37)

Let us express the exterior derivative of the 1-form �abeb by means of formula (1.25):

d(�abeb)(ea, l) = 〈∇ea (�abeb), l〉 − 〈∇l(�abeb), ea〉
= − 〈�abeb, ∇eal〉 − ∇l�ab〈eb, ea〉 + �ab〈eb, ∇lea〉
= �ab(〈eb, ∇lea〉 − 〈eb, ∇eal〉) − ∇l�ab
b

a

= �ab(〈�b
a, l〉 − 〈�b

0, ea〉) − ∇l�

= �ab(�
b
a0 − �b

a) − ∇l� = −�ab�
ab − ∇l� , (B.38)

where we have used the property �ab�b
a0 = 0 noticed above. Inserting this relation into Eq. (B.37) yields

R(l, l) = −∇l� + �� − �ab�
ab . (B.39)

We thus recover the null Raychaudhuri equation (6.6).
For � = 0 and � = a, Eq. (B.35) gives

R(l, ea) = Riem(l, k, l, ea) − Riem(l, eb, eb, ea) . (B.40)

Substituting Eq. (B.23) for Riem(l, k, ., .) and Eq. (B.27) for Riem(l, eb, ., .), we get

R(l, ea) = d�(l, ea) + d(�b
cec)(eb, ea) + ��a + �c

bc�
b
a , (B.41)

where we have used once again the symmetry property �bc�b
ca =0, as well as �bc = �b

c. Thanks to Cartan’s identity
(1.26), the first term in the right-hand side of Eq. (B.41) writes

d�(l, ea) =
〈
Ll � − d 〈�, l〉︸ ︷︷ ︸

=�

, ea

〉
= 〈Ll �, ea〉 − 〈d�, ea〉 . (B.42)
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The second term in the right-hand side of Eq. (B.41) is expressed by means of formula (1.25):

d(�b
cec)(eb, ea) = 〈∇eb

(�b
cec), ea〉 − 〈∇ea (�

b
cec), eb〉

= ∇eb
�b

c〈ec, ea〉 − �b
c〈ec, ∇eb

ea〉 − ∇ea �b
c〈ec, eb〉 + �b

c〈ec, ∇ea eb〉
= ∇eb

�b
a − �b

c�
c
ab − ∇ea �b

b︸︷︷︸
=�

+ �b
c�

c
ba︸ ︷︷ ︸

=0

= 〈d�b
a, eb〉 − �c

ab�b
c − 〈d�, ea〉 . (B.43)

Inserting expressions (B.42) and (B.43) into Eq. (B.41) leads to

R(l, ea) = 〈Ll �, ea〉 + ��a − 〈d�, ea〉 − 〈d�, ea〉 + 〈d�b
a, eb〉 + �c

bc�
b
a − �c

ab�b
c . (B.44)

We recognize in the last term the component on ea of the covariant divergence of 
� with respect to the connection 2D
induced by ∇ in the 2-surface St :

(2D · 
�)a = 〈d�b
a, eb〉 + �c

bc�
b
a − �c

ab�b
c . (B.45)

Besides

〈Ll �, ea〉 = 〈Ll (� − �k), ea〉 = 〈Ll � − Ll �k − �Ll k, ea〉
= 〈Ll � − �l · dk, ea〉 = 〈Ll � − �N−2l · (d� ∧ l), ea〉
= 〈Ll �, ea〉 , (B.46)

so that Eq. (B.44) can be written as

R(l, ea) = 〈Ll � + �� − d(� + �) + 2D · 
�, ea〉 , (B.47)

which is nothing but the Damour–Navier–Stokes equation under the form (6.13).
Finally, let us consider the components of the Ricci tensor relative to T(St ), i.e. R(ea, eb). From Eq. (B.35), we get

R(ea, eb) = −Riem(k, ea, l, eb) − Riem(l, ea, k, eb) + Riem(ec, ea, ec, eb) . (B.48)

The first term in the right-hand side can be expressed, thanks to Eq. (B.25)

−Riem(k, ea, l, eb) = d(�acec)(l, eb) − ∇eb
�a − �a�b − �bc�

c
a0 + �c

ab�c + ��ab , (B.49)

whereas Eq. (B.27) yields

−Riem(l, ea, k, eb) = d(�acec)(k, eb) − ∇ea∇eb
� + �c

ab∇ec� − ∇ea�∇eb
� + �a∇eb

� + �b∇ea� + ∇eb
�a

− �c
ab�c − �a�b − N−2∇l��ab − �c

a1�bc , (B.50)

and Eq. (B.34) gives

Riem(ec, ea, ec, eb) = d(�c
aded)(ec, eb) − �ac�

c
b − �ac�

c
b + �(k)�ab + ��ab − �c

db�d
ac

+ �c
dc�

d
ab . (B.51)

