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We investigate the viscosity driven instability in rotating relativistic stars by means of an iterative
approach. We focus on polytropic rotating equilibrium stars and impose a m � 2 perturbation in the lapse.
We vary both the stiffness of the equation of state and the compactness of the star to study those effects on
the value of the threshold. For a uniformly rotating star, the criterion T=W, where T is the rotational
kinetic energy and W is the gravitational binding energy, mainly depends on the compactness of the star
and takes values around 0:13–0:16, which differ slightly from that of Newtonian incompressible stars
(� 0:14). For differentially rotating stars, the critical value of T=W is found to span the range 0:17�
0:25. This is significantly larger than the uniformly rotating case with the same compactness of the star.
Finally we discuss a possibility of detecting gravitational waves from viscosity driven instability with
ground-based interferometers.
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I. INTRODUCTION

Stars in nature are usually rotating and subject to non-
axisymmetric rotational instabilities (see [1–3] or [4] for
recent reviews). An exact treatment of these instabilities
exists only for incompressible equilibrium fluids in
Newtonian gravity, (e.g. [5–7]). For these configurations,
global rotational instabilities arise from nonradial toroidal
modes eim’ (m � �1;�2; . . . ) when � � T=W exceeds a
certain critical value. Here ’ is the azimuthal coordinate
and T and W are the rotational kinetic and gravitational
binding energies. In the following we will focus on the
m � �2 bar-mode, since it is the fastest growing mode
when the rotation is sufficiently rapid.

There exist two different mechanisms and correspond-
ing time scales for bar-mode instabilities. Uniformly rotat-
ing, incompressible stars in Newtonian theory are secularly
unstable to bar-mode formation when � * �sec ’ 0:14.
This instability can grow in the presence of some dissipa-
tive mechanism, like viscosity or gravitational radiation,
and the growth time is determined by the dissipative time
scale, which is usually much longer than the dynamical
time scale of the system. By contrast, a dynamical insta-
bility to bar-mode formation sets in when � * �dyn ’

0:27. This instability is independent of any dissipative
mechanism, and the growth time is the hydrodynamic
time scale of the system.

There are two representative dissipative mechanisms
that drive the secular bar-mode instability, viscosity and
the gravitational radiation, in the absence of thermal dis-
sipation. The viscosity driven instability sets in when a
mode has a zero-frequency in the frame rotating with the

star [8], and the first unstable mode in terms of m is the
m � 2 bar mode. The quasistatic evolution of the star due
to viscosity driven instability, which varies the circulation
of the star, deforms the Maclaurin spheroid to the Jacobi
ellipsoid in Newtonian incompressible stars. On the other
hand, the gravitational radiation induced instability [9,10]
sets in when the backward going mode is dragged forward
in the inertial frame (see [1,3,4,11] for reviews), and the
mode in terms of m are all unstable when it exceeds a
certain m. The quasistatic evolution of the star due to
gravitational radiation induced instability, which varies
the angular momentum of the star, deforms the
Maclaurin spheroid to the Dedekind ellipsoid in New-
tonian incompressible stars.

The viscosity driven instability, especially to determine
the critical value either in an incompressible star or in an
ellipsoidal equilibrium, has been studied in Newtonian
gravity [12], in post-Newtonian gravity [13,14], and in
full general relativity [15–17] by an ellipsoidal approxi-
mation (e.g., [5]) or by an iterative evolution approxima-
tion (e.g., [15]), and shows that the viscosity drives the
instability to higher rotation rates �sec * 0:14 as the con-
figurations become more compact. There is also a study of
Newtonian compressible stars to determine the critical
value of viscosity driven instability [15]: It is found that
the star becomes secularly unstable at �sec � 0:135�
0:02, depending on the stiffness of the polytropic equation
of state.

The aim of the paper is twofold. One is to investigate the
critical value of viscosity driven instability in the com-
pressible stars rotating uniformly. The argument that the
viscosity driven instability plays a role to deform a star
from a Maclaurin spheroid to a Jacobi ellipsoid is only true
in the absence of internal energy, since the total energy has
a chance to transfer it to the internal energy without
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emission from the star (e.g. [18]). Here we assume that the
cooling time scale of the star is shorter than the thermal
heating time scale so that the thermal energy generated by
viscosity is immediately radiated away. Therefore the pic-
ture of the deformation process due to viscosity is quite
similar to the case of incompressible stars. The stars are
usually considered as compressible bodies, and therefore it
is worth to take such effect into account whether there is a
significant change on the threshold. In this respect the
present work extends that of Ref. [17] to the compressible
case.

