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A fully geometrical treatment of general relativistic magnetohydrodynamics is developed under the

hypotheses of perfect conductivity, stationarity, and axisymmetry. The spacetime is not assumed to be

circular, which allows for greater generality than the Kerr-type spacetimes usually considered in general

relativistic magnetohydrodynamics. Expressing the electromagnetic field tensor solely in terms of three

scalar fields related to the spacetime symmetries, we generalize previously obtained results in various

directions. In particular, we present the first relativistic version of the Soloviev transfield equation,

subcases of which lead to fully covariant versions of the Grad-Shafranov equation and of the Stokes

equation in the hydrodynamical limit. We have also derived, as another subcase of the relativistic Soloviev

equation, the equation governing magnetohydrodynamical equilibria with purely toroidal magnetic fields

in stationary and axisymmetric spacetimes.
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I. INTRODUCTION

General relativistic magnetohydrodynamics (GRMHD)
is a rapidly developing field of modern astrophysics [1–3],
driven by numerous observations of accretion disks around
black holes [4], jets in active galactic nuclei or micro-
quasars [5,6], gamma ray bursts, hypernovae, pulsars [1]
and strongly magnetized neutrons stars (magnetars). In a
first approximation, all these systems are stationary and
axisymmetric. While GRMHD had been formulated by
Lichnerowicz in 1967 [7], its development for stationary
and axisymmetric spacetimes originates in the work of
Bekenstein and Oron (1978) [8] (hereafter BO) and
Carter (1979) [9]. In particular, BO have established
two conservation laws associated with the spacetime
symmetries, the first of them being a generalization of
the Bernoulli theorem to the case of a magnetized fluid.
Another important step has been the GR generalization of
the famous Grad-Shafranov equation to the Schwarzschild
spacetime by Mobarry and Lovelace (1986) [10] and to the
Kerr spacetime by Nitta, Takahashi and Tomimatsu (1991)
[11] and Beskin and Pariev (1993) [12]. The extension of
the Grad-Shafranov equation to the most general stationary
and axisymmetric spacetimes has been performed by Ioka
and Sasaki (2003) [13], most general meaning without
the assumption of circularity (also called orthogonal
transitivity1), which holds for the Kerr spacetime.

All the studies mentioned above either (i) involve
coordinate-dependent quantities or (ii) introduce some ex-
tra structure in spacetime, such as foliations by 2-surfaces,
in addition to the canonical structures induced by the two
spacetime symmetries (stationarity and axisymmetry).
For instance, two of the fundamental quantities introduced
by BO are defined in terms of the components F�� and u�

of the electromagnetic tensor and the fluid 4-velocity by
! :¼ �F01=F31 and C :¼ F31=ð ffiffiffiffiffiffiffi�g

p
nu2Þ. From these ex-

pressions, it is not obvious that these quantities are actually
coordinate-independent. Another example, related to the
feature (ii) mentioned above, is the ð2þ 1Þ þ 1 decompo-
sition [14] used by Ioka and Sasaki [13,15] in their study of
noncircular spacetimes.
In this article, we undertake a systematic study of sta-

tionary and axisymmetric GRMHD relying solely on the
spacetime structure induced by the spacetime symmetries.
To this aim, we make an extensive use of Cartan’s exterior
calculus, relying on the nature of the electromagnetic field
as a 2-form and the well-known formulation of Maxwell’s
equations by means of the exterior derivative operator. We
also employ the possibly less well-known formulation of
hydrodynamics in terms of the fluid vorticity 2-form, orig-
inating in the works of Synge [16] and Lichnerowicz [17].
This enables us to formulate GRMHD entirely in terms of
exterior forms. Such an approach is not only elegant and
fully covariant, but also makes easier some calculations
which turn to be tedious in the component approach. We
pay attention to keeping hypotheses to a strict minimum,
which allows us to present the results in their most general
form, including noncircular spacetimes, and to encompass
some special cases that had not been considered before, in
particular, those corresponding to a pure rotational fluid
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1Precise definitions are provided below (Sec. II C).

PHYSICAL REVIEW D 83, 104007 (2011)

1550-7998=2011=83(10)=104007(25) 104007-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.83.104007


motion (no meridional circulation) or to a purely toroidal
magnetic field.

The plan of the article is as follows. In Sec. II we
establish the most general form of a stationary and axi-
symmetric electromagnetic field, independently of any
MHD context. In Sec. III, we introduce the concept of a
perfect conductor and in Sec. IV that of a perfect fluid,
leading to the MHD-Euler equation. We also derive two
Bernoulli-like conservation laws in that section. Section V
is devoted to the integration of the MHD-Euler equation by
its reduction to the master transfield equation, a relativistic
generalization of the Soloviev transfield equation. Various
subcases of that equation are examined in Sec. VI, making
the link with preceding results in the literature. Finally,
Sec. VII provides a summary and concluding remarks.

II. STATIONARYAND AXISYMMETRIC
ELECTROMAGNETIC FIELDS

A. Framework and notations

We consider a spacetime ðM; gÞ, i.e. a four-dimensional
real manifold M endowed with a Lorentzian metric g of
signature ð�;þ;þ;þÞ. We assume that M is orientable
(see Appendix B) so that we have at our disposal the
Levi-Civita tensor � (also called volume element)
associated with the metric g [cf. Eq. (B1)]. Let r be the
covariant derivative associated with g: rg ¼ 0
and r� ¼ 0.

We shall mostly use an index-free notation, denoting
vectors on M, and more generally tensors, by boldface
symbols. Given a vector v, we denote by v the linear form
associated to v by the metric tensor, i.e. the linear form
defined by

v :¼ gðv; :Þ: (2.1)

Besides, given a linear form !, we denote by ~! the vector
associated to ! by the metric tensor:

! ¼: gð ~!; :Þ: (2.2)

In a given basis ðe�Þ, where the components of g, v and !
are g��, v

� and!�, respectively, the components of v and

~! are v� ¼ g��v
� and !� ¼ g��!�.

Given a vector v and a tensor T of type ð0; nÞ (n � 1),
i.e. a n-linear form (a linear form for n ¼ 1, a bilinear
form for n ¼ 2, etc.), we denote by v � T (resp. T � v) the
(n� 1)-linear form obtained by setting the first (resp. last)
argument of T to v:

v � T :¼ Tðv; :; . . . ; :Þ; (2.3a)

T � v :¼ Tð:; . . . ; :;vÞ: (2.3b)

Thanks to the above conventions, we may write the scalar
product of two vectors u and v as

g ðu;vÞ ¼ u � v ¼ u � v: (2.4)

We denote by r� the covariant divergence, with contrac-
tion taken on the last index. For instance, for a tensor field
T of type (2, 0), r � T is the vector field defined by

r � T :¼ r�T
��e�; (2.5)

where ðe�Þ is the vector basis with respect to which the
components r�T

�� of rT are taken. Note that the con-

vention for the divergence does not follow the rule for the
contraction with a vector: in (2.3a) the contraction is
performed on the first index.

B. Stationary and axisymmetric spacetimes

We assume that the spacetime ðM; gÞ possesses two
symmetries: (i) stationarity: there exists a group action of
ðR;þÞ on M whose orbits are timelike curves and which
leaves g invariant; (ii) axisymmetry: there exists a group
action of SO(2) on M whose fixed points form a two-
dimensional submanifold � � M and which leaves g
invariant (see e.g. Ref. [18] for an extended discussion).
� is called the rotation axis. To each parametrization of the
one-dimensional Lie groups ðR;þÞ and SO(2), there cor-
responds a parametrization of the action orbits; the corre-
sponding tangent vector fields, called the generators of the
symmetry group, are denoted � for ðR;þÞ and � for SO(2).
The invariance of the metric under the actions of ðR;þÞ
and SO(2) is translated by the vanishing of the Lie deriva-
tive of g along each generator:

L �g ¼ 0 and L�g ¼ 0: (2.6)

The definition of the Lie derivative is recalled in
Appendix A. Thanks to the expression (A8) and to the
identity r�g�� ¼ 0, Eqs. (2.6) are equivalent to the so-

called Killing equations:

r��� þr��� ¼ 0 and r��� þr��� ¼ 0: (2.7)

The group generators � and � are then called Killing
vectors. For a given group action, a Killing vector is defined
up to a constant factor, corresponding to the change of
parametrization of the group. Regarding the SO(2) action,
we can specify uniquely the Killing vector � by demanding
that it corresponds to the standard parametrization of the
group SO(2), i.e. by selecting the parameter as being the
rotation angle ’ 2 ½0; 2�½. For the ðR;þÞ action, there is
a priori no natural scaling of the parameter t 2 R. But if the
spacetime is asymptotically flat, we may fix the scaling by
demanding that � has the standard normalization at infinity:

� � � ! �1: (2.8)

For a spacetime that is both stationary and axisymmetric,
Carter [19] has shown that nogenerality is lost by considering
that the stationary and axisymmetric actions commute. In
other words, the spacetime ðM; gÞ is invariant under the
action of the Abelian group ðR;þÞ � SOð2Þ, and not only
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under the actions of ðR;þÞ and SO(2) separately. It is
equivalent to say that the Killing vectors commute:

½�;�� ¼ 0: (2.9)

Thanks to the property (2.9), one may introduce coordinates
ðx�Þ ¼ ðt; x1; x2; ’Þ onM such that

� ¼ @

@t
and � ¼ @

@’
: (2.10)

Such coordinates are called adapted to the spacetime sym-
metries.Within them, themetric components are functions of
ðx1; x2Þ only:

g�� ¼ g��ðx1; x2Þ: (2.11)

Adapted coordinate systems are by no means unique: any
change of the type

t0 ¼ tþ F0ðx1; x2Þ; (2.12a)

x01 ¼ F1ðx1; x2Þ; (2.12b)

x02 ¼ F2ðx1; x2Þ; (2.12c)

’0 ¼ ’þ F3ðx1; x2Þ; (2.12d)

where F�ðx1; x2Þ are well-behaved functions, leads to coor-
dinates that are still adapted to the spacetime symmetries.

Using the same notation as Carter in his Les Houches
lecture [20], we introduce the following scalar fields:

V :¼ �� � �; (2.13)

W :¼ � � �; (2.14)

X :¼ � � �; (2.15)

� :¼ � det
� � � � � �
� � � � � �

" #
¼ VXþW2: (2.16)

Since � is assumed to be timelike, we have V > 0. Besides,
since � is spacelike, X > 0, except on the rotation axis �
where X ¼ 0. Consequently, �> 0 except on �, where
� ¼ 0. For the Minkowski spacetime and using adapted
coordinates ðt; r; 	; ’Þ of spherical type,

Mink : V ¼ 1; W ¼ 0; X ¼ �¼ r2sin2	: (2.17)

We shall also need the Newtonian values of these fields to
take nonrelativistic limits. In standard isotropic coordi-
nates,

Newt :

8><
>:
V ¼ 1þ 2�grav; W ¼ 0
X ¼ ð1� 2�gravÞr2sin2	
� ¼ r2sin2	;

(2.18)

where �grav is the Newtonian gravitational potential,

which obeys j�gravj � 1. Note that throughout the article,

we are using units such that c ¼ 1.

C. Orthogonal decomposition of the tangent spaces
and circular spacetimes

The properties of stationarity and axisymmetry define
privileged 2-surfaces S in spacetime: the surfaces of tran-
sitivity of the group action ðR;þÞ � SOð2Þ. They are
spanned by coordinates ðt; ’Þ of the type (2.10) and the
Killing vectors ð�;�Þ are everywhere tangent to them.
Except on �, ð�;�Þ constitutes a vector basis of the
2-plane � tangent to S:

� ¼ Spanð�;�Þ: (2.19)

The metric induced by g in the 2-plane � being non-
degenerate (� is a timelike plane), the tangent space
T xðMÞ at any point x 2 M can be orthogonally decom-
posed as the direct sum

T xðMÞ ¼ � ��?; (2.20)

where �? is the (spacelike) 2-plane orthogonal to �. A
vector v 2 T xðMÞ is said to be toroidal iff v 2 � with a
nonvanishing component along � and poloidal or meri-
dional iff v 2 �?.
A question that naturally arises is whether the decom-

position (2.20) is integrable, i.e. whether there exists a
family of 2-surfaces such that at every point�? is tangent
to one of these surfaces, in the same way as the � planes
are everywhere tangent to the surfaces of transitivity S.
The spacetimes for which this property holds are called
orthogonally transitive or circular [20,21]. According to
the Frobenius theorem (see e.g. Appendix B of Ref. [22] or
Sec. 7.2 of Ref. [23]), the necessary and sufficient con-
ditions for ðM; gÞ to be circular are

C� ¼ 0 and C� ¼ 0; (2.21)

where C� and C� are the two twist scalars defined by

C� :¼ ?ð� ^ � ^ d�Þ ¼ 
��������r���; (2.22a)

C� :¼ ?ð� ^ � ^ d�Þ ¼ 
��������r���: (2.22b)

In these equations, d is the exterior derivative, ^ the
exterior product and ? the Hodge star; all these operators
are defined in Appendix B.
If ðM;gÞ is circular, one may choose the adapted coor-

dinates ðt; x1; x2; ’Þ so that ðx1; x2Þ span the 2-surfaces
orthogonal to the surfaces of transitivity. This leads to
the following simplifications in the components of the
metric tensor:

g01 ¼ g02 ¼ g31 ¼ g32 ¼ 0 ðcircular spacetimeÞ:
(2.23)

Examples of circular spacetimes are the Kerr-Newman
spacetime (cf. Appendix D) and the spacetime generated
by a rotating fluid star with a purely poloidal magnetic field
[24,25] or a purely toroidal one [26,27]. In this article, we
do not restrict ourselves to the circular case.
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D. Stationary and axisymmetric electromagnetic field

We consider an electromagnetic field in M, described
by the electromagnetic 2-form F, which obeys Maxwell
equations:

dF ¼ 0; (2.24)

d ? F ¼ �0 ? j; (2.25)

where d is the exterior derivative (cf. Appendix B), ?F is
the 2-form Hodge-dual of F [cf. Eq. (B8)]:

? F�� :¼ 1
2
����F

��; (2.26)

?j is the 3-form Hodge-dual of the 1-form j associated

with the electric 4-current j [cf. Eq. (B7)]:

? j :¼ �ðj; :; :; :Þ (2.27)

and �0 is the vacuum permeability.
We assume that the electromagnetic field is both sta-

tionary and axisymmetric. This is expressed by the vanish-
ing of the Lie derivatives of the electromagnetic tensor
along the symmetry generators � and �, in a way fully
analogous with (2.6):

L�F ¼ 0 and L�F ¼ 0: (2.28)

Now, thanks to the Cartan identity (B21) and the Maxwell
equation (2.24), L�F ¼ � � dFþ dð� � FÞ ¼ dð� � FÞ.
Hence Eqs. (2.28) are equivalent to

d ð� � FÞ ¼ 0 and dð� � FÞ ¼ 0:

Invoking the Poincaré lemma, we conclude that there exist
(at least locally) two scalar fields � and � such that

� � F ¼ �d�; (2.29)

� � F ¼ �d�: (2.30)

� and � are defined up to some additive constant and the
minus sign is chosen for later convenience.