Collecting together Eqs. (B.49)–(B.51) enables us to write Eq. (B.48) as

R(ea, eb) = d(�acec)(l, eb) − �c
a0�bc + (� + �)�ab + d(�acec)(k, eb)

− �c
a1�bc + (�(k) − N−2∇l�)�ab − �ac�

c
b − �ac�

c
b

− ∇ea∇eb
� + �c

ab∇ec� − ∇ea�∇eb
� + �a∇eb

� + �b∇ea�

− 2�a�b + d(�c
aded)(ec, eb) − �c

db�d
ac + �c

dc�
d
ab . (B.52)

Let us first notice that the last three terms of this expression are nothing but the Ricci tensor 2R of the connection 2D
associated with the induced metric in the 2-surface St , applied to the couple of vectors (ea, eb). Indeed, using the
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moving frame (ea) in St , the connection 1-forms 2�b
a of 2D are given by a formula similar to Eq. (B.5), except that

the range of the summation index 
 is now restricted to {2, 3}:
2�b

a = �b
acec . (B.53)

Expressing the curvature of 2D by means of Cartan’s second structure equation, we get then

2R(ea, eb) = (d(2�c
a) − 2�c

d ∧ 2�d
a)(ec, eb)

= d(�c
aded)(ec, eb) − �c

db�d
ac + �c

dc�
d
ab . (B.54)

Besides, we may express the term d(�acec)(l, eb) [resp. d(�acec)(k, eb)] which appears in the right-hand side of Eq.
(B.52) in terms of the Lie derivative Ll � (resp. Lk �). Indeed a computation similar to that which led to Eq. (B.29)
for Ll � gives

Ll �(ea, eb) = d(�acec)(l, eb) + �bc(�
c
a − �c

a0) . (B.55)

and

Lk �(ea, eb) = d(�acec)(k, eb) + �bc(�
c
a − �c

a1) . (B.56)

Inserting the above two equations, as well as Eq. (B.54), into Eq. (B.52) leads to

R(ea, eb) = Ll �(ea, eb) + Lk �(ea, eb) − 2�ac�
c
b − 2�ac�

c
b

+ (� + �)�ab + (�(k) − N−2∇l�)�ab − 2�a�b − 2Dea

2Deb
�

− 2Dea
�2Deb

� + �a
2Deb

� + �b
2Dea

� + 2R(ea, eb) . (B.57)

Appendix C. Physical parameters and Hamiltonian techniques

In Section 8.6 we introduced quasi-local notions for the physical parameters associated with the horizon, when no
matter is present on H. In that section we only presented the final results, since the actual derivations involved the
use of Hamiltonian techniques not discussed in this article. In this appendix we aim at providing some intuition on the
actual use of these tools. Instead of using a formal presentation (see [15,12,107]) we introduce the basic concepts by
illustrating them with examples extracted from the isolated horizon literature, always in absence of matter.

As indicated in Section 8.6, the physical parameters are identified with quantities conserved under certain transforma-
tions on the space � of solutions of Einstein equation. More specifically, these envisaged solutions in � contain a “fixed”
WIH (H, [l]) as inner boundary. The transformations on � relevant for the definition of the conserved quantities, are
associated with the WIH-symmetries of this inner boundary. An appropriate characterization of this phase space �,
where each point is a Lorentzian manifold (M, g), must be therefore introduced. This is accomplished by setting a
well-posed variational problem associated with spacetimes (M, g) containing a “given” WIH. A rigorous presentation
of this whole subject requires a careful definition of the involved objects (domain of variation of the dynamical fields,
variation of the fields at the boundaries of this domain, etc.). As mentioned above, we simply aim here at underlying
the most relevant steps, through the use of (simplified) examples, referring the reader to the original references for the
detailed formulations. As in the rest of the article, we restrict ourselves to the non-extremal case � �= 0.

C.1. Well-posedness of the variational problem

In our study of black hole spacetimes, we are interested in asymptotically flat solutions to Einstein equation with
a WIH as inner boundary. In the variational formulation of spacetime dynamics, the presence of boundaries in the
manifold generally demands the introduction of boundary terms in the action so as to compensate the variation of this
action with respect to the dynamical fields. This is relevant for the differentiability of the action with respect to the
dynamical fields as well as for guaranteeing that the derived equations of motion are actually the ones corresponding
to the studied problem.
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Fig. 19. Domain of variation in M bounded by two Cauchy surfaces �− and �+, spatial infinity �∞ and the WIH (H, [l]). S− and S+ denote
the cross-sections resulting from the intersections of the spatial slices �− and �+ with the WIH.

Example C.1. This example shows how the WIH condition (8.2) guarantees the well-posedness of a first order action
principle. Details can be found in [10,12,108]. An appropriate first order action for our problem can be written in terms
of the cotetrad (eI ) and a real 1-form connection AI

J , where the capital Latin letters correspond to Lorentz indices
which are raised and lowered with the Minkowski metric. We can write the action as

S(e, A) ∼ −
∫

M

�IJ ∧ FIJ +
∫
�∞

�IJ ∧ AIJ , (C.1)

where

�IJ = 1
2εIJKLeK ∧ eL ,

FJ
I = dAJ

I + AK
I ∧ AJ

K , (C.2)

εIJKL is the alternating symbol in four dimensions and �∞ denotes spatial infinity. In order to determine the equations
of motion, the action is varied with respect to the fields eI and AI

J in a region M of M delimited by two Cauchy surfaces
�− and �+ (on which the variation of the fields, schematically denoted by 
(e, A), vanishes), by spatial infinity �∞
and the inner boundary (H, [l]) (see Fig. 19). In the variation of the action, the bulk term gives rise to a boundary
term at infinity, but it is exactly cancelled by the variation of the boundary term at infinity in Eq. (C.1). The resulting
variation can be expressed as


S(e, A) =
∫

(Equations of motion) · 
(e, A) − 1

8�G

∫
H


� ∧ 2ε . (C.3)

The problem is well-posed and Einstein equations are recovered as an extremal value of this action (
S(e, A) = 0), if
the boundary integral at H vanishes. This is the crucial point we want to make in this example: the WIH condition
HLl � = 0, together with the NEH conditions and 
(e, A) = 0 on �− and �+, suffices to guarantee the vanishing of
this boundary term (see [10] for the details).

C.1.1. Phase space and canonical transformations
Once the variational problem is well-posed, we must determine the phase space �. We firstly introduce some general

concepts and notation (see, e.g. Refs. [1,8,80]).
The phase space is constituted by a pair (�, J), where � is an (infinite-dimensional) manifold in which each point

represents a solution to the equations of motion and J is a closed 2-form on � known as the symplectic form: d�J = 0,
with d� the exterior differential in �. We can associate with each function F : � → R, a Hamiltonian vector field 
F

in T(�) (the space of vector fields on � in the notation introduced in Section 1.2) as follows:

i
F
J = d�F , (C.4)
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where i
F
J := J(
F , ·). Given two functions F and G with support on �, their Poisson bracket is defined as

{F, G} = J(
F , 
G) . (C.5)

The pair (�, J) is also known as a symplectic manifold (pre-symplectic if the kernel of J is non-trivial). Even though
the phase spaces we are interested in are intrinsically infinite-dimensional, we shall skip all the subtleties related to
infinite-dimensional symplectic spaces (see for instance [119]).

An infinitesimal transformation on the space �, generated by the vector field 
W, is a canonical transformation (also
called symplecto-morphism) if it preserves the symplectic form J

�L
W
J = 0 . (C.6)

Using the closed character of J, this is locally equivalent to the existence of a Hamiltonian function HW, i.e.


W preserves (locally)

the Poisson brackets

}
⇐⇒ ∃HW such that i
W

J = d�HW , (C.7)

Applying this expression to a generic vector field 
 in T(�), yields

J(
W, 
) = 
HW , (C.8)

where the notation 
HW := d�HW(
) is designed to mimic the intuitive physical notation. The evolution of a function
G along the flow of the vector field 
W on � (Hamilton equations), can be evaluated as


WG = {HW, G} . (C.9)

In particular, due to the anti-symmetry of J, HW remains constant along the 
W trajectories. With these elements, the
general strategy to associate physical parameters with the horizon will proceed via the following steps:

(1) Construction of the appropriate phase space � for our problem.
(2) Extension of a given WIH-symmetry of (H, [l]) to an infinitesimal diffeomorphism W on each space-time M of

�, giving rise to a family of vector fields {W}�. Definition of a canonical transformation 
W on � out of the family
{W}�.

(3) Identification of the physical parameter with the associated conserved quantity HW.

We illustrate these steps by continuing Example C.1 (see again [15,12]).

Example C.2. Phase space and canonical transformations.

(1) Phase space.
The phase space � where we describe the dynamics defined by the action (C.1), can be parametrized by the pairs
(eI , AI

J ) which satisfy Einstein equations and contain an inner boundary given by a “fixed” WIH (H, [l]). The
so-called conserved current method [56] provides a standard manner to derive the relevant symplectic form from
a given action. In our case this results in [12]

J(
1, 
2) = − 1

16�G

∫
�
(
1�

IJ ∧ 
2AIJ − 
2�
IJ ∧ 
1AIJ ) + 1

8�G

∫
St

(
1
2ε
2� − 
2

2ε
1�) , (C.10)

where � is a function on H such that HLl � := �(l) and 
1, 
2 are arbitrary vector fields on T(�).
(2) Canonical transformations induced by spacetime transformations.