One very often introduces an electromagnetic
4-potential, i.e. a 1-form A such that F ¼ dA. Thanks to
the identity ddA ¼ 0 [cf. Eq. (B17)], the Maxwell equa-
tion (2.24) is then automatically solved. As shown in
Appendix C, one may use the gauge freedom on A to set

� ¼ A � � ¼ At and � ¼ A � � ¼ A’; (2.31)

where the equalities with At and A’ rely on an adapted

coordinate system ðt; x1; x2; ’Þ [cf. Eq. (2.10)]. In this
article, instead of A we will use the gauge-independent
quantities � and �.

From Eq. (2.29), L�� ¼ � � d� ¼ �Fð�; �Þ ¼ 0 and

L�� ¼ � � d� ¼ �Fð�;�Þ. Similarly, from Eq. (2.30),

L�� ¼ � � d� ¼ �Fð�;�Þ ¼ 0 and L�� ¼ � � d� ¼
Fð�;�Þ. Hence we have

d ½Fð�;�Þ� ¼ d½� � d�� ¼ L�d� ¼ L�ðF � �Þ ¼ 0;

from which we conclude that Fð�;�Þ is constant over M.
We assume that this constant is zero. In particular this is the
case if F vanishes at some place (e.g. at spatial infinity):

F ð�;�Þ ¼ 0: (2.32)

A consequence of the above property is that the potentials
� and � obey both spacetime symmetries:

L�� ¼ L�� ¼ 0 and L�� ¼ L�� ¼ 0: (2.33)

Apart from Fð�;�Þ, the only nontrivial scalar that one
can form from F, � and � is

I :¼ ?Fð�;�Þ: (2.34)

We may then assert that the most general form of a sta-
tionary and axisymmetric electromagnetic field is

F ¼ d� ^ �	 þ d� ^ �	 þ I

�
�ð�;�; :; :Þ; (2.35)

?F¼�ð ~r�; ~�
	
; :; :Þþ�ð ~r�; ~�	; :; :Þ� I

�
�^�; (2.36)

where the 1-forms ð�	;�	Þ constitute the dual basis of the
vector basis ð�;�Þ of the plane� defined by Eq. (2.19) and
vanish on �’s orthogonal complement:

� 	 � � ¼ 1; �	 �� ¼ 0; �	 � � ¼ 0; �	 �� ¼ 1;

(2.37)

8v 2 �?; �	 � v ¼ �	 � v ¼ 0: (2.38)

Conditions (2.37) and (2.38) define ð�	;�	Þ uniquely.
Indeed it is easy to see that, in terms of the scalars defined
by (2.13), (2.14), (2.15), and (2.16),

� 	 ¼ 1

�
ð�X� þW�Þ and �	 ¼ 1

�
ðW� þ V�Þ:

(2.39)

In terms of coordinates ðt; x1; x2; ’Þ adapted to the space-
time symmetries, we may express the 1-forms �	 and �	 as

�	 ¼ dtþ 1

�
ð�X�a þW�aÞdxa; (2.40a)

�	 ¼ d’þ 1

�
ðW�a þ V�aÞdxa; (2.40b)

where the index a ranges from 1 to 2. In particular,
for circular spacetimes, �a ¼ ga0 ¼ 0 and �a ¼ ga3 ¼ 0
[cf. (2.23)], so that

� 	 ¼ dt and �	 ¼ d’ ðcircular spacetimeÞ:
(2.41)

To demonstrate (2.35) let us consider the 2-form

G :¼ F� d� ^ �	 � d� ^ �	:
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It satisfies

Gð�; :Þ ¼ Fð�; :Þ|fflffl{zfflffl}
�d�

� ð� � d�|fflffl{zfflffl}
0

Þ�	 þ ð�	 � �|ffl{zffl}
1

Þd�

� ð� � d�|fflffl{zfflffl}
0

Þ�	 þ ð�	 � �|fflffl{zfflffl}
0

Þd� ¼ 0:

Similarly, Gð�; :Þ ¼ 0. Hence the 2-form G vanishes on the
plane�, i.e. the nontrivial action ofG takes place in the plane
�?. Another 2-form that shares the same properties as G is

H :¼ 1

�
�ð�;�; :; :Þ:

Since the vector space of 2-forms in the 2-plane �? is of
dimension one,Gj�? andHj�? must be collinear. Since the
Hj�? is not vanishing, we conclude that there must exist
some coefficient I such that Gj�? ¼ IHj�? . Since both
2-forms vanish on �, we may extend the equality to G and
H, thanks to the property (2.20):

G ¼ IH:

This proves thatF takes the form (2.35). Using the properties
(B12), it is then immediate to show that the Hodge dual
of F is given by (2.36). On this form, we verify2

that ?Fð�;�Þ ¼ I, i.e. that the proportionality coefficient I
introduced above is indeed the quantity defined by
Eq. (2.34). This completes the proof of the decomposition
(2.35) of F.

Equation (2.35) shows that a stationary and axisymmet-
ric electromagnetic field is entirely described by three
scalar fields: �, � and I. A concrete example is provided
by the Kerr-Newman electromagnetic field presented in
Appendix D. The component expression of (2.35) with
respect to an adapted coordinate system is given in
Appendix E.

E. Maxwell equations

The first Maxwell equation, Eq. (2.24), is automatically
satisfied by the form (2.35) of F, whatever the values of�,
� and I. Indeed, since dd� ¼ dd� ¼ 0 [Eq. (B17)], we
have, using the Leibniz rule (B18) with p ¼ 1,

dF ¼ �d� ^ d�	 � d� ^ d�	 þ d½I��1�ð�;�; :; :Þ�
(2.42)

and each of the three terms in the right-hand side vanishes.
Regarding the first term, we have, via the Cartan identity,

� � d�	 ¼ L��
	|ffl{zffl}

0

� dð� � �|{z}
1

	Þ ¼ 0:

Similarly, � � d�	 ¼ 0. Hence the 2-form d�	 vanishes on
�. The same thing holds for the 1-form d�, by virtue of

Eq. (2.33). Consequently, the 3-form d� ^ d�	 vanishes
on � and acts only in �?. Since dim�? ¼ 2, the 3-form
d� ^ d�	 necessarily vanishes on �?. We thus conclude
that d� ^ d�	 ¼ 0 in all space. The same property holds
for the 3-form d� ^ d�	. Finally, regarding the third term
in (2.42), let us take its Hodge dual and write, using (B12),

? d½I��1�ð�;�; :; :Þ� ¼ � ? d ? ðI��1� ^ �Þ:
Now, the operator ?d? is the codifferential and can be
expressed as the divergence taken with the r connection:
?d ? ðI��1� ^ �Þ ¼ r � ðI��1� ^ �Þ. Now it is easy to

see that r � ðI��1� ^ �Þ ¼ I��1½�;�� ¼ 0 by virtue of

Eq. (2.9). Hence ?d½I��1�ð�;�; :; :Þ� ¼ 0, which implies
d½I��1�ð�;�; :; :Þ� ¼ 0. We conclude that (2.42) reduces
to dF ¼ 0, i.e. the first Maxwell equation (2.24).
The second Maxwell equation, Eq. (2.25), gives the

electric 4-current j. Let us first fix the first two arguments
of each 3-form appearing in Eq. (2.25) to ð�;�Þ:

�0�ðj; �;�; :Þ ¼ d ? Fð�;�; :Þ: (2.43)

Now, by means of the Cartan identity,

d ? Fð�; :; :Þ ¼ L� ? F|fflfflffl{zfflfflffl}
0

� d½?Fð�; :Þ� ¼ �d½?Fð�; :Þ�:

Hence

d ? Fð�;�; :Þ ¼ �� � d½?Fð�; :Þ�
¼ �fL�½?Fð�; :Þ�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

0

� d½?Fð�;�Þ|fflfflfflfflffl{zfflfflfflfflffl}
I

�g ¼ dI:

Therefore Eq. (2.43) becomes

�0�ðj; �;�; :Þ ¼ dI: (2.44)

We conclude that if the 4-current has some poloidal part,
i.e. if j =2 �, then necessarily I � 0.
Taking the Hodge dual of (2.44) and applying the result-

ing 3-form to the couple ð�;�Þ yields

j ¼ð�	 �jÞ�þð�	 �jÞ�� 1

�0�
~�ð�;�; ~rI;:Þ: (2.45a)

There remains to evaluate �	 � j and �	 � j. To this aim, let
us consider the Maxwell equation (2.25) in its dual form
r � F ¼ �0j. Substituting (2.35) forF in it, expanding and

making use of (2.39), (2.7), and (2.22), results in

�0�
	 �j¼r�

�
X

�
r���W

�
r��

�
þ I

�2

�
�XC� þWC�

�
;

(2.45b)

�0�
	 �j¼�r�

�
W

�
r��þV

�
r��

�
þ I

�2

�
WC� þVC�

�
;

(2.45c)

where the twist scalars C� and C� are defined by (2.22).

At the Newtonian limit, the electric 4-current j can be
decomposed into the charge density �e and the electric

2using the fact that �ð ~r�; ~�
	
; �;�Þ ¼ 0, thanks to relation

(2.39) which induces that the vector ~�
	
is a linear combination of

� and �
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3-current J, both measured by the stationary observer,
according to j ¼ �e� þ J and � � J ¼ 0. From

Eq. (2.45a), we get �e ¼ �	 � j and J ¼ ð�	 � jÞ� �
�0�

�1 ~�ð�;�; ~rI; :Þ. Choosing spherical coordinates
ðt; r; 	; ’Þ and using Eq. (2.18) as well as Eq. (E1) withffiffiffiffiffiffiffi�g
p ¼ r2 sin	 to express ~�ð�;�; ~rI; :Þ, we obtain the

Newtonian limit of Eqs. (2.45) as

�0�e ¼ 1

r2
@rðr2@r�Þ þ 1

r2 sin	
@	ðsin	@	�Þ; (2.46a)

�0J ¼ 1

r sin	

�
1

r
@	IeðrÞ � @rIeð	Þ ��	�eð’Þ

�
; (2.46b)

where ðeðrÞ; eð	Þ; eð’ÞÞ is the standard orthonormal basis

associated with spherical coordinates: eðrÞ :¼ @r,
eð	Þ :¼ r�1@	 and eð’Þ :¼ ðr sin	Þ�1@’, and �	 is the

second-order differential operator defined by

�	� :¼ @2r�þ sin	

r2
@	

�
1

sin	
@	�

�
: (2.47)

III. PERFECT CONDUCTOR

A. Definition and first properties

From now on, we assume that a part D � M of space-
time is occupied by a perfect conductor. By this, we mean
that D is covered by a congruence of timelike worldlines3

such that the observers associated with each worldline
measure a vanishing electric field. This expresses the infi-
nite conductivity condition via Ohm’s law. Let us recall that
the electric field 1-form e and the magnetic field vector b
measured by an observer of 4-velocity u are given in terms
of F by

e ¼ F � u and b ¼ u � ?F: (3.1)

Equivalently, F is entirely expressible in terms of e, b and
u as

F ¼ u ^ eþ �ðu; b; :; :Þ; (3.2a)

?F ¼ �u ^ bþ �ðu; ~e; :; :Þ: (3.2b)

The perfect conductor condition is e ¼ 0. From (3.1), this
is equivalent to

F � u ¼ 0: (3.3)

The electromagnetic field then reduces to

F ¼ �ðu; b; :; :Þ; (3.4a)

?F ¼ �u ^ b: (3.4b)

Let us decompose the 4-velocity u orthogonally with
respect to the 2-plane�, thereby introducing the scalars 

and � and the vector w:

u ¼ 
ð� þ��Þ þ w; w 2 �?: (3.5)

The 4-velocity normalization relation u � u ¼ �1 is
equivalent to the following relation between 
, � and w
[cf. Eqs. (2.13), (2.14), (2.15), and (2.16)]:


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w � w
V � 2W�� X�2

s
: (3.6)

For circular spacetimes and in coordinates ðt; x1; x2; ’Þ
adapted to the spacetime symmetries, one has w0 ¼
w3 ¼ 0 [Eq. (E13) below], so that d’=dt ¼ u3=u0 ¼ �,
showing that� is the angular velocity of the fluid about the
rotation axis. On the other side, we shall call w the meri-
dional velocity. We shall say that the fluid is in pure rota-
tional motion iff w ¼ 0; the 4-velocity u is then a linear
combination of the two Killing vectors.
Cartan’s identity (B21), along with Maxwell

equation (2.24) and the perfect conductor condition (3.3)
gives LuF ¼ u � dFþ dðu � FÞ ¼ 0þ 0, i.e.

L uF ¼ 0: (3.7)

This result is independent of the hypotheses of stationarity
and axisymmetry and is the geometrical expression of
Alfvén’s theorem about magnetic flux freezing.
From the very definition of � and � [Eqs. (2.29) and

(2.30)], we have Lu� ¼ u � d� ¼ �Fð�; uÞ and
Lu� ¼ �Fð�; uÞ. The perfect conductor condition (3.3)
gives then immediately

L u� ¼ 0 and Lu� ¼ 0: (3.8)

Hence the potentials� and� are preserved along the fluid
lines. The expansion (3.5) of u and the symmetry proper-
ties (2.33) show that (3.8) is actually equivalent to

L w� ¼ 0 and Lw� ¼ 0: (3.9)

Let us express the perfect conductor condition (3.3) by
replacing F by its expression (2.35); we get

ð�	 � u|ffl{zffl}



Þd�� ðd� � u|fflffl{zfflffl}
0

Þ�	 þ ð�	 � u|ffl{zffl}

�

Þd�

� ðd� � u|fflffl{zfflffl}
0

Þ�	 þ I

�
�ð�;�; :; uÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
��ð�;�;w;:Þ

¼ 0;

where use has been made of (3.9). Since 
 � 0 (otherwise
u would be spacelike), we obtain

d� ¼ ��d�þ I

�

�ð�;�;w; :Þ: (3.10)

B. Conservation of baryon number and stream function

If n denotes the baryon number density in the fluid
frame, the law of baryon number conservation is
r � ðnuÞ ¼ 0, or equivalently, thanks to the decomposition
(3.5) with � and � Killing vectors,

3Later on, we will specify these worldlines to be those of a
perfect fluid, but this not necessary for the present discussion
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r � ðnwÞ ¼ 0: (3.11)

Thanks to the identities (B20) and (B7), we may rewrite the
above property as

d ðn ? wÞ ¼ 0: (3.12)

From the Poincaré lemma (cf. Appendix B), we conclude
that there exists a 2-form H such that

dH ¼ n ? w: (3.13)

The above relation is analogous to Maxwell equation
(2.25), via the identifications ?F $ H and �0j $ nw.
Consequently, the same reasoning that led to Eq. (2.44)
results in

n�ðw;�;�; :Þ ¼ df; (3.14)

where the scalar field f is related to H by the analogue of
Eq. (2.34): f :¼ Hð�;�Þ. We also have the analogue of
Eq. (2.45a), with �	 � w ¼ 0 and �	 � w ¼ 0 in addition,
since w 2 �?:

w ¼ � 1

�n
~�ð�;�; ~rf; :Þ: (3.15)

This relation shows that the fluid meridional velocity w is
entirely described by the scalar field f; f is called the
stream function (or Stokes stream function). From
Eq. (3.14), we have immediately � � df ¼ 0 and
� � df ¼ 0, which shows that f obeys the two spacetime
symmetries. Moreover, a direct consequence of Eq. (3.15)
is w � df ¼ 0. In view of Eq. (3.5), this yields

L uf ¼ 0; (3.16)

i.e. f is conserved along the fluid lines.
The Newtonian limit of Eq. (3.15) is easily taken via

Eqs. (2.18) and (E1):

Newt : w ¼ 1

nr sin	

�
1

r
@	feðrÞ � @rfeð	Þ

�
; (3.17)

where the notation is the same as in Eq. (2.46).
Taking (3.14) into account, the perfect conductor rela-

tion (3.10) becomes

d� ¼ ��d�þ I

�n

df: (3.18)

Thanks to Eq. (3.15), the condition w � d� ¼ 0
[Eq. (3.9)] is equivalent to

� ð�;�; ~rf; ~r�Þ ¼ 0:

This relation is satisfied if, and only if, the 1-forms df and
d� are linearly dependent, i.e. if there exist some scalar
fields � and � not simultaneously vanishing such that

�d�þ �df ¼ 0: (3.19)

Similarly the condition w � d� ¼ 0 [Eq. (3.9)] leads to the
existence of two scalar fields �0 and �0 not simultaneously
vanishing such that

�0d�þ �0df ¼ 0: (3.20)

C. Magnetic field in the fluid frame

The magnetic field in the fluid frame is obtained
by substituting (3.5) for u and (2.36) for ?F in Eq. (3.1).
We get

b ¼ 


�
f½IðW þ X�Þ � 
�1�ð�;�; ~r�;wÞ��

þ ½IðV �W�Þ þ 
�1�ð�;�; ~r�;wÞ��
� ðW þ X�Þ ~�ð�;�; ~r�; :Þ
� ðV �W�Þ ~�ð�;�; ~r�; :Þg: (3.21)

The above expression is fully general. We may special-

ize it to a perfect conductor by expressing �ð�;�; ~r�; :Þ
via Eqs. (3.18) and (3.15): �ð�;�; ~r�; :Þ ¼
���ð�;�; ~r�; :Þ � ðI=
Þw. Using (3.14), we get

b ¼ 


�

��
IðW þ X�Þ þ 1


n
df � ~r�

�
�

þ
�
I

�
V �W�� w � w


2

�
þ �


n
df � ~r�

�
�

� ðV � 2W�� X�2Þ ~�ð�;�; ~r�; :Þ
þ I



ðW þ X�Þw

�
: (3.22)

The Newtonian limit of this expression is readily obtained
by means of Eqs. (2.18) and (E1), and after restoration of
c�1 factors to cancel velocity terms. One gets, with the
same notation as in Eq. (2.46),

Newt : b ¼ 1

r sin	

�
1

r
@	�eðrÞ � @r�eð	Þ þ Ieð’Þ

�
:

(3.23)

Thanks to the properties � � d� ¼ 0, � � d� ¼ 0
[Eq. (2.33)] and w � d� ¼ 0 [Eq. (3.9)], an immediate
consequence of expression (3.22) is

L b� ¼ 0: (3.24)

Hence, like the fluid lines, the magnetic field lines are
contained in constant � hypersurfaces.

IV. IDEAL MHD

A. Perfect fluid model

From now on, we assume that the fluid is a perfect one,
i.e. that its energy-momentum tensor is given by

T fl ¼ ð"þ pÞu 
 uþ pg; (4.1)

where " is the proper energy density and p the fluid
pressure. Moreover, we assume that the fluid is a simple
fluid, i.e. that all the thermodynamical quantities depend
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only on the entropy density s and on the proper baryon
number density n. In particular,

" ¼ "ðs; nÞ: (4.2)

The above relation is called the equation of state (EOS) of
the fluid. The temperature T and the baryon chemical
potential � are then defined by

T :¼ @"

@s
and � :¼ @"

@n
: (4.3)

As a consequence of the first law of thermodynamics, p is a
function of ðs; nÞ entirely determined by (4.2):

p ¼ �"þ Tsþ�n: (4.4)

Let us introduce the enthalpy per baryon,

h :¼ "þ p

n
¼ �þ TS; (4.5)

where S is the entropy per baryon:

S :¼ s

n
: (4.6)

The second equality in (4.5) is an immediate consequence
of (4.4).

B. MHD-Euler equation

The MHD-Euler equation stems from the conservation
law of energy momentum:

r � ðTfl þ TemÞ ¼ 0; (4.7)

where Tem is the energy-momentum tensor of the electro-
magnetic field. As is well known,

r � Tem ¼ �F � j: (4.8)

On the other side, using the baryon number conservation
r � ðnuÞ ¼ 0, the term r � Tfl can be decomposed into a
part along u,

u � r � Tfl ¼ �nTu � dS (4.9)

and a part orthogonal to u (see e.g. Ref. [28] for details):

?ur � Tfl ¼ n½u � dðhuÞ � TdS�: (4.10)

The 2-form dðhuÞ is called the vorticity 2-form; Eq. (4.10)
has been obtained first by Synge (1937) [16] (special
relativity and T ¼ 0), Lichnerowicz (1941) [17] (general
relativity and T ¼ 0) and Taub (1959) [29] (general case)
(see also [9]).

From the perfect conductor relation (3.3), we have u �
F � j ¼ Fðu; jÞ ¼ 0. Hence Eq. (4.8) has no component
along u. Consequently, we deduce from Eqs. (4.8), (4.9),
and (4.10) that the conservation law (4.7) is equivalent to
the system

L uS ¼ 0; (4.11)

u � dðhuÞ � TdS ¼ 1

n
F � j: (4.12)

We shall call Eq. (4.12) the MHD-Euler equation.

C. Conserved quantities along the fluid lines

For a pure rotational flow, u is a linear combination of
the two Killing vectors [Eq. (3.5) with w ¼ 0] and every
scalar field that obeys the spacetime symmetries is con-
served along the fluid lines. This is no longer true
for a flow with a meridional component (w � 0).
However, in this case, one can derive two conservation
laws of ‘‘Bernoulli’’ type, which we investigate here.

1. Derivation

Contracting the MHD-Euler equation (4.12) with the
vector � leads to

u � dðhuÞ � � ¼ Fð�; jÞ=n; (4.13)

where we have used � � dS ¼ 0 since the entropy per
baryon is supposed to respect the stationarity symmetry,
as well as any fluid quantity. In particular,L�ðhuÞ ¼ 0 and

we deduce from Cartan’s identity (B21) that

d ðhuÞ � � ¼ dðhu � �Þ: (4.14)

Besides, from the very definition of� [Eq. (2.29)], we have
Fð�; jÞ ¼ �j � d�. Using expression (2.45a) for j, along
with the symmetry properties � � d� ¼ 0 and � � d� ¼ 0,
leads then to

F ð�; jÞ ¼ 1

�0�
�ð�;�; ~rI; ~r�Þ: (4.15)

Thanks to Eqs. (4.14), (4.15), and (4.13) becomes

L uðhu � �Þ ¼ 1

�0�n
�ð�;�; ~rI; ~r�Þ: (4.16)

Since we are considering a flow which is not purely
rotational, w � 0 and, from Eq. (3.15), df � 0. Then
the linear relation (3.20) between d� and df can be
rewritten as

d� ¼ Cdf; (4.17)

whereC is some scalar field which is necessarily a function
of f, as a consequence of the following lemma.
Lemma 1: If z, p and y are three scalar fields onM such

that

d z ¼ pdy and dy � 0; (4.18)

then both z and p are functions of y, with p being the
derivative of z with respect to y:

z ¼ zðyÞ and p ¼ pðyÞ ¼ z0ðyÞ: (4.19)

Proof: Let us take the exterior derivative of Eq. (4.18)
via Eq. (B18); thanks to identities ddz ¼ 0 and ddy ¼ 0
[Eq. (B17)], we get
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dp ^ dy ¼ 0:

If dp � 0, this implies that the hypersurfaces of constant p
coincide with the hypersurfaces of constant y, from which
we deduce that p is a function of y. If dp ¼ 0, then p is
constant and it can still be considered as a function of y
(constant function). Then we have dz ¼ pðyÞdy, which
shows that z is nothing but a primitive of the function
pðyÞ; thus z ¼ zðyÞ and pðyÞ ¼ z0ðyÞ, which completes
the proof.

Applying Lemma 1 to Eq. (4.17), we obtain

C ¼ CðfÞ: (4.20)

Since f is preserved along the fluid lines [Eq. (3.16)], we
have of course the same property for the function C:

LuC ¼ 0: (4.21)

Combining Eqs. (4.17) and (3.18), we get

d� ¼ Ddf; with D :¼ �C�þ I

�n

: (4.22)

From Lemma 1, we have D ¼ DðfÞ and
LuD ¼ 0: (4.23)

In view of (4.22) and (4.16) can be rewritten as

L uðhu � �Þ ¼ D

�0�n
�ð�;�; ~rI; ~rfÞ:

Now, according to Eqs. (3.15) and (3.5),

� ð�;�; ~rI; ~rfÞ ¼ �nw � dI ¼ �nu � dI ¼ �nLuI:

Thus

L uðhu � �Þ ¼ D

�0

LuI ¼ Lu

�
DI

�0

�
;

where the second equality follows from (4.23). We con-
clude that the scalar quantity

E :¼ �hu � � þDI

�0

(4.24)

is conserved along the fluid lines

LuE ¼ 0: (4.25)

Thanks to Eqs. (3.5), we may express E as

E ¼ 
hðV �W�Þ þDI

�0

: (4.26)

In the limit of a vanishing electromagnetic field (I ¼ 0 and
C ¼ 0), the conservation law (4.25) is nothing but the
relativistic Bernoulli theorem (see e.g. Ref. [28]).

Repeating the same calculation, but with the Killing
vector � instead of �, we arrive at

L uðhu � �Þ ¼ 1

�0�n
�ð�;�; ~rI; ~r�Þ; (4.27)

instead of (4.16). Substituting Eq. (4.17) for d� and mak-
ing use of Eq. (3.15), we get

Luðhu � �Þ ¼ C

�0

LuI ¼ Lu

�
CI

�0

�
;

where the second equality follows from (4.21). We con-
clude that the quantity

L :¼ hu � � � CI

�0

(4.28)

is conserved along the fluid lines:

LuL ¼ 0: (4.29)

Thanks to Eq. (3.5), we may express L as

L ¼ 
hðW þ X�Þ � CI

�0

: (4.30)

The conserved quantities E and L can be considered as
functions of f:

E ¼ EðfÞ and L ¼ LðfÞ (4.31)

according to the following lemma:
Lemma 2: If df � 0, any scalar field which obeys to the

spacetime symmetries and is preserved along the fluid lines
is a function of f.
Proof: Let z be a scalar field with the above properties.

Then L�z ¼ � � dz ¼ 0 and L�z ¼ � � dz ¼ 0, which

shows that ~rz 2 �?. Moreover, the property Luz ¼ w �
dz ¼ 0 with w � 0 (since df � 0) implies that ~rz lies
along the orthogonal direction to w in the plane �?. The
latter being generated by ~rf [cf. Eq. (3.15)], we have that
dz ¼ �df for some coefficient �. The application of
Lemma 1 then completes the proof.

2. Newtonian limits

To take nonrelativistic limits, let us introduce the fluid
mass density � and specific enthalpy H by

� :¼ mbn and H :¼ "int þ p

�
; (4.32)

where mb ¼ 1:66� 10�27 kg is some mean baryon mass
and "int :¼ "�mbn is the fluid internal energy density. H
is related to h via Eq. (4.5):

h ¼ mbð1þHÞ; (4.33)

with H � 1 at the nonrelativistic limit. In view of (2.18),
the expansion of Eq. (3.6) leads to

Newt : 
 ¼ 1��grav þ v2

2
; (4.34)
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where v2 :¼ w � wþ�2r2sin2	. Substituting expressions
(2.18), (4.33), and (4.34), into Eqs. (4.26) and (4.30), we get
the Newtonian limit of the conserved quantities E and L:

Newt :
E

mb

� 1 ¼ H þ�grav þ v2

2
þ DI

�0mb

; (4.35)

Newt :
L

mb

¼ �r2sin2	� CI

�0mb

: (4.36)

In the absence of electromagnetic field (I ¼ 0), we recog-
nize in (4.35) the classical Bernoulli integral.