On each point of �, i.e. on each spacetime M represented by a pair (eI , AI
J ), we consider an infinitesimal spacetime

diffeomorphism W(e, A) (we make explicit the dependence of this vector field on the particular spacetime) whose
restriction to H is a WIH-symmetry. This family of spacetime vector fields {W(e, A)} permits us to define an
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Fig. 20. Illustration of the construction of a transformation 
W on � from the family {W}� of diffeomorphisms on spacetimes M. On each point
of �, a spacetime M(e, A), we consider a diffeomorphism W(e, A) whose restriction to H is a WIH-symmetry. The ensemble of these spacetime
diffeomorphisms {W(e, A)}� generates a transformation 
W on � through Eq. (C.11).

infinitesimal transformation 
W on �, which is defined in a point-wise manner (on each point M of �) by its action
on the coordinates (eI , AI

J ) of �

(
WeI )|M := LW(e,A)e
I , (
WAI

J )|M := LW(e,A)A
I
J , (C.11)

where right-hand side terms are evaluated on each spacetime M, associated respectively with the pair (eI , AI
J ). In

sum, starting from a family of WIH-symmetries {W(e, A)|H} an infinitesimal transformation 
W has been induced
in the phase space � (see Fig. 20). The question now is to find out if such a transformation 
W is a canonical one.
According to (C.7), one must contract the vector field 
W with the symplectic form (C.10) and check if the resulting
1-form on � is (locally) exact. Following (C.8), this contraction is applied on an arbitrary vector field 


J(
, 
W) = −1

8�G

∫
St


[〈q∗W, �〉2ε] − 〈
q∗W, �〉2ε + �(W)

2ε

+ 1

16�G

∫
�∞

AIJ ∧ 〈W, �IJ 〉 + 〈W, AIJ 〉
�IJ , (C.12)

where �(W) = 〈W − q∗W, �〉.
(3) Conserved quantities and horizon physical parameters.

The term at infinity is related to the standard ADM quantities (whenever W is a symmetry of the asymptotic metric
at infinity). Consequently, it is associated with the exact variation of a function on �, the corresponding ADM
parameter. Likewise, in order to associate a conserved quantity with the horizon H itself, the integral on St must
be written as the exact variation of a function on �. We study this problem for the specific and physically relevant
cases of the angular momentum and the energy.

C.2. Applications of examples (C.1) and (C.2)

We offer some more details on the discussion developed in Sections 8.6.1 and 8.6.2.

C.2.1. Angular momentum
We restrict � to its subspace �
 of spacetimes containing a class II WIH. On the inner boundary H of each

spacetime M, the same rigid azimuthal WIH-symmetry 
 is fixed (in fact 
 is an isometry of the cross-section St ).
More specifically, we consider on every spacetime in �
 a vector field 
 which is a SO(2) axial isometry of the induced
metric q on H with 2� affine length.
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This WIH-symmetry on H is then extended to a vector field � on each spacetime M. Since we are interested
in studying the angular momentum related to the horizon itself, this extension � is enforced to vanish outside some
compact neighborhood of the horizon. Evaluating expression (C.12) in this case, results in [12]

J(
, 
�) = 


( −1

8�G

∫
St


 · �2ε

)
. (C.13)

The transformation 
� induces directly a locally canonical transformation on �
. Making JH := H�, the conserved
quantity JH is identified as the angular momentum associated with the horizon and Eq. (8.32) follows. We also point
out that this expression is conserved under the canonical transformation 
� in �, even if 
 is not a WIH-symmetry.
However, as mentioned in Section 8.6.1, in the absence of a symmetry the physical status of this expression is unclear.

C.2.2. Mass
As discussed in Section 8.6.2, the definition of the mass is related to the choice of an evolution vector t on each

spacetime M, which plays now the role of the vector W in Example C.2. We fix expression (8.33) as the inner boundary
condition for t. Regarding the outer boundary condition at infinity, we make t approach an observer t∞ inertial with
respect to the flat metric.

The first law of black hole mechanics (8.34) follows from imposing 
t to be a locally canonical transformation on
�
. Expression (C.12) in this case simplifies to

J(
, 
t) = 
Et
ADM −

( �(t)

8�G

aH + �(t)
JH

)
, (C.14)

where Et
ADM corresponds to the ADM energy and aH = ∫

S
2ε is the area of St . On each spacetime M in �, �(t) and

�(t) are constant. However, the actual values of these constants change from one spacetime to another: �(t) and �(t)
are functions on �. As a necessary condition for J(·, 
t ) to be an exact variation on � so as to make 
t a canonical
transformation via Eq. (C.8), the form J(·, 
t ) must be closed. Consequently, functions �(t) and �(t) depend on � only
through an explicit dependence on aH and JH, satisfying

��(t)(aH, JH)

�JH
= 8�G

��(t)(aH, JH)

�aH
. (C.15)

If 
t is indeed a canonical infinitesimal transformation, we can write the second term in the right-hand side of Eq. (C.14)
as an exact variation 
Et

H, and Eq. (8.34) follows. As mentioned in Section 8.6.2, this does not fix the functional forms
of �(t)(aH, JH), �(t)(aH, JH) and Et

H. Finally, these dependences of the physical parameters in aH and JH, which
are the same for all spacetimes in �
, are fixed by making them to coincide with those of the Kerr family (a subspace
of �
), as explained in Section 8.6.2.