Besides, if we combine Eqs. (3.17), (3.23), and (4.17),
we recover the well-known property of collinearity of the
poloidal magnetic field and meridional velocity:

Newt : bp ¼ Cnw; (4.37)

where bp is the part of b along eðrÞ and eð	Þ in Eq. (3.23).

3. Comparison with BO

The conservation laws (4.25) and (4.29) have been first
established by BO [8]. They have expressed E and L in
terms of the magnetic field b in the fluid frame, but it can
be shown that their expressions are equivalent to (4.26) and
(4.30). Actually, our derivation is slightly more general.
Indeed, the BO expressions for E and L are4

E ¼ �
�
hþ b � b

�0n

�
u � � � C

�0

½u � ð� þ!�Þ�ðb � �Þ;
(4.38)

L ¼
�
hþ b � b

�0n

�
u � � þ C

�0

½u � ð� þ!�Þ�ðb � �Þ;
(4.39)

where ! is defined by BO in terms of the components of
the electromagnetic field tensor as5

! :¼ �F01

F31

¼ �F02

F32

: (4.40)

Using Eqs. (E2a) and (E2b), we see that, within our nota-
tions, ! is the proportionality factor between the gradients
of � and �:

d� ¼ �!d�: (4.41)

Combining Eqs. (3.18) and (4.17), we get an expression of
! in terms of previously introduced quantities:

! ¼ �� I

C�n

¼ �D

C
: (4.42)

On Eq. (4.41) we see the slight shortcoming of BO ex-
pressions for E and L: if the electromagnetic field is
such that d� ¼ 0 while d� � 0 (purely toroidal magnetic
field, cf. Sec. VID), then ! is ill defined: ! ! 1. This
corresponds to F31 ¼ F32 ¼ 0 or C ¼ 0 [cf. Eq. (4.17)]. In
contrast, our expressions (4.26) and (4.30) for E and L, and
the derivation of their constancy along the streamlines, are
valid even in the special case d� ¼ 0. Note however that
BO formulas (4.38) and (4.39) give finite expressions when
! ! 1ð, C ! 0Þ, since Eq. (4.42) shows that

C! ¼ C�� I

�n

! � I

�n

when C ! 0:

V. INTEGRATING THE MHD-EULER EQUATION

A. Explicit form of the MHD-Euler equation

Let us first evaluate the 1-form u � dðhuÞ that appears in
the left-hand side of the MHD-Euler equation (4.12), by
means of the decomposition (3.5) of u. We first decompose
the 1-form u � dðhuÞ orthogonally with respect to the plane
� by writing

u � dðhuÞ ¼ Zþ ��	 þ ��	;

where Z is a 1-form that vanishes in� and the coefficients
� and � are determined via the properties (2.37):
� ¼ u � dðhuÞ � � and � ¼ u � dðhuÞ � �. Using the
Cartan identity (B21), we get

� ¼ �½� � dðhuÞ� � u ¼ �½L�ðhuÞ|fflfflffl{zfflfflffl}
0

� dðhu � �Þ� � u

¼ u � dðhu � �Þ ¼ w � dðhu � �Þ:
Similarly � ¼ w � dðhu � �Þ. Hence
u � dðhuÞ ¼ Zþ ½w � dðhu � �Þ��	 þ ½w � dðhu � �Þ��	:

(5.1)

Besides, from the decomposition (3.5) of u, we have

u � dðhuÞ ¼ u � drþ u � dðhwÞ; (5.2)

where we have introduced the 1-form

r :¼ 
hð� þ��Þ: (5.3)

We have, using the Cartan identity,

u � dr ¼ 
� � drþ 
�� � drþ w � dr
¼ 
½L�r|{z}

0

� dðr � �Þ� þ 
�½L�r|{z}
0

� dðr � �Þ�

þ w � dr
¼ �
dðhu � �Þ � 
�dðhu � �Þ þ w � dr: (5.4)

4Equations (4.38) and (4.39) are, respectively, Eqs. (92) and
(93) of Ref. [8]; to show that they are equivalent to Eqs. (4.26)
and (4.30), the starting point is to use the definition (2.34) of I
along with the perfect conductor expression (3.4b) of ?F to write
I ¼ ðu � �Þðb � �Þ � ðu � �Þðb � �Þ.

5! is denoted �A by BO.
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Invoking the Cartan identity again,

� � dðhwÞ ¼ L�ðhwÞ|fflfflffl{zfflfflffl}
0

� dðhw � �|ffl{zffl}
0

Þ ¼ 0:

Similarly, � � dðhwÞ ¼ 0. This shows that the 2-form
dðhwÞ acts only the 2-plane �?. By the same reasoning
as for the 2-formG in Sec. II D, we deduce that dðhwÞmust
be proportional to the 2-form �ð�;�; :; :Þ:

d ðhwÞ ¼ q�ð�;�; :; :Þ: (5.5)

The coefficient q is determined by the Hodge duality:

q ¼ 1

�

���
����r�ðhw
Þ ¼ �r�

�
h

�n
r�f

�
; (5.6)

where the second equality results from Eq. (3.15).
Collecting (5.4) and (5.5), we rewrite (5.2) as

u �dðhuÞ ¼�
dðhu ��Þ�
�dðhu ��Þþw �drþq

n
df;

(5.7)

where we have used the property (3.14): �ð�;�; u; :Þ ¼
�ð�;�;w; :Þ ¼ n�1df.

Let us employ (5.7) to evaluate the 1-form Z acting in
the plane �?. Given a generic vector v 2 �?, we have

Z � v ¼ u � dðhuÞ � v
¼ �
v � dðhu � �Þ � 
�v � dðhu � �Þ

þ drðw;vÞ þ q

n
v � df: (5.8)

There remains to evaluate drðw;vÞ; from (5.3), we have

d rðw;vÞ ¼ 
h½d�ðw;vÞ þ�d�ðw;vÞ�;
where we have used the property ðd� ^ �Þðw;vÞ ¼ 0,

resulting from � � w ¼ 0 and � � v ¼ 0. By a straightfor-

ward calculation6 one can show the identity

ð� ^ � ^ d�Þð�;�;w;vÞ ¼ ��d�ðw;vÞ:
Now, the Hodge dual of relation (2.22a) gives

� ^ � ^ d� ¼ �C��:

Hence

d �ðw;vÞ ¼ C�
�

�ð�;�;w;vÞ ¼ C�
�n

v � df;
where the second equality results from Eq. (3.14). Using
the similar relation for d�ðw;vÞ, we arrive at

d rðw;vÞ ¼ 
h

�n
ðC� þ�C�Þv � df:

Substituting in Eq. (5.8), we get

Z ¼ �
dðhu � �Þ � 
�dðhu � �Þ
þ 1

n

�
qþ 
h

�
ðC� þ�C�Þ

�
df:

Finally, Eq. (5.1) becomes

u � dðhuÞ ¼ ½w � dðhu � �Þ��	 þ ½w � dðhu � �Þ��	

þ 1

n

�
qþ 
h

�
ðC� þ�C�Þ

�
df� 
dðhu � �Þ

� 
�dðhu � �Þ: (5.9)

Let us now evaluate the Lorentz force term on the right-
hand side of the MHD-Euler equation (4.12). Given the
generic form (2.35) of F, we have

F � j ¼ ð�	 � jÞd�� ðj � d�Þ�	 þ ð�	 � jÞd�
� ðj � d�Þ�	 þ I

�
�ð�;�; :; jÞ:

Now, from Eqs. (2.45a) and (2.33), j � d� ¼
��ð�;�; ~rI; ~r�Þ=ð�0�Þ, and j � d� ¼ ��ð�;�; ~rI;
~r�Þ=ð�0�Þ. Besides, from Eq. (2.44), �ð�;�; :; jÞ ¼
���1

0 dI. Hence

F � j ¼ 1

�0�
�ð�;�; ~rI; ~r�Þ�	

þ 1

�0�
�ð�;�; ~rI; ~r�Þ�	 þ ð�	 � jÞd�

þ ð�	 � jÞd�� I

�0�
dI: (5.10)

In view of Eqs. (5.9) and (5.10), the MHD-Euler equa-
tion (4.12) becomes�
w � dðhu � �Þ � 1

�0�n
�ð�;�; ~rI; ~r�Þ

�
�	

þ
�
w � dðhu � �Þ � 1

�0�n
�ð�;�; ~rI; ~r�Þ

�
�	

þ I

�0�n
dI� 
dðhu � �Þ � 
�dðhu � �Þ

þ 1

n

�
qþ 
h

�
ðC� þ�C�Þ

�
df� �	 � j

n
d�

� �	 � j
n

d�� TdS ¼ 0: (5.11)

This equation expresses the vanishing of a 1-form. The
parts along �	 and �	 vanish identically in the 2-plane�?
[cf. Eq. (2.38)]. On the contrary, all the remaining parts,
being proportional to gradient of symmetric scalar fields,
vanish identically in the 2-plane � ¼ Spanð�;�Þ. Each
tangent space to M being the direct sum of � and �?
[Eq. (2.20)] and ð�	;�	Þ being a basis of the dual space to
�, we deduce that Eq. (5.11) is equivalent to the system of
three equations:

6One may employ formula (B5) to express � ^ d� and for-
mula (B3) with p ¼ 1 and q ¼ 3 to compute � ^ ð� ^ d�Þ on
the quadruplet ð�;�;w;vÞ.
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w � dðhu � �Þ � 1

�0�n
�ð�;�; ~rI; ~r�Þ ¼ 0; (5.12a)

w � dðhu � �Þ � 1

�0�n
�ð�;�; ~rI; ~r�Þ ¼ 0; (5.12b)


dðhu � �Þ þ 
�dðhu � �Þ � 1

n

�
qþ 
h

�
ðC� þ�C�Þ

�
df

þ �	 � j
n

d�þ �	 � j
n

d�� I

�0�n
dI þ TdS ¼ 0:

(5.12c)

B. Introducing the master potential

In view of relations (3.19) and (3.20), the three linear
forms d�, d� and df are collinear to each other. If one of
the fields�,� or f is such that it gradient is nonvanishing,
then by virtue of Lemma 1 (cf. Sec. IVC1), the two other
fields can be considered as function of it. The standard
approach in GRMHD is to privilege the field �. However
this leads to degenerate equations when d� ¼ 0, which
corresponds to purely toroidal magnetic fields or to the
hydrodynamical limit (vanishing electromagnetic field).
The same problem occurs if one selects � or f instead of
� (for instance selecting f leads to degenerate equations in
the case of a pure rotational flow). To be fully general, we
adopt instead an approach introduced in nonrelativistic
MHD by Tkalich [30,31] and Soloviev [32], namely, we
consider a fourth field � such that (i) � obeys both space-
time symmetries, (ii) d� is never vanishing and (iii) there
exists three scalar fields �, � and � such that

d� ¼ �d�; d� ¼ �d�; df ¼ �d�: (5.13)

The existence of � is guaranteed by the collinearity prop-
erties (3.19) and (3.20). Of course, � is far from being
unique. The special cases mentioned above correspond
to � ¼ 0 or � ¼ 0, with d� remaining nonvanishing.
According to Lemma 1, �, � and f are necessarily func-
tions of �, with �, � and � being their derivatives:

� ¼ �ð�Þ; � ¼ �ð�Þ; f ¼ fð�Þ; (5.14)

� ¼ �0ð�Þ; � ¼ �0ð�Þ; � ¼ f0ð�Þ: (5.15)

We call � the master potential. Using this fourth potential
allows to treat all cases with finite quantities, whereas
sticking to the three potentials �,� and f leads to infinite
quantities in the degenerate cases mentioned above. In this
respect there is some analogy with the use of homogeneous
coordinates in projective geometry: using only two coor-
dinates ðx; yÞ in the projective plane RP2 leads to infinite
values for the ‘‘points at infinity,’’ whereas adding a third
coordinate, forming the so-called homogeneous coordi-
nates ðx; y; zÞ, fix this, at the price of some redundancy:
ðx; y; zÞ and ð
x; 
y; 
zÞ with 
 � 0 describe the same
point, as � and 
� correspond to the same configuration.

The master potential is conserved along any given fluid
line. Indeed, if df � 0, then � � 0 and Lu� ¼ u � d� ¼
��1u � df ¼ 0 by virtue of Eq. (3.16). If df ¼ 0, then u is
a linear combination of the Killing vectors � and � and
Lu� ¼ 0 holds according to the hypothesis (i) above. We
conclude that in all cases

L u� ¼ 0: (5.16)

Besides, in view of (5.13), the perfect conductivity
relation (3.18) is equivalent to

�þ�� ¼ �I

�n

: (5.17)

Let us proceed by rewriting MHD-Euler system (5.12) in
terms of �. Thanks to Eq. (3.15), the term w � dðhu � �Þ
in Eq. (5.12a) can be rewritten as �ð�nÞ�1�ð�;�;
~rf; ~rðhu � �ÞÞ. Using (5.13) and (5.12a) is thus equivalent
to

�

�
�;�; ~r�;�� ~rðhu � �Þ þ �

�0

~rI
�
¼ 0:

Since � ¼ �ð�Þ and � ¼ �ð�Þ, the Leibniz rule and the
alternate character of � allow us to write this relation as

�

�
�;�; ~r�; ~r

�
��hu � � þ �I

�0

��
¼ 0:

This implies that the 1-forms d� and dð��hu � � þ
�I=�0Þ are collinear. Since d� � 0, we conclude that
there exists a scalar field a such that

d

�
��hu � � þ �I

�0

�
¼ ad�:

Invoking again Lemma 1, we conclude that ð��hu � � þ
�I=�0Þ must be a function of �, �ð�Þ say. Expressing u �
� via Eqs. (3.5), (2.13), (2.14), (2.15), and (2.16), we get

�ð�Þ ¼ ��hu � � þ �I

�0

¼ �
hðV �W�Þ þ �I

�0

:

(5.18)

Applying a similar argument to the second equation of
the MHD-Euler system (5.12) leads to the existence of a
function �ð�Þ such that

�ð�Þ¼�hu ����I

�0

¼�
hðWþX�Þ��I

�0

: (5.19)

As for any function of �, the quantities � and � are
conserved along any given fluid line, in consequence
of (5.16).
Note that if df � 0, then one may perform the choice

� ¼ f, leading to the following values [cf. Eqs. (4.17),
(4.22), (4.26), and (4.30)]:
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� ¼ f )
8><
>:
� ¼ D
� ¼ C
� ¼ 1

)
�
� ¼ E
� ¼ L:

(5.20)

Hence, for this choice of �, � and � are nothing but the
Bernoulli-like quantities E and L introduced by BO [8] and
discussed in Sec. IVC.

If d� � 0, the choice � ¼ � is allowed, leading to

� ¼ � )
8<
:
� ¼ �!
� ¼ 1
� ¼ C�1

)
8<
:� ¼ E=C
� ¼ L=C;

(5.21)

where ! ¼ �D=C [cf. Eq. (4.42)].

C. The master transfield equation

Having shown that the first two equations of the MHD-
Euler system (5.12) leads to the conserved quantities� and
�, let us focus on the third equation, namely, Eq. (5.12c).
Taking account of (5.13), we can rewrite it as


dðhu � �Þ þ 
�dðhu � �Þ þ 1

n

�
��	 � jþ ��	 � j

� �q� �
h

�
ðC� þ�C�Þ

�
d�

� I

�0�n
dI þ TdS ¼ 0: (5.22)

Differentiating expressions (5.18) and (5.19) yields (the
prime stands for the first derivative of a function of �)

d�¼�0d�¼��dðhu ��Þ�
�
�0hu����0I

�0

�
d�þ �

�0

dI

d�¼�0d�¼�dðhu ��Þþ
�
�0hu����0I

�0

�
d�þ �

�0

dI;

from which we get


dðhu ��Þþ
�dðhu ��Þ
¼ 


�

��
��0 ��0 þ I

�0

ð�0 þ��0Þ

þ�0
hðV� 2W��X�2Þ
�
d�þ�þ��

�0

dI

�
: (5.23)

To treat the entropy term TdS in Eq. (5.22), let us
assume that S is a function of �:

S ¼ Sð�Þ: (5.24)

Actually (5.24) is mandatory if there is a nonvanishing
meridional flow. Indeed in this case df � 0 and since S
is conserved along the fluid lines [property (4.11)],
Lemma 2 of Sec. IVC1 is applicable and gives
S ¼ SðfÞ, i.e. via (5.14), S ¼ Sð�Þ. If df ¼ 0 (pure rota-
tional motion), then we may consider that (5.24) is a
supplementary hypothesis in our framework, set to inte-
grate the MHD-Euler equation. Note that a homentropic
fluid (S ¼ const throughout the fluid) satisfies (5.24).

Substituting Eqs. (5.23) into Eq. (5.22), we notice that
terms in dI cancel each other thanks to the relation (5.17).
Using (5.24) to set dS ¼ S0d�, we are then left with�



�

�
��0��0þ I

�0

ð�0þ��0Þþ�0
hðV�2W��X�2Þ
�

þ1

n

�
��	 �jþ��	 �j��q��
h

�
ðC�þ�C�Þ

�

þTS0
�
d�¼0: (5.25)

Since by hypothesis d� � 0, this equation is equivalent to
the vanishing of the term in braces. Let us express all the
pieces in term of �. Writing d� ¼ �d� and d� ¼ �d�
[Eq. (5.13)] in Eqs. (2.45b) and (2.45c), we get

��	 � jþ ��	 � j
¼ � 1

�0�

�
ðV�2 þ 2W��� X�2Þ�	�

þ ð�2dV þ 2��dW � �2dXÞ � ~r�
þ ½V��0 þWð�0�þ ��0Þ � X��0�d� � ~r�
� I

�
½ðW�� X�ÞC� þ ðW�þ V�ÞC��

�
; (5.26)

where �	 is the operator that generalizes (2.47) to the
relativistic case:

�	� :¼ �r�

�
1

�
r��

�
: (5.27)

Besides, setting df ¼ �d� [Eq. (5.13)] in Eq. (5.6), we
have

q ¼ � 1

�

�
h�

n
�	�þ �d

�
h

n

�
� ~r�þ h

n
�0d� � ~r�

�
:

(5.28)

Let us substitute Eqs. (5.26) and (5.28) into the term in
braces in Eq. (5.25) and express its vanishing. We get, after
multiplication by �n2=h,

A�	�þn

h

�
�2d

�
h

n

�
� 1

�0

ð�2dVþ2��dW

��2dXÞ
�
� ~r�þ

�
��0 � n

�0h
½V��0 þWð�0�þ��0Þ

�X��0�
�
d� � ~r�þ�n2

h

�



�

�
��0 ��0

þ I

�0

ð�0 þ��0Þþ�0
hðV�2W��X�2Þ
�
þTS0

�

��
nðC�þ�C�Þþ In

�0�h
½ðW��X�ÞC�

þðW�þV�ÞC��¼0; (5.29)

where
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A :¼ �2 � n

�0h
ðV�2 þ 2W��� X�2Þ: (5.30)

We shall call Eq. (5.29) the master transfield equation. The
qualifier transfield stems from the fact that it corresponds
to the component of the MHD-Euler equation along d�,
which is transverse to the magnetic field: b � d� ¼ 0, as it
is easily verified on the expression (3.22) of b, taking into
account (5.14) and (5.16). Note that the term in 
=� in the
third line of Eq. (5.29) is regular, even when � ¼ 0, as we
shall show in Sec. VI C 1. Besides, note that for circular
spacetimes (e.g. Kerr spacetime), the last line of Eq. (5.29)
vanishes identically [cf. Eq. (2.21)]. The master transfield
equation was first written in the Newtonian case by
Soloviev (1967) [32], as we shall discuss in Sec. VIA.

Given the metric [hence the covariant derivative opera-
tor r, the coefficients V,W, V and �, and the twist scalars
C� and C� , cf. Eqs. (2.13), (2.14), (2.15), (2.16), and (5.22)]
and the six functions �ð�Þ, �ð�Þ, �ð�Þ, �ð�Þ, �ð�Þ, and
Sð�Þ, the master transfield equation (5.29) constitutes a
(nonlinear) second-order partial differential equation
(PDE) for �. Indeed, all the remaining quantities (I, 
,
�, n, h, T) that appear in Eq. (5.29), although not functions
of�, can be computed once� is known, as we are going to
show.

First of all, by combining Eqs. (5.18) and (5.19), we get

V��W� ¼ ��
h�� I

�0

ðV�þW�Þ; (5.31)

X�þW� ¼ ��
hþ I

�0

ðX��W�Þ: (5.32)

Combining these two equations and using (5.17) to express
�þ�� in terms of I, we get

I ¼ n

hA
½ðX��W�Þ�þ ðW�þ V�Þ��: (5.33)

Extracting 
h from Eq. (5.32) and substituting Eq. (5.33)
for I leads to


h ¼ 1

��A

�
�2ðX�þW�Þ � �n�

�0h
ð��þ ��Þ

�
:

(5.34)

Extracting � from Eq. (5.31) and substituting the above
values of I and 
h, we obtain the expression of the fluid
angular velocities in terms of conserved quantities and
h=n:

� ¼ �0
h
n �

2ðV��W�Þ þ ��ð��þ ��Þ
�0

h
n �

2ðX�þW�Þ � ��ð��þ ��Þ : (5.35)

Besides, from the relation (3.15), we have

w � w ¼ 1

�n2
df � ~rf ¼ �2

�n2
d� � ~r�; (5.36)

so that the 4-velocity normalization relation (3.6) can be
written as

1þ �2

�n2
d� � ~r� ¼ 
2ðV � 2W�� X�2Þ: (5.37)

Substituting Eq. (5.35) for� and writing 
 ¼ ð
hÞ=h with

h given by (5.34), we get, after some rearrangements,

h2
�
�þ �2

n2
d� � ~r�

�
� �2

A2
ðX�2 þ 2W��� V�2Þ

þ �n

�0h

Aþ �2

A2�2
ð��þ ��Þ2 ¼ 0: (5.38)

By means of the identity

�ð��þ ��Þ2 ¼ ½ðX��W�Þ�þ ðV�þW�Þ��2
þ ðV�2 þ 2W��� X�2Þ
� ðX�2 þ 2W��� V�2Þ;

which follows solely from � ¼ XV þW2, Eq. (5.38) can
be recast in the alternative form7

h2
�
�þ �2

n2
d� � ~r�

�
� 1

�2
ðX�2 þ 2W��� V�2Þ

þ n

�0h

Aþ �2

A2�2
½ðX��W�Þ�þ ðV�þW�Þ��2 ¼ 0:

(5.39)

This equation is called the poloidal wind equation. Given
the metric factors V, W, X and �, the functions �ð�Þ,
�ð�Þ, �ð�Þ, �ð�Þ, �ð�Þ and Sð�Þ, expression (5.30)
for A, as well as the EOS h ¼ hðs; nÞ with s ¼ Sð�Þn
[cf. Eq. (4.6)], the poloidal wind equation can be solved
to compute n once � is known. Then, from n we get h via
the EOS and A via Eq. (5.30). Once n, h and A are known,
we can compute I via Eq. (5.33) and � via Eq. (5.35).
The meridional velocity w is obtained via Eq. (3.15) with
df ¼ �d� and the velocity coefficient 
 via Eq. (3.6).
An equivalent point of view is to consider that the

fundamental equations to be solved are Eqs. (5.29) and
(5.39) which constitute a coupled PDE system for the two
unknowns ð�; nÞ. Indeed, given the metric, the EOS and
the six functions �ð�Þ,�ð�Þ, �ð�Þ,�ð�Þ,�ð�Þ and Sð�Þ,
solving this system provides a solution of the MHD-Euler
equation and Maxwell equations, the electromagnetic field
tensorF and electric 4-current j being deduced from� via
Eqs. (2.35), (2.45), (5.13), and (5.33).

VI. SUBCASES OF THE MASTER
TRANSFIELD EQUATION

The master transfield equation (5.29), coupled with the
poloidal wind equation (5.39), describes the most general
MHD equilibria in generic (noncircular) stationary and
axisymmetric spacetimes. We shall now specialize it to

7A combination ��þ�� of Eqs. (5.18) and (5.19) may be
used to derive Eqs. (5.38) and (5.39) from u � u ¼ �1.
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various cases and make the link with results obtained
previously in the literature.

A. Newtonian limit

At the Newtonian limit, as given by Eqs. (2.18), (2.21),
(4.33), and (4.34), the expressions (5.18) and (5.19) of the
streamline-conserved quantities �ð�Þ and �ð�Þ reduce to

� ¼ �mb

�
1þH þ�grav þ v2

2

�
þ �I

�0

; (6.1)

� ¼ �mbr
2sin2	�� �I

�0

; (6.2)

whereas the master transfield equation (5.29) reduces to

A�	�� �2

n
dn � ~r�þ

�
��0 � n

�0mb

��0
�
d� � ~r�

þ r2sin2	
n2

mb

�
1

�

�
��0 � �0 þ I

�0

ð�0 þ��0Þ

þ �0mb

�
þ TS0

�
¼ 0; (6.3)

with the expression (2.47) for the operator �	 and8

A ¼ �2 � n�2

�0mb

: (6.4)

Performing the proper changes of notation,9 one can check
that Eq. (6.3) coincides with the first equation in Soloviev’s
system (II) [32]. After Soloviev’s work, the Newtonian
transfield equation has been re-obtained by many authors
for the special case in which � ¼ � [cf. (5.21)] (e.g.
[33–37]; cf. [38] for an extended discussion and [39] for
a recent study). The equation is then known as the gener-
alized Grad-Shafranov equation (see Sec. VI C below).

The Newtonian limits of expressions (5.33) and (5.35)
for I and � are

I ¼ n

A

�
��r2sin2	þ ��

mb

�
; (6.5)

� ¼ 1

mbA

�
��

r2sin2	
þ n

�0

��

�
: (6.6)

To get the latter expression, we have used the Newtonian
limit ��þ �� ¼ mb��, resulting from (6.1) and (6.2).
Equations (6.5) and (6.6) coincides with, respectively, the
second and first equations in Eq. (1.18) of Soloviev’s
article [32].

Finally to get the Newtonian limit of the poloidal wind
equation (5.39), we rewrite the term h2�� X�2=�2 by
means of the Newtonian expressions (2.18) of � and X,
along with (4.33):

�h2 � X�2

�2
’ r2sin2	

�
m2

bð1þ 2HÞ � ð1� 2�gravÞ�
2

�2

�

’ 2m2
br

2sin2	

�
H þ�grav þ 1� �

mb�

�
;

where the last equality results from 1� ð�=mb�Þ2 ¼ ð1þ
�=mb�Þð1��=mb�Þ ’ 2ð1� �=mb�Þ. Accordingly, the
Newtonian limit of the poloidal wind equation (5.39) is

�2

n2
d� � ~r�þ2r2sin2	

�
Hþ�gravþ1� �

mb�

�

þ
�

�

mb�

�
2þ n

�0mb

Aþ�2

A2

�
��

mb�
þ�r2sin2	

�
2¼0:

(6.7)

This equation is not exhibited in Soloviev’s work [32].
It can however be recovered by combining Soloviev’s
Eqs. (1.5) and (1.25) and expressing v2 as �2r2sin2	þ
w � wwith� substituted by (6.6) and w � w by (5.36). In the
special case where � ¼ �, one can check that Eq. (6.7)
coincides with Eq. (14) of Heyvaerts and Norman [37]
(called the Bernoulli equation by these authors).

B. Pure rotational flow

The case of a pure rotational flow corresponds to

w ¼ 0 , df ¼ 0 , � ¼ 0: (6.8)

Then Eq. (5.17) yields

� ¼ ���; (6.9)

whereas Eqs. (5.18) and (5.19) reduce to

� ¼ �I

�0

and � ¼ ��I

�0

: (6.10)

If � � 0 (i.e. d� � 0) or � � 0 (i.e. d� � 0), Eqs. (6.9)
and (6.10) imply that� and I are functions of � (for �, �,
� and � are all functions of �):

� ¼ �ð�Þ and I ¼ Ið�Þ: (6.11)

Taking into account Eq. (6.9) and � ¼ 0, the expression
(5.30) for A becomes

A ¼ ��2n

�0h
ðV � 2W�� X�2Þ: (6.12)

To express the master transfield equation (5.29) in the
case � ¼ 0, we shall first evaluate the term which is
divided by � in Eq. (5.29), namely

8Note that in taking the Newtonian limit of (5.30), the term
X�2 ¼ r2sin2	�2 is relativistic and therefore must be
disregarded.