Appendix D. Illustration with the event horizon of a Kerr black hole

In Examples 2.5, 3.1, 4.6, 5.7 and 6.5, we have considered for simplicity a non-rotating static black hole (Schwarzschild
spacetime). It is of course interesting to investigate rotating stationary black holes (Kerr spacetime) as well. In particular,
the Há "́iček 1-form which has been found to vanish for a Schwarzschild horizon [Eq. (5.105)] is no longer zero for a
Kerr horizon. We discuss here the event horizon H of a Kerr black hole from the 3 + 1 decomposition introduced in
Section 10, by considering a foliation (�t ) based on Kerr coordinates.

D.1. Kerr coordinates

In standard textbooks, the Kerr solution is presented in Boyer–Lindquist coordinates (tBL, r, �, �BL). However,
being a generalization of Schwarzschild coordinates to the rotating case, these coordinates are singular on the event
horizon H, as discussed in Example 2.5. We consider instead Kerr coordinates, which are regular on H. These are the
coordinates in which Kerr originally exhibited his solution [104]; they are a generalization of Eddington–Finkelstein
coordinates to the rotating case. Denoting them by (V , r, �, �), they are such that the curves V = const, � = const and
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�=const are ingoing null geodesics (they form a so-called principal null congruence), as in the Eddington–Finkelstein
case.40 As in the Schwarzschild case, we will use the coordinate

t := V − r (D.1)

instead of V [cf. Eq. (2.33)]. The coordinates (t, r, �, �) are then simply a spheroidal version of the well-known
Kerr–Schild coordinates (t, x, y, z): t is the same coordinate and (x, y, z) are related to (r, �, �) by

x = (r cos � − a sin �) sin �, y = (r sin � + a cos �) sin � ,

z = r cos � , (D.2)

where a is the angular momentum parameter of the Kerr solution, i.e. the quotient of the total angular momentum J by
the total mass m, a := J/m. The relation with the Boyer-Lindquist coordinates (tBL, r, �, �BL) is as follows:

dt = dtBL + dr

(r2 + a2)/2mr − 1
and d� = d�BL + adr

r2 − 2mr + a2 . (D.3)

The metric components with respect to the “3 + 1” Kerr coordinates (t, r, �, �) are given by

g
� dx
 dx� = −
(

1 − 2mr

�2

)
dt2 + 4mr

�2 dt dr − 4amr

�2 sin2 � dt d� +
(

1 + 2mr

�2

)
dr2

− 2a sin2 �

(
1 + 2mr

�2

)
dr d� + �2 d�2 +

(
r2 + a2 + 2a2mr sin2 �

�2

)
sin2 � d�2 , (D.4)

with

�2 := r2 + a2 cos2 � . (D.5)

The event horizon H is located at

r = rH := m +
√

m2 − a2 . (D.6)

Since rH does not depend upon � nor �, the Kerr coordinates are adapted toH, according to the terminology introduced
in Section 4.8. Note that the metric components given by Eq. (D.4) are all regular at r = rH. On the contrary, most
of them are singular at � = 0, which, via Eq. (D.5), corresponds to r = 0 and � = �/2, and, via Eq. (D.2), to the ring
x2 + y2 = a2 in the plane z = 0. This is the ring singularity of Kerr spacetime. Note also that in the limit a → 0, then
� → r and the line element (D.4) reduces to the line element (2.34) in Eddington–Finkelstein coordinates. The metric
(D.4) is clearly stationary and axisymmetric and the two vectors

�0 :=
(

�

�t

)
r,�,�

and �1 :=
(

�

��

)
t,r,�

(D.7)

are two Killing vectors, �0 being associated with the stationarity and �1 with the axial symmetry of the Kerr spacetime.

Remark D.1. The two Killing vectors �0 and �1 are identical to the “standard” two Killing vectors which are formed
from the Boyer–Lindquist coordinates:

�0 =
(

�

�tBL

)
r,�,�BL

and �1 =
(

�

��BL

)
tBL,r,�

. (D.8)

This property follows easily from the transformation law (D.3) between the two sets of coordinates. Consequently, the
metric coefficients gtt = �0 · �0, gt� = �0 · �1 and g�� = �1 · �1, which can be read on Eq. (D.4) are the same than those
for Boyer–Lindquist coordinates, as it can be checked by comparing with e.g. Eq. (33.2) in MTW [123].