9The link between Soloviev notations [32] and ours is r $
r sin	, s $ mbA=n, �

0
0 $ mb�, �

0 $ �=
ffiffiffiffiffiffi
�0

p
, I0 $ �r2sin2	,

I $ I=
ffiffiffiffiffiffi
�0

p
, S $ S=mb, A $ �, B $ �=

ffiffiffiffiffiffi
�0

p
, and U $

ðmb�Þ�1ð�þ ��=�Þ � 1.
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A :¼ ��0 � �0 þ I

�0

ð�0 þ��0Þ
þ �0
hðV � 2W�� X�2Þ: (6.13)

To this aim, we shall first suppose � � 0 and, in a second
stage, take the limit � ! 0. Since I ¼ Ið�Þ when � ¼ 0
[Eq. (6.11)], we may write

I ¼ I0ð�Þ þ �a; (6.14)

where I0ð�Þ is a function of� and a describes the behavior
of I as � ! 0. For instance, if � � 0 (i.e. d� � 0),
explicit values of I0 and a are deduced from Eq. (5.19):

I0ð�Þ ¼ ��0

�ð�Þ
�ð�Þ and a ¼ �0


h

�
ðW þ X�Þ:

Substituting expression (6.14) for I into Eqs. (5.18) and
(5.19), we get

� ¼ �

�0

I0 þ �G and � ¼ � �

�0

I0 þ �H; (6.15)

with

G :¼ 
hðV �W�Þ þ �a

�0

and

H :¼ 
hðW þ X�Þ � �a

�0

: (6.16)

From Eq. (6.15) and the fact that �, �, �, �, � and I0
are all functions of �, it is clear that G ¼ Gð�Þ and
H ¼ Hð�Þ. Then, using successively Eqs. (6.15), (6.16),
and (5.17), we may write expression (6.13) as

A ¼�

�
�H0�G0þ 1

�0

�
að�0þ��0Þ� I

�n

ðI00þa�0Þ

��
:

(6.17)

Taking the limit � ! 0, we have � ¼ �ð�Þ [Eq. (6.11)]
and � ¼ ��� [Eq. (6.9)], so that �0 þ��0 ¼ ��0�
and �H0 �G0 ¼ �K0 ��0H with Kð�Þ :¼ G��H.
According to (6.16) and (6.9), we have K ¼ 
hðV �
2W�� X�2Þ. Now for � ¼ 0, expression (3.6) for 

reduces to


 ¼ ðV � 2W�� X�2Þ�1=2; (6.18)

so that

Kð�Þ ¼ h



¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V � 2W�� X�2

p
: (6.19)

Since

�H0 �G0 þ a

�0

ð�0 þ��0Þ ¼ �K0 ��0H � a

�0

�0�

¼ �K0 � 
hðW þ X�Þ�0;

the limit � ! 0 of Eq. (6.17) is

lim
�!0

A
�

¼ �K0 � 
hðW þ X�Þ�0 � II0

�0�n

: (6.20)

Thanks to the relations (6.9), (6.12), (6.18), (6.20), and
(4.5), the master transfield equation (5.29) becomes

�2


2
�	�þ �d

�
�


2

�
� ~r�þ �2ðW þ X�Þ�0d� � ~r�

þ I

�
I0 � �

�
½ðW þ X�ÞC� þ ðV �W�ÞC��

�

þ�0�

�
ð"þ pÞ

�
K0

K
þ 
2ðW þ X�Þ�0

�
� nTS0

�
¼ 0:

(6.21)

Let us now take the pure rotational limit of the wind
equation, in the form (5.38). From Eq. (6.15), ��þ �� ¼
�ð�Gþ �HÞ, so that, in view of (6.9),

lim
�!0

1

�
ð��þ ��Þ ¼ �ðG��HÞ ¼ �K:

This property, along with (6.12), implies that for � ¼ 0 the
wind equation (5.38) reduces to

h2 � K2

V � 2W�� X�2
¼ 0;

which is nothing but the square of Eq. (6.19).
Consequently, the wind equation is trivially satisfied in
this case.
In conclusion, for a pure rotational flow, one should

prescribe five functions of the master potential: �ð�Þ,
�ð�Þ, Ið�Þ, Kð�Þ and Sð�Þ and solve for the transfield
equation (6.21) for �. In that equation, the matter quanti-
ties ", p, n and T are given by the EOS from the knowledge
of S and h, the latter being deduced from �ð�Þ and Kð�Þ
via Eq. (6.19). We shall discuss further the pure rotational
flow below (Sec. VIC 1 and VID 2).

C. Expression in terms of �: Generalized
Grad-Shafranov equation

Let us assume that d� � 0. We may then choose
� ¼ � as the primary variable [cf. (5.21)]. This is actually
the choice performed by most (all?) of previous relativistic
studies, disregarding the case d� ¼ 0 (toroidal magnetic
field or hydrodynamical limit, to be discussed in Sec. VID
and VI E). Let us first consider the pure rotational flow, in
order to make the link with the original Grad-Shafranov
equation.

1. Pure rotational flow

For a pure rotational flow with � ¼ �, Eq. (6.11) be-
come

� ¼ �ð�Þ and I ¼ Ið�Þ: (6.22)

In the Newtonian regime, the property � ¼ �ð�Þ is
known as Ferraro’s law of isorotation [40], while the result
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I ¼ Ið�Þ has been obtained by Chandrasekhar (1956) [41].
The transfield equation (6.21) becomes [cf. (5.21) and
(6.18)]

ðV � 2W�� X�2Þ�	�þ dðV � 2W�� X�2Þ � ~r�
þ ðW þ X�Þ�0d� � ~r�þ I

�
I0 �W þ X�

�
C�

� V �W�

�
C�

�
þ�0�

�
ð"þ pÞ

�
K0

K

þ ðX�þWÞ�0

V � 2W�� X�2

�
� nTS0

�
¼ 0: (6.23)

This PDE has to be solved for �, once the four functions
�ð�Þ, Ið�Þ, Kð�Þ and Sð�Þ are prescribed. The enthalpy
field h is given by Eq. (6.19) which remains unchanged.

Equation (6.23) is a relativistic generalization of
the so-called Grad-Shafranov equation [42–45] (see also
Chap. 16 of the recent textbook in [46]). At the Newtonian
limit [cf. expressions (2.18) and (4.32)] and in coordinates
ðt; r; 	; ’Þ of spherical type, Eq. (6.23) reduces to

Newt: �	�þ II0 þ�0r
2sin2	½�ðK0=mb þ��0r2sin2	Þ

� nTS0� ¼ 0; (6.24)

whereas Eq. (6.19) reduces to [cf. (4.33) and (4.34)]

Newt : H þ�grav � 1

2
�2r2sin2	 ¼ Kð�Þ

mb

� 1: (6.25)

Let us recall that the Newtonian expression of �	 is given
by Eq. (2.47). Modulo the change from spherical to cylin-
drical coordinates, Eqs. (6.24) and (6.25) coincide with,
respectively, Eqs. (3.3) and (3.2) of Maschke and Perrin
[47]. The limiting case I ¼ 0 [pure poloidal magnetic
field, cf. Eq. (3.23)], � ¼ const, � ¼ const and
S ¼ const has been treated by Ferraro in 1954 [48]. It
has been extended to I � 0 and � � const, still maintain-
ing � ¼ const, by Chandrasekhar in 1956 [41] (using the
function P :¼ �=ðr2sin2	Þ instead of �). Plasma physi-
cists Grad and Rubin [42] and Shafranov [44] have con-
sidered in 1958 the nonrotating limit (� ¼ 0) of Eq. (6.24)
(see Chap. 16 of [46]).

Coming back to the relativistic case, the special case
I ¼ 0, � ¼ const and S ¼ const has been discussed by
Bonazzola et al. [24] and Bocquet et al. [25]. Note that
contrary to what is claimed in Ref. [24], � has not to be a
constant: it can be any function of � [Eq. (6.22)]. Most
relativistic studies have focused on the case w � 0 (flow
with a meridional component) and barely discussed the
limit w ¼ 0 presented above. In particular, it is claimed in
Ref. [13] that if w ! 0, the magnetic field b cannot have a
toroidal component (i.e. I ¼ 0). We see no support of this
since any choice seems to be allowed for the function Ið�Þ
in the equations presented above.

2. Generic flow

For a generic flow (i.e. with some meridional compo-
nent), we have, according to (5.21), � ¼ �!, � ¼ 1 and
� ¼ C�1, with C � 0 since d� � 0. The expression
(5.30) for A becomes then

A ¼ 1

C2

�
1� V � 2W!� X!2

M2

�
; (6.26)

where M is the poloidal Alfvén Mach number:

M2 :¼ �0h

C2n
: (6.27)

This name is justified by the Newtonian limit [cf. (4.33)]:

Newt : M2 ¼ �0mb

C2n
¼

� jwj
vA;p

�
2
; vA;p :¼

jbpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0nmb

p :

(6.28)

vA;p is the poloidal Alfvén velocity, bp being the poloidal

magnetic field [cf. Eq. (4.37)]. The expression of M as the
ratio of the norm of w to vA;p justifies the name poloidal

Alfvén Mach number given to M.
Setting � ¼ E=C and � ¼ L=C [cf. (5.21)], the trans-

field equation (5.29) specialized to � ¼ � is�
1�V�2W!�X!2

M2

�
�	�

þ
�
n

h
d

�
h

n

�
� 1

M2
ðdV�2!dW�!2dXÞ

�
� ~r�

þ
�
!0

M2
ðWþX!Þ�C0

C

�
d� � ~r�

þ�0�n

M2

�



�
�L0 �E0 þ I

�0

ðC0ð��!Þ�C!0Þ
�
þTS0

�

�
nCðC� þ�C�Þþ I

�M2
½ðWþX!ÞC�

þðV�W!ÞC��¼ 0: (6.29)

In this equation, all the primes denote derivatives with
respect to �. Equation (6.29) is called the generalized
Grad-Shafranov equation, since it can be considered as
an extension of the Grad-Shafranov equation (6.23) to the
case of a nonvanishing meridional flow. The generalized
Grad-Shafranov equation has been derived for Minkowski
spacetimes by Camenzind (1987) [49] and Heyvaerts and
Norman (2003) [50]. It has been extended to weak gravi-
tational fields by Lovelace et al. (1986) [36] and to the
Schwarzschild spacetime by Mobarry and Lovelace (1986)
[10]. The case of the Kerr spacetime has been first consid-
ered by Nitta et al. (1991) [11] for pressureless matter and
Beskin and Pariev (1993) [12] for nonvanishing pressure
(see also [1]). Finally the general case of noncircular sta-
tionary axisymmetric spacetimes has been treated by Ioka
and Sasaki (2003) [13,15]. Note however that they have not
written the generalized Grad-Shafranov equation explicitly
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as Eq. (6.29), but have kept the �	 � j, �	 � j and q terms, as
in Eq. (5.25). They have replaced these terms, leading to
�	�, only when taking the Newtonian limit. In particular,
it is not apparent in their work that the Grad-Shafranov
equation is singular at the Alfvén surface, where the term
in factor of�	� vanishes (see below). Besides, as stated in
the Introduction, their approach appeals to a ð2þ 1Þ þ 1
foliation of spacetime, whereas ours does not require any
extra structure.

Regarding the poloidal wind equation (5.39), it reads for
� ¼ �,

1

C2n2
d� � ~r�þ�h2�XE2�2WELþVL2

þ 2 ~M2�1

ð ~M2�1Þ2
½ðV�W!ÞL�ðWþX!ÞE�2

V�2W!�X!2
¼0; (6.30)

where10

~M 2 :¼ M2

V � 2W!� X!2
¼ �0

C2ðV � 2W!� X!2Þ
h

n
:

(6.31)

Equations (6.29) and (6.30) form a system of two equations
for the two unknowns ð�; nÞ, once the five functions!ð�Þ,
Cð�Þ, Eð�Þ, Lð�Þ and Sð�Þ are prescribed, as well as the
EOS. In these equations, I is expressed via Eq. (5.33):

I ¼ �0

C

ðV �W!ÞL� ðW þ X!ÞE
M2 � V2 þ 2W!þ X!2

(6.32)

and � via Eq. (5.35) recast as

� ¼ M2ðVL�WEÞ � �!ðE�!LÞ
M2ðXEþWLÞ � �ðE�!LÞ : (6.33)

As a check, one may verify that Eq. (6.32) coincides with
Eq. (24) obtained by Beskin and Pariev [12] for the Kerr
spacetime11 and that Eq. (6.33) coincides12 with Eq. (110)
obtained by Camenzind [51] for the Minkowski spacetime.
It can also be recovered for general circular spacetimes by
combining Eqs. (38), (39), and (41) of Ref. [52].

The generalized Grad-Shafranov equation (6.29) is
singular for M2 ¼ V � 2W!� X!2, or equivalently, for
~M2 ¼ 1. This condition defines the so-called Alfvén sur-
face (see e.g. Refs. [1,51–54] for an extended discussion).
The term ~M2 � 1 also appears at the denominator in the
poloidal wind equation (6.30) or in expression (6.32) for I,
but this does not make these equations singular at the

Alfvén surface, thanks to the simultaneous vanishing of
the corresponding numerator [1].

D. Toroidal magnetic field (d� ¼ 0)

The complementary case of that treated in the previous
subsection is

d� ¼ 0 , � ¼ 0; (6.34)

where the equivalence follows from the very definition of
� given in Eq. (5.13). Then, the expression (3.22) for the
magnetic field in the fluid frame reduces to

b ¼ 
I

�

�
ðW þ X�Þ� þ

�
V �W�� w � w


2

�
�

� 1



ðW þ X�Þw

�
: (6.35)

Strictly speaking, this field is not purely toroidal, except at
the Newtonian limit or when w ¼ 0. By a slight abuse of
language, we shall however refer to the case d� ¼ 0 as the
toroidal magnetic field case.