40 Note, however, a difference with Schwarzschild spacetime in Eddington–Finkelstein coordinates: in the rotating Kerr case, the hypersurfaces
V = const are no longer null (see e.g. [69]).
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D.2. 3 + 1 quantities

Let us consider the foliation of Kerr spacetime by the hypersurfaces �t of constant Kerr time t. From the line element
(D.4), we read the corresponding lapse function

N = �√
�2 + 2mr

, (D.9)

the shift vector

�i =
(

2mr

�2 + 2mr
, 0, 0

)
and �i =

(
2mr

�2 , 0, −2amr

�2 sin2 �

)
(D.10)

and the 3-metric

	ij =

⎛
⎜⎜⎜⎜⎝

1 + 2mr

�2 0 −a

(
1 + 2mr

�2

)
sin2 �

0 �2 0

−a

(
1 + 2mr

�2

)
sin2 � 0

A

�2 sin2 �

⎞
⎟⎟⎟⎟⎠ , (D.11)

	ij =

⎛
⎜⎜⎜⎜⎝

A

�2(�2 + 2mr)
0

a

�2

0 �−2 0
a

�2 0
1

�2 sin2 �

⎞
⎟⎟⎟⎟⎠ , (D.12)

with

A := (r2 + a2)2 − (r2 − 2mr + a2)a2 sin2 �

= �2(r2 + a2) + 2a2mr sin2 � . (D.13)

The unit timelike normal to �t is deduced from the values of the lapse function and the shift vector via Eq. (3.24),
which results in

n� =
(

1

�

√
�2 + 2mr, − 2mr

�
√

�2 + 2mr
, 0, 0

)
, (D.14)

n� =
(

− �√
�2 + 2mr

, 0, 0, 0

)
. (D.15)

Finally the extrinsic curvature tensor of �t is obtained from Eq. (3.42) with �	ij /�t = 0:

Kij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2m(a2 cos2 � − r2)(�2 + mr)

�5
√

�2 + 2mr

2a2mr sin � cos �

�3
√

�2 + 2mr

am(r2 − a2 cos2 �) sin2 �
√

�2 + 2mr

�5

sym.
2mr2

�
√

�2 + 2mr
−2a3mr sin3� cos �

�3
√

�2 + 2mr

sym. sym.

2mr sin2 �

�
√

�2 + 2mr
×

[
r + a2m(a2 cos2 � − r2) sin2 �

�4

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D.16)

As a check of this formula, we may compare it with Eqs. (A2.33)–(A2.38) of Ref. [161].
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D.3. Unit normal to St and null normal to H

The 2-surface St ⊂ �t is defined by r = const = rH. Its outward unit normal s lying in �t is obtained from
si = (�, 0, 0), with � such that 	ij sisj = 1. We get

si =
⎛
⎝�

√
�2 + 2mr

A
, 0, 0

⎞
⎠ , (D.17)

si =
⎛
⎝1

�

√
A

�2 + 2mr
, 0,

a

�

√
�2 + 2mr

A

⎞
⎠ . (D.18)

As a check, we verify that n and s given by Eqs. (D.14) and (D.18) coincide with the first two vectors of the orthonormal
basis (
E�) introduced by King et al. [105] [cf. their Eq. (2.4), noticing that their coordinate vectors are (�/�V )r,�,� =
(�/�t)r,�,� and (�/�r)V,�,� = (�/�r)t,�,� − (�/�t)r,�,�].

We then get the null normal to H associated with the Kerr slicing, l, by inserting expressions (D.9), (D.14) and
(D.18) into l = N(n + s) [Eq. (4.13)]:

�� =
(

1,

√
A − 2mr

�2 + 2mr
, 0,

a√
A

)
. (D.19)

The value on the horizon is obtained by noticing that A
H=(2mrH)2; we get �� H=(1, 0, 0, a/(2mrH)), i.e., from

Eq. (D.7),

l
H= �0 + �H�1 , (D.20)

with41

�H := a

2mrH
= a

2m(m + √
m2 − a2)

. (D.21)

Eq. (D.20) shows that on the horizon, the null normal l is a linear combination of the two Killing vectors �0 and �1
with constant coefficients (compare with the inner boundary (8.33) for the evolution vector t in Section 8.6.2). It is
therefore a Killing vector itself. This implies

Ll A
H= 0 , (D.22)

for any tensor field A which respects the stationarity and axisymmetry of the Kerr spacetime. Another phrasing of this
is saying that H is a Killing horizon [36]. Comparing Eq. (D.20) with Eq. (4.80) (taking into account that t = �0), we
get the surface velocity of H with respect to Kerr coordinates:

V = �H�1 = �H

(
�

��

)
t,r,�

. (D.23)

Hence the quantity �H can be viewed as the angular velocity of H with respect to the coordinates (t, r, �, �). The fact
that �H is a constant over H reflects the rigidity theorem of stationary black holes (see e.g. Theorem 4.2 of Ref. [37];
more generally, in the WIH setting of Section 8, the constancy of �H guarantees t to be a WIH-symmetry on H).