1. Generic case

With � ¼ 0, the perfect conductivity relation (5.17)
reduces to

� ¼ �I

�n

: (6.36)

Consequently, the expression (5.30) of A becomes

A ¼ �2

�
1þ XI2

�0�
2
2nh

�
: (6.37)

The master transfield equation (5.29) reduces to

A�	�þ �2 n

h

�
d

�
h

n

�
þ I2

�0�
2
2nh

dX

�
� ~r�

þ �

�
�0 þ XI�0

�0�
h

�
d� � ~r�þ �n2

h

�



�

�
��0 � �0

þ I�0

�0

þ �0
hðV � 2W�� X�2Þ
�
þ TS0

�

� �
nðC� þ�C�Þ þ �I2

�0�
h
ð�XC� þWC�Þ ¼ 0;

(6.38)

whereas the poloidal wind equation (5.39) becomes

h2
�
�þ �2

n2
d� � ~r�

�
� 1

�2
ðX�2 þ 2W��� V�2Þ

þ I2h

�0n

�
2þ XI2

�0�
2
2nh

�
¼ 0: (6.39)

10Note that ~M2 is not necessarily positive, contrary to M2.
11The link between notations of Ref. [12] and ours is as
follows: �2 $ �=X, ! $ �W=X, �2 $ �
2=X, $2 $ X, I $
�I=2, � $ �0�=2, � $ C�1, �F $ !, E $ E=C and L $
L=C.
12The link between notations of Ref. [51] and ours is � $ !
and R2 $ �.
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2. Pure rotational flow

In the particular case of a pure rotational flow (� ¼ 0),
the transfield equation (6.38) reduces to [cf. Eq. (6.21) with
� ¼ 0]

II0 þ�0�

�
ð"þpÞ

�
K0

K
þ
2ðWþX�Þ�0

�
� nTS0

�
¼ 0;

(6.40)

with Kð�Þ obeying to Eq. (6.19). In the present case,
� ¼ � ¼ � ¼ 0, i.e. d� ¼ 0, d� ¼ 0 and df ¼ 0.
If the electromagnetic field is not vanishing, a natural
choice for � is

� ¼ I: (6.41)

Then I0 ¼ 1 and Eq. (6.40) reduces to

I þ�0�

�
ð"þ pÞ

�
K0

K
þ 
2ðW þ X�Þ�0

�
� nTS0

�
¼ 0:

(6.42)

Given the functions �ðIÞ, KðIÞ and SðIÞ, this equation has
to be solved in I. Note that this is not a PDE in I and that
the matter quantities n, ", p and T are to be computed via
the EOS from S and h, the former being deduced fromKðIÞ
and �ðIÞ via Eq. (6.19):

h ¼ KðIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V � 2W�ðIÞ � X�ðIÞ2p : (6.43)

In the special case �ðIÞ ¼ const and SðIÞ ¼ const, we
recover equations obtained by Kiuchi and Yoshida (2008)
[27].13 At the Newtonian limit, the special case �ðIÞ ¼
const, SðIÞ ¼ const and K0ðIÞ=KðIÞ ¼ const has been con-
templated by Miketinac (1973) [55].

Besides, it is worth underlining that in the case consid-
ered here, i.e. a pure rotational flow and a pure toroidal
magnetic field, (i) the spacetime has to be circular (pro-
vided that the fluid and the electromagnetic field are the
only sources in the Einstein equation) [26,27] and (ii) the
twist functions C� and C� , whose vanishing is equivalent to
circularity, do not appear in Eqs. (6.42) and (6.43).

E. Hydrodynamical limit

1. Generic case

The hydrodynamical limit (no electromagnetic field) is
easily taken by setting � ¼ 0 (i.e. d� ¼ 0), � ¼ 0 (i.e.
d� ¼ 0) and I ¼ 0 in the equations obtained so far. In
particular, the streamline-conserved quantities (5.18) and
(5.19) reduce to

� ¼ �E with E ¼ 
hðV �W�Þ; (6.44)

� ¼ �L with L ¼ 
hðW þ X�Þ; (6.45)

where the second equalities in each line follow from
Eqs. (4.26) and (4.30) with I ¼ 0. Besides, Eq. (5.30)
reduces to A ¼ �2 and thanks to (6.44), (6.45), and (6.13)
reduces to A ¼ �ð�L0 � E0Þ. Accordingly the master
transfield equation (5.29) becomes

�2�	�þ �2 n

h
d

�
h

n

�
� ~r�þ ��0d� � ~r�

þ �n2

h
½
ð�L0 � E0Þ þ TS0� � �
nðC� þ�C�Þ ¼ 0:

(6.46)

On its side, the poloidal wind equation (5.39) reduces to

�2h2

n2
d� � ~r�þ �h2 � XE2 � 2WELþ VL2 ¼ 0:

(6.47)

2. Flow with meridional component

If the meridional fluid velocity is not vanishing, df � 0
and a natural choice for the master potential is � ¼ f.
Then � ¼ 1 and Eqs. (6.46) and (6.47) become

�	fþ n

h
d

�
h

n

�
� ~rfþ �n2

h
½
ð�L0 � E0Þ þ TS0�

� 
nðC� þ�C�Þ ¼ 0 (6.48)

h2

n2
df � ~rfþ�h2�XE2�2WELþVL2¼0: (6.49)

These equations are to be supplemented by (i) Eq. (3.6)
expressing 
 in terms of f and � [via Eq. (5.36)] and
(ii) the hydrodynamical limit of Eq. (5.35), which reads

� ¼ VL�WE

XEþWL
: (6.50)

It is then clear that, given the metric, the three functions
EðfÞ, LðfÞ and SðfÞ and the EOS h ¼ hðS; nÞ, T ¼ TðS; nÞ,
Eqs. (6.48) and (6.49) form a system of coupled PDE for
ðf; nÞ. Solving this system provides a solution of the Euler
equation for a rotating flow with meridional component. In
the case of circular spacetimes (C� ¼ C� ¼ 0), Eq. (6.48)

has been written first by Anderson (1989) [56] and Beskin
and Pariev (1993) [12], with n extracted from Eq. (6.49)
and substituted in (6.48), so that the system reduces to a
single equation for f. An equivalent formulation has been
developed recently by Birkl et al. [57] for the barotropic
case (S ¼ 0), using the function c :¼ �R

EðfÞdf instead

of f.
In the Newtonian limit [cf. Eqs. (6.3) and (6.7)], the

system becomes

13The link between notations of Ref. [27] and ours is g1 $�g=�, g2 $ �,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=g1

p
F12 $ I, u $ �nh ¼ �ð"þ pÞ,

4�KðuÞ=u $ ��0K
0ðIÞ=KðIÞ.
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�	f� 1

n
dn � ~rfþ n2

mb

�
LL0

mb

� r2sin2	ðE0 � TS0Þ
�
¼ 0;

(6.51)

1

n2
df � ~rfþ2r2sin2	

�
Hþ�gravþ1� E

mb

�
þ
�
L

mb

�
2¼0:

(6.52)

Note that we have substituted� by the Newtonian limit of
(6.50): � ¼ L=ðmbr

2sin2	Þ. Equation (6.51) is called
Stokes equation. For an incompressible fluid, it coincides
with Eq. (7.5.11) of Batchelor treatise [58]. For a
compressible fluid, we recover Eq. (1.107) in the Beskin
textbook [1] or Eq. (15) of Eriguchi et al. [59].
Consequently, we shall call Eq. (6.48) the relativistic
Stokes equation.

3. Pure rotational flow

For a pure rotational flow, � ¼ 0 and Eqs. (6.46) and
(6.47) reduce to

�L0 � E0 þ T



S0 ¼ 0 (6.53)

�h2 ¼ XE2 þ 2WEL� VL2: (6.54)

Let us assume that

� ¼ �ð�Þ: (6.55)

In Sec. VI B, we have seen that this condition is mandatory
if � � 0 or � � 0. In the absence of electromagnetic field,
(6.55) is fulfilled for rigid rotation (� ¼ const) and for
nonrigid one, it may be imposed by a proper choice of �,
for instance � ¼ �. It is then natural to introduce, as in
Sec. VIB, K ¼ Kð�Þ ¼ E��L ¼ h=
 [cf. Eq. (6.19)],
so that Eq. (6.53) can be written as

K0 þ L�0 � T



S0 ¼ 0: (6.56)

A wide class of equilibrium configurations is obtained by
assuming

T



¼ 	Tð�Þ; (6.57)

with 	T is a function of � such that

	T 0 ¼ � 	T
L

K
�0: (6.58)

Thanks to Eqs. (6.57), (6.58), and (6.56) can be written as

ðln 	�Þ0 þ L

K
�0 ¼ 0: (6.59)

where

	� ¼ 	�ð�Þ :¼ K � 	TS ¼ h� TS



¼ �



; (6.60)

� being the baryon chemical potential introduced in
Eq. (4.3), the last equality resulting from Eq. (4.5).
If� is constant (rigid rotation), Eq. (6.59) yields the first

integral

	� ¼ const: (6.61)

Note that in this case, Eq. (6.58) implies the so-called
relativistic isothermal condition:

	T ¼ const: (6.62)

If �0 � 0, Lemma 1 of Sec. IVC 1 implies that L=K
must be a function of�, F ð�Þ, say. Since L is expressible
as (6.45) and K ¼ h=
 with the value (6.18) for 
, we have

F ð�Þ ¼ W þ X�

V � 2W�� X�2
: (6.63)

Given the function F ð�Þ, the above equation has to be
solved in �. At the Newtonian limit, it leads to a solution
of the form � ¼ �ðr sin	Þ, i.e. satisfying to the Poincaré-
Wavre property [60]. With L=K ¼ F ð�Þ, Eq. (6.59) is
integrated to

ln 	�þ
Z �

0
F ð ~�Þd ~� ¼ const; (6.64)

and Eq. (6.58) to

	Te
R

�

0
F ð ~�Þd ~� ¼ const; (6.65)

generalizing the isothermal condition (6.62) to the case of
differential rotation. In the case T ¼ 0 (or S ¼ const), we
recognize in Eqs. (6.61) and (6.64) the standard first inte-
grals governing rotating relativistic stars (see e.g. [61] or
[18] and references therein). For the finite temperature
case, we recover results of Ref. [62].

VII. SUMMARYAND CONCLUSION

We have formulated GRMHD for stationary and axi-
symmetric spacetimes in the most general case, i.e. non
assuming circularity (as in Kerr spacetime). Moreover, we
have based our approach on geometric quantities defined
solely in terms of the spacetimes symmetries (represented
by the two Killing vectors � and �), without relying on
any coordinate system or any extra structure (such as a
ð2þ 1Þ þ 1 foliation). This provides some insight on pre-
viously introduced quantities and leads to the formulation
of very general laws, recovering previous ones as subcases
and obtaining new ones in some specific limits. To our
knowledge, the new results obtained here are:
(i) the expression (2.35) of the electromagnetic field

tensor F entirely in terms of the two Killing vector
fields and three scalar fields, independently of any
coordinate system;

(ii) the derivation of the conservation laws for the
Bernoulli-type quantities E and L in a covariant
manner and in the most general case, including
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that of a purely toroidal magnetic field disregarded
in the original BO derivation [8];

(iii) the fully covariant master transfield equation (5.29)
governing the most general MHD equilibria in
generic (i.e. noncircular) spacetimes, generalizing
Soloviev nonrelativistic equation [32];

(iv) the explicit form (6.29) of the covariant Grad-
Shafranov equation for noncircular spacetimes;

(v) the equation (6.38) governing MHD equilibria with
purely toroidal magnetic field in stationary and axi-
symmetric spacetimes;

(vi) the relativistic Stokes equation (6.48) governing
hydrodynamical equilibria of flows with merid-
ional components in stationary and axisymmetric
spacetimes.

The relativistic master transfield equation (5.29) is proba-
bly the most important outcome of the present study.
Beyond the aesthetic feature of having a single equation
governing all MHD equilibria, reducing to the relativistic
Grad-Shafranov and Stokes equations in certain limits,
the value of this equation resides in its potentiality to
lead to solutions that cannot be obtained by merely setting
� ¼ � or � ¼ f, as already shown in the Newtonian
regime [63].

In this article, we have focused on the derivation of the
equations governing MHD equilibria and of conservation
laws. In order to solve the obtained equations, there remains
to choose the streamline-conserved functions �ð�Þ, �ð�Þ,
�ð�Þ,�ð�Þ,�ð�Þ and Sð�Þ and to specify some boundary
conditions on them. An example of numerical resolution of
the Grad-Shafranov equation (case � ¼ �) is provided by
Ref. [15]. Finding stationary and axisymmetric GRMHD
solutions provides initial data for dynamical stability stud-
ies of magnetized neutron stars (see e.g. [64–67]).