41 The constant �H, which constitutes an equivalent expression for �H in Eq. (8.36), should not be confused with the Há "́iček 1-form �.
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D.4. 3 + 1 evaluation of the surface gravity �

We will need the orthogonal projector 
q on St . Its components with respect to the coordinates (r, �, �) are given by
the formula qi

j = 
i
j − sisj ; from Eqs. (D.17)–(D.18), we get (i = row index, j = column index)

qi
j =

⎛
⎜⎝

0 0 0

0 1 0

− a

A
(�2 + 2mr) 0 1

⎞
⎟⎠ . (D.24)

We will also need the 1-form K(s, .). From Eqs. (D.16) and (D.18), we get

Krj s
j = m(r2 − a2 cos2 �)

�4(�2 + 2mr)
√

A
[�2a2 sin2 � − 2(�2 + mr)(r2 + a2)] ,

K�j s
j = 2a2 mr sin � cos �

(�2 + 2mr)
√

A
,

K�j s
j = am sin2 �

�4
√

A
[r2(3r2 + a2 cos2 �) + a2(r2 − a2 cos2 �)] . (D.25)

Let us start by evaluating the non-affinity parameter � from the 3 + 1 expression (10.10). The first part of this relation
is computed from Eqs. (D.19) and (D.9):

�
∇
 ln N = m

�2

r2 − a2 cos2 �

(�2 + 2mr)2

(√
A − 2mr

)
. (D.26)

Since A
H=(2mrH)2, this implies

�
∇
 ln N
H= 0 , (D.27)

in agreement with Eq. (D.22). The second term in the right-hand side of Eq. (10.10) is computed from Eqs. (D.18) and
(D.9)

siDiN = m

�2

(r2 − a2 cos2 �)
√

A(
�2 + 2mr

)2 , (D.28)

resulting in the following value on the horizon:

siDiN
H= 2m2rH(r2

H − a2 cos2 �)

�2
H(�2

H + 2mrH)2 , (D.29)

with �2
H := r2

H + a2 cos2 �= 2mrH − a2 sin2 �. Finally from Eqs. (D.9), (D.25) and (D.18), we evaluate the last term
which enters in formula (10.10), namely NKij s

isj . The obtained expression is rather complicated; however combining
its value on the horizon with the results (D.27) and (D.29) yields a very simple expression for the non-affinity parameter:

� = rH − m

2mrH
=

√
m2 − a2

2m(m + √
m2 − a2)

. (D.30)

Note that � does not depend on �, in agreement with the fact that H, endowed with the null normal l given by Eq.
(D.20), is an isolated horizon [zeroth law of black hole mechanics, cf. Eq. (8.5)]. Actually we recover for � the classical
value of the surface gravity of a Kerr black hole (see e.g. Eq. (12.5.4) of Wald [167]).
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D.5. 3 + 1 evaluation of the Há́jiček 1-form �

Let us now compute the Há "́iček 1-form from the 3 + 1 formula (10.14). From Eqs. (D.9), (D.25) and (D.24),
we get

�� = −2a2mr sin � cos �

�2 + 2mr

(
1√
A

+ 1

�2

)
, (D.31)

�� = −am sin2 �

�4
√

A
[r2(3r2 + a2 cos2 �) + a2(r2 − a2 cos2 �)] , (D.32)

from which we deduce the following values on the horizon:

��
H= − a2 sin � cos �

2mrH − a2 sin2 �
, (D.33)

��
H= a

rH
sin2 �

(2m2 − 3mrH + r2
H) cos2 � − rH(rH + m)

(rH + (2m − rH) cos2 �)2 . (D.34)

As a check, let us recover the total angular momentum JH = am from the integral (8.32) which involves �. The
symmetry generator 
 which appears in the integral is of course in the present case the Killing vector �1 = (�/��)t,r,�,
so that formula (8.32) results in (G = 1)

JH = − 1

8�

∫
St

��
2ε . (D.35)

Let us express the integral in terms of the coordinates (�, �) which span St :

JH = − 1

8�

∫ �

0

∫ 2�

0
��

√
q d� d� , (D.36)

where q = det qab, with the 2-metric components qab read from Eq. (D.11):

qab =
⎛
⎝�2 0

0
A

�2 sin2 �

⎞
⎠ . (D.37)

Hence
√

q = √
A sin �, so that

√
q

H= 2mrH sin � and the integral (D.36) becomes

JH = −2mrH

8�

∫ �

0

∫ 2�

0
�� sin � d� d� . (D.38)

Substituting Eq. (D.34) for ��, we get

JH = −am

4

∫ �

0

(2� − 1)(� − 1) cos2 � − �(2� + 1)

(� + (1 − �) cos2 �)2 sin3 � d� , (D.39)

where we have set � := rH/(2m). It turns out that the above integral is independent of � and is simply equal to −4,
hence

JH = am , (D.40)

as it should be for a Kerr black hole.
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D.6. 3 + 1 evaluation of � and �

In order to apply the formulæ derived in Section 10.3.2, let us first compute the second fundamental form H of the
2-surface St (as a hypersurface of �t ). From the relation Hij = Dksl q

k
j ql

j [Eq. (10.30)] and expressions (D.17) and
(D.24), we get the following values on the horizon:

H��
H= 2mr2

H√
(2mrH − a2 sin2 �)(4mrH − a2 sin2 �)

, (D.41)

H��
H= − 2a3mrH sin3 � cos �

(2mrH − a2 sin2 �)3/2(4mrH − a2 sin2 �)1/2 , (D.42)

H��
H= mr3

H sin2 �

4(2mrH − a2 sin2 �)5/2(4mrH − a2 sin2 �)1/2

×
[

4m3 + 9mr2
H + 3r3

H − 4a2(rH + 3m) cos 2� + a4 m − rH

r2
H

cos 4�

]
. (D.43)

We are then in position to evaluate H’s second fundamental form � via Eq. (10.43): � = N(H − 
q∗K). Using the
value of K and 
q given by Eqs. (D.16) and (D.24), we get

�
H= 0 . (D.44)

Hence we recover the fact that the event horizon of a Kerr black hole is a non-expanding horizon.
Regarding the transversal deformation rate �, we use the formula � = −1/(2N)(H − 
q∗K) [Eq. (10.44)]. Using

expressions (D.41)–(D.43), (D.16), (D.24) and (D.9), we get

���
H= − 2mr2

H

2mrH − a2 sin2 �
, (D.45)

���
H= 2a3mr sin3 � cos �

(2mrH − a2 sin2 �)2 , (D.46)

���
H= − 2mrH sin2 �

2mrH − a2 sin2 �

[
rH + a2m(a2 cos2 � − r2

H) sin2 �

(2mrH − a2 sin2 �)2

]
. (D.47)

Contracting with qab [obtained as the inverse of the matrix (D.37)], we get the transversal expansion scalar

�(k)
H= −

2m + 3rH − a2

m

[
1 +

(
m

rH
− 1

)
cos2 �

]
2(2mrH − a2 sin2 �)

. (D.48)

As a check, one can easily verify that in the non-rotating limit (a = 0, rH = 2m), the values of �, � and �(k) derived
above reduce to that obtained in Example 5.7 for the Eddington–Finkelstein slicing of the Schwarzschild horizon [cf.
Eqs. (5.104) and (5.105)].

Appendix E. Symbol summary

The various metrics and associated connections (intrinsic geometries) used in this article are collected in Table 3,
whereas the symbols used to describe the extrinsic geometries of the various submanifolds are collected in Table 4.
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Table 3
Metric tensors and associated connections used in this article

Manifold Metric Signature Compatible connection Ricci tensor

M g (−, +, +, +) ∇ R
H q (0, +, +) × ×
�t � (+, +, +) D 3R
�t �̃ (+, +, +) D̃ 3R̃
St q (+, +) 2D 2R
St q̃ (+, +) 2D̃ 2R̃

HNEH q (0, +, +) ∇̂ Not used

The symbol ‘×’ in the second line means that there is not a unique connection on H compatible with q, for the latter is degenerate. The last line
regards the particular case of a non-expanding horizon.

Table 4
Extrinsic geometry of various submanifolds of M

Submanifold Projector Second fundamental Normal
of M onto it form(s)/embedding manifold vector(s)

H � �/(M, g,l) l
�t 
� K/(M, g) n
St 
q H/(�t , �) s
St 
q H̃/(�t , �̃) s̃
St 
q (�,�)/(M, g,l) (l, k)

St 
q (
q∗K, H)/(M, g) (n, s)

H NEH � 0/(M, g) l

Note that the projectors 
� and 
q are orthogonal ones with respect to the ambient metric g, whereas � is not the notation “�/(M, g,l)” means that
the second fundamental form � depends not only on the ambient geometry (M, g), but also on the choice of the null normal l. The pairs (�,�)

and (
q∗K, H) are required for the embedding of the 2-surfaces St in M because the correct object to describe such an two-dimensional embedding
is not a single bilinear form but a type (

1
2 ) tensor [see Eqs. (5.83) and (10.45)]. The last line regards the particular case of a non-expanding horizon.
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