As a final remark, let us point out that we have hardly
used the axisymmetric character of the Killing vector �
(i.e. the fact that it is a generator of a SO(2) group action),
so that most results presented here would remain valid for
any other type of spatial symmetry, like for instance trans-
lational symmetry.
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APPENDIX A: LIE DERIVATIVE

The Lie derivative is the natural operator to express
symmetries under a 1-parameter group action. It measures
the change of a tensor field along the orbits of the group
action. More precisely, any regular vector field v can be
regarded as the generator of a 1-parameter group action on
M. Then, given a local coordinate system ðx�Þ adapted to
v, i.e. such that v� ¼ ð1; 0; 0; 0Þ, the Lie derivative along v
of a tensor field T of type ðk; ‘Þ is the tensor field of the
same type, whose components are the derivatives of T’s
components with respect to the parameter associated with
v (i.e. the coordinate x0):

ðLvTÞ�1...�k
�1...�‘

¼ @0T
�1...�k

�1...�‘
: (A1)

In an arbitrary coordinate system, this formula becomes

ðLvTÞ�1...�k
�1...�‘

¼ v�@�T
�1...�k

�1...�‘

�Xk
i¼1

T�1...�

i#
...�k

�1...�‘
@�v

�i

þX‘
i¼1

T�1...�k
�1...�"

i

...�‘
@�i

v�: (A2)

In particular, for a scalar field f,

Lvf ¼ v�@�f; (A3)

for a vector field w,

ðLvwÞ� ¼ v�@�w
� � w�@�v

�; (A4)

for a 1-form !,

ðLv!Þ� ¼ v�@�!� þ!�@�v
�; (A5)

and for a bilinear form T (such as the metric tensor g or the
electromagnetic field F),

ðLvTÞ�� ¼ v�@�T�� þ T��@�v
� þ T��@�v

�: (A6)

From formula (A4), note that the Lie derivative of w
along v is nothing but the commutator of the vector fields
v and w:

Lvw ¼ ½v;w�: (A7)

Note also that in formulas (A2)–(A6), one may replace the
partial derivative operator @ by the covariant derivative
operator r associated with the metric g. This stems from
the symmetry property of the Christoffel symbols. In par-
ticular, Eq. (A6) can be written

ðLvTÞ�� ¼ v�r�T�� þ T��r�v
� þ T��r�v

�: (A8)

APPENDIX B: DIFFERENTIAL FORMS
AND EXTERIOR CALCULUS

Given a integer p satisfying 0 � p � 4, a p-form
is a tensor of type ð0; pÞ which is fully antisymmetric.
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By convention, a 0-form is a scalar and a 1-form is a linear
form. A differential form of rank p is a field of p-forms
overM. Differential forms play a special role in the theory
of integration on a manifold. Indeed the primary definition
of an integral over a manifold of dimension p is the integral
of a p-form. At a given point x 2 M, the set of all 1-forms
is T xðMÞ	, the dual vector space to the vector space
T xðMÞ tangent to M at x. More generally the set
Ap

x ðMÞ of all p-forms at x is a vector space of dimension
4
p

� �
. In particular, the dimension of the space of 4-forms

is 1: all 4-forms are proportional to each other.
We assume that the manifold M is orientable, i.e. that

there exists a continuous, nowhere vanishing, 4-form field.
We may then introduce the Levi-Civita alternating tensor �
(also calledmetric volume element) as the differential form
of rank 4 such that for any vector basis ðe�Þ that is ortho-
normal with respect to g,

� ðe0; e1; e2; e3Þ ¼ �1: (B1)

If M is orientable, there are actually two such 4-form
fields, opposite to each other: picking one of them is
making a choice of orientation on M. Having a þ sign
(resp.� sign) in Eq. (B1) defines then a right-handed basis
(resp. a left-handed basis). The components of � in a given
right-handed basis (not necessarily orthonormal) are


���� ¼ ffiffiffiffiffiffiffi�g
p ½�;�; �; ��; (B2)

where g is the determinant of the components ðg��Þ of the
metric tensor in the considered basis and ½�;�; �; �� stands
for 1 (resp. �1) if ð�;�; �; �Þ is an even (resp. odd)
permutation of (0,1,2,3), and 0 otherwise.

Two algebraic operations are defined on differential
forms: the exterior product and Hodge star. The exterior
product associates to any p-form A and any q-form B the
(pþ q)-form A ^B defined by

A ^ Bðv1; . . . ;vpþqÞ
:¼ 1

p!q!

X
�2Spþq

ð�1Þkð�ÞAðv�ð1Þ; . . . ;v�ðpÞÞ

�Bðv�ðpþ1Þ; . . . ;v�ðpþqÞÞ; (B3)

where v1; . . . ;vpþq are generic pþ q vectors,Spþq is the

group of permutations of pþ q elements, ð�1Þkð�Þ is the
signature of permutation � and � denotes the multiplica-
tion in R. In particular, ifA andB are 1-forms, the exterior
product is expressible in terms of tensor products as

A ^ B ¼ A 
 B� B 
A ð1-formsÞ: (B4)

If A is a 1-form and B is a 2-form, then

A ^ Bðv1;v2;v3Þ
¼ ðA � v1ÞBðv2;v3Þ þ ðA � v2ÞBðv3;v1Þ

þ ðA � v3ÞBðv1;v2Þ: (B5)

The Hodge star operator relies on the Levi-Civita tensor
�: it associates to every p-form !, a (4� p)-form ?!,
called the Hodge dual of !, and defined by

0-form: ð?!Þ���� ¼ !
����; (B6)

1-form: ð?!Þ��� ¼ !�

�
���; (B7)

2-form: ð?!Þ�� ¼ 1

2
!��


��
��; (B8)

3-form: ð?!Þ� ¼ 1

6
!���


���
�; (B9)

4-form: ?! ¼ 1

24
!����


����: (B10)

Notice that, for any p-form,

? ?! ¼ ð�1Þpþ1! (B11)

and that, for any couple ða; bÞ of 1-forms,

? ða ^ bÞ ¼ �ð ~a; ~b; :; :Þ and

? ½�ð ~a; ~b; :; :Þ� ¼ �a ^ b;
(B12)

where ~a (resp. ~b) is the vector associated to a (resp. b) by
the metric [cf. Eq. (2.2)].
Being tensor fields, the differential forms are subject to

the covariant derivative r and to the Lie derivative Lv

discussed above. But, in addition, they are subject to a third
type of derivation, called exterior derivation. The exterior
derivative of a p-form field ! is a (pþ 1)-form field
denoted d!. In terms of components with respect to a
given coordinate system ðx�Þ, d! is defined by

0-form: ðd!Þ� ¼ @�!; (B13)

1-form: ðd!Þ�� ¼ @�!� � @�!�; (B14)

2-form: ðd!Þ���¼@�!��þ@�!��þ@�!��; (B15)

3-form: ðd!Þ���� ¼ @�!��� � @�!���

þ @�!��� � @�!���: (B16)

It can be easily checked that these formulas, although
expressed in terms of partial derivatives of components
in a coordinate system, do define tensor fields. Notice that
for a scalar field (0-form), the exterior derivative is nothing
but the gradient 1-form. Notice also that the definition of
the exterior derivative appeals only to the manifold struc-
ture. It does not depend upon the metric tensor g, nor upon
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any other extra structure on M. Besides, as for the Lie
derivative expressions (A2)–(A6), all partial derivatives in
formulas (B13)–(B16) can be replaced by covariant de-
rivatives r thanks to the symmetry of the Christoffel
symbols.

A fundamental property of the exterior derivation is to
be nilpotent:

dd! ¼ 0: (B17)

A p-form ! is said to be closed iff d! ¼ 0, and exact iff
there exists a (p� 1)-form � such that ! ¼ d�. From
property (B17), any exact p-form is closed. The Poincaré
lemma states that the converse is true, at least locally.

With respect to the exterior product, the exterior deriva-
tion obeys to a modified Leibniz rule: if a is a p-form and b
a q-form,

d ða ^ bÞ ¼ da ^ bþ ð�1Þpa ^ db: (B18)

If p is even, we recover the standard Leibniz rule.
The exterior derivative enters in the well-known Stokes’

theorem: if D is a submanifold of M of dimension
d 2 f1; 2; 3; 4g and has a boundary (denoted @D), then
for any (d� 1)-form !,I

@D
! ¼

Z
D
d!: (B19)

Note that @D is a manifold of dimension d� 1 and d! is a
d-form, so that each side of (B19) is a well-defined quan-
tity, as the integral of a p-form over a p-dimensional
manifold.

A standard identity relates the divergence of a vector
field v to the exterior derivative of the 3-form v � � (see
e.g. Appendix B of Ref. [22]):

d ðv � �Þ ¼ ðr � vÞ�: (B20)

Another very useful formula where the exterior deriva-
tive enters is Cartan identity, which states that the Lie
derivative of a p-form ! (p � 1) along a vector field v
is expressible as

Lv! ¼ v � d!þ dðv �!Þ: (B21)

Notice that for a 1-form, Eq. (B21) is readily obtained by
combining Eqs. (A5) and (B14).

APPENDIX C: RELATION BETWEEN THE
SCALAR FIELDS � AND � AND THE
ELECTROMAGNETIC 4-POTENTIAL

The electromagnetic 4-potential A is not an observable
and may not necessarily obey the symmetries (2.28) of the
electromagnetic field F ¼ dA. However, for each Killing
vector, one can find a gauge transformation such that the
4-potential obeys the corresponding symmetry. We dem-
onstrate this for stationarity and axisymmetry.

Stationarity implies that L�F ¼ L�dA ¼ dL�A ¼ 0.

If M is simply connected, then the Poincaré lemma im-
plies that there exists a single-valued scalar � such that
L�A ¼ d�, but this quantity will be nonzero in general.

However, there exists a class of gauge transformations
A0 ¼ Aþ d� such that L�A

0 ¼ L�ðAþ d�Þ ¼ dð�þ
L��Þ ¼ 0 provided that the scalar � satisfies �þL�� ¼
const. This differential equation may be integrated along
the integral curves of the timelike Killing vector �. This
procedure eliminates the time-dependent part of A.
Axisymmetry implies the relation L�F ¼ L�dA

0 ¼
dL�A

0 ¼ 0 which, by virtue of the Poincaré lemma, im-

plies the existence of a single-valued scalar �0 such that
L�A

0 ¼ d�0, but this quantity will again be nonzero in

general. However, there exists another class of time-
independent gauge transformations A00 ¼ A0 þ d�0 such
that L�A

00 ¼ L�ðA0 þ d�0Þ ¼ dð�0 þL��
0Þ ¼ 0 with a

time-independent scalar �0 (obeyingL��
0 ¼ 0 by assump-

tion) that satisfies the equation �0 þL��
0 ¼ const. This

differential equation can be integrated along the integral
curves of the axial Killing vector �. The resulting gauge
transformation eliminates the nonaxisymmetric part of A0
while maintaining its stationarity.
This permits one to work in a gauge class within

which the 4-potential A is stationary and axisymmetric.
From the Cartan identity, � � dAþ dð� �AÞ ¼ L�A ¼ 0,

one then has � � F ¼ �dAt and similarly � � F ¼ �dA’.

Comparing these two equations to (2.29) and (2.30) allows
one to identify At with � and A’ with �, up to some

additive constant, thereby demonstrating Eq. (2.31).

APPENDIX D: KERR-NEWMAN
ELECTROMAGNETIC FIELD

The Kerr-Newman solution describes a charged rotating
black hole. In Boyer-Lindquist coordinates ðt; r; 	; ’Þ, its
electromagnetic field is [68]

F ¼ �0Q

4�ðr2 þ a2cos2	Þ2 ðP ^ dtþR ^ d	Þ; (D1)

where Q is the total electric charge, a :¼ J=M the
reduced angular momentum of the black hole,
P :¼ ðr2 � a2cos2	Þdr� a2r sin2	d	 and R :¼
aða2cos2	� r2Þsin2	drþ arðr2 þ a2Þ sin2	d	. Since
the Kerr-Newman spacetime is circular, �	 ¼ dt and �	 ¼
d’ [cf. Eq. (2.41)]. The comparison with (2.35) leads to

� ¼ ��0Q

4�

r

r2 þ a2cos2	
;

� ¼ �0Q

4�

arsin2	

r2 þ a2cos2	
; I ¼ 0:

(D2)

At the nonrotating limit (a ¼ 0), this reduces to Reissner-
Nordström solution:
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� ¼ ��0

4�

Q

r
; � ¼ 0; I ¼ 0: (D3)

APPENDIX E: COMPONENT
EXPRESSIONS WITH RESPECT TO

A COORDINATE SYSTEM

In coordinates ðx�Þ ¼ ðt; x1; x2; ’Þ adapted to stationar-
ity and axisymmetry (cf. Sec. II B), the components of the
Killing vectors are �� ¼ ð1; 0; 0; 0Þ and �� ¼ ð0; 0; 0; 1Þ
[cf. Eq. (2.10)]. From Eq. (B2), the 2-form �ð�;�; :; :Þ is
expressible as

� ð�;�; :; :Þ ¼ ffiffiffiffiffiffiffi�g
p

dx1 ^ dx2: (E1)

1. General spacetimes

The components F�� of the electromagnetic field are

given by F ¼ F��dx
� 
 dx� ¼ Fj��jdx� ^ dx�, where

j��j means that the summation is limited to �< �.
Accordingly, substituting Eqs. (2.40) and (E1) into
Eq. (2.35) leads to

F0a ¼�@a�; a2 f1;2g; (E2a)

F3a ¼�@a�; a2 f1;2g; (E2b)

F03 ¼ 0; (E2c)

F12 ¼ 1

�
½@1�ð�X�2þW�2Þ�@2�ð�X�1þW�1Þ

þ@1�ðW�2þV�2Þ�@2�ðW�1þV�1Þþ I
ffiffiffiffiffiffiffi�g

p �:
(E2d)

Regarding the fluid 4-velocity u, the coefficients 
 and
� in the decomposition (3.5) are given by 
 ¼ �	 � u
and 
� ¼ �	 � u. Using (2.39), (2.13), (2.14), (2.15), and
(2.16), we get

u0 ¼ 
þ 1

�
ðX�a �W�aÞua; (E3)

u3 ¼ 
�� 1

�
ðW�a þ V�aÞua: (E4)

From (3.5) and the fact that �a ¼ 0 and �a ¼ 0 (a 2
f1; 2g), we get

wa ¼ ua: (E5)

From (3.5), (E3), and (E4), the remaining components
of w are

w0 ¼ 1

�
ðX�a �W�aÞua; (E6)

w3 ¼ � 1

�
ðW�a þ V�aÞua: (E7)

From the property w 2 �?, we get w0 ¼ ��� ¼ 0 and
w3 ¼ w��

� ¼ 0, hence the covariant components of w:

w� ¼ ð0; ua � 
ð�a þ��aÞ; 0Þ: (E8)

The covariant components of u are given by u0 ¼ u��
�

and u3 ¼ u��
�, so that we may write

u� ¼ ð�
ðV �W�Þ; ua; 
ðW þ X�ÞÞ: (E9)

2. Circular spacetimes

In the circular case, we may choose coordinates
ðt; x1; x2; ’Þ so that the surfaces orthogonal to � are the
surfaces ft ¼ const; ’ ¼ constg. Then (2.23) holds and
we have �a ¼ ga��

� ¼ ga0 ¼ 0 and �a ¼ ga��
� ¼

ga3 ¼ 0:

�a ¼ �a ¼ 0: (E10)

Accordingly, the components (E10) of the electromagnetic
field simplify to

F�� ¼
0 �@1� �@2� 0

@1� 0
ffiffiffiffiffiffiffi�g

p
I=� @1�

@2� � ffiffiffiffiffiffiffi�g
p

I=� 0 @2�
0 �@1� �@2� 0

0
BBB@

1
CCCA (E11)

and relations (E3) and (E4) reduce to

u0 ¼ 
 and u3 ¼ 
�; (E12)

whereas (E6) and (E7) become

w0 ¼ w3 ¼ 0: (E13)
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