The other aim of the present work is to investigate the
effect of differential rotation on the viscosity driven secular
bar-mode instabilities. For a strong viscosity or strong
magnetic field circumstances, the star maintains uniform
rotation. However, in nature the star may rotate differen-
tially as the Sun. Stellar collapses and mergers may also
lead to differentially rotating stars (e.g. [19]). For the
coalescence of binary irrotational neutron stars [20–22],
the presence of differential rotation may temporarily sta-
bilize the ‘‘hypermassive’’ remnant, which constructs a
differential rotation. Therefore it is also worth to take
differential rotation into account to study viscosity driven
instabilities in rotating relativistic stars.

This paper is organized as follows. In Sec. II we present
the basic equations of our treatment of general relativity.
We discuss our numerical results in Sec. III and IV, focus-
ing on the viscosity driven instability in uniformly and
differentially rotating stars. In Sec. V we briefly summarize
our findings. Throughout this paper, we use the geome-
trized units with G � c � 1 and adopt polar coordinates
�r; �; ’� with the coordinate time t. Note that Latin index
takes �r; �; ’�.

II. ITERATIVE EVOLUTION APPROACH TO
DETERMINE THE THRESHOLD OF VISCOSITY

DRIVEN INSTABILITY

A. Equilibrium configuration of rotating relativistic
stars

We briefly introduce our basic approach to construct
rotating relativistic stars and allow nonaxisymmetric de-
formation induced by ‘‘viscosity.’’ We introduce a non-
axisymmetric line element, when the azimuthal component
’ is separable in the metric [23], in spherical coordinates
�t; r; �; ’� with a quasi-isotropic gauge (e.g. [24,25]) as
 

ds2 � �N2dt2 	 A2�dr� Nrdt�2 	 r2A2�d�� N�dt�2

	 r2sin2�B2�d’� N’dt�2; (2.1)

where N is the lapse, Nr, N�, N’ correspond to the shift, A
and B are the spatial metric functions. In the equilibrium
state, we only take the azimuthal component of the shift
N’, the lapse, and two spatial metric functions into account
of the metric components. Note that all of them are func-
tions of r and � only. Once we impose the nonaxisymmet-

ric perturbation in the lapse, we take all the components of
shift into account, and relax the dependence of the func-
tions of �r; �� to �r; �; ’� for lapse and shift [16]. In our
present approach the nonaxisymmetric terms have been
taken into account at least to the 1=2 post-Newtonian order.
Note that the spatial metric functions keep the functional
dependence of �r; �� as those terms are considered as a
higher post-Newtonian order which only enters in the order
of "amp 
 �M=R� � 10�6, where "amp is the amplitude of
the perturbation we imposed in the lapse, M the gravita-
tional mass, R the circumferential radius. It is therefore a
good approximation to drop the nonaxisymmetric contri-
bution from the spatial part of the metric. To summarize we
compute the exact relativistic rotating equilibrium star and
perturb the geometrical quantities in lapse and in shift,
neglecting the azimuthal perturbation in the spatial metric.

We also adopt the maximal slicing condition, for which
the trace of the extrinsic curvature Kij vanishes

 K � �ijKij � 0: (2.2)

The gravitational field equations (Einstein equations) for
the six unknown functions N, Nr, N�, N’, A, B are written
as [16]
 

��� � 4�A2�E	 3P	 �E	 P�UiUi� 	 A2KijKij

� �ri� �ri��	 ��; (2.3)

 

��Ni 	 1
3

�ri �rjNj � �16�NA2�E	 P�Ui

	 NB�2Kij �rj�6�� �� � Ji; (2.4)

 �2�r sin��NB� 1�� � 16�r sin�NA2BP; (2.5)

 �2� � 8�A2�P	 �E	 P�UiU
i� 	 3

2A
2KijK

ij � �ri� �ri�;

(2.6)

where we introduced the auxiliary functions

 � � lnN; � � ln�NA�; � � lnB: (2.7)

Note that �ri denotes the covariant derivative in terms of a
flat 3-metric, �4 � �ri �ri the corresponding Laplacian, �2

is the 2-dimensional Laplacian,Ui is the spatial component
of 3-velocity

 �2 �
@2

@r2 	
1

r
@
@r
	

1

r2

@2

@�2 ; (2.8)

 Ur � �
Nr

N
; U� � �

N�

N
; U’ �

1

N
��� N’�:

(2.9)

In Eqs. (2.3), (2.4), (2.5), and (2.6), E andUi are the energy
density and the 3-velocity, measured by the locally non-
rotating observer: E � �2���1	 "� 	 P�� � P, � � �1�
�A2��Ur�2 	 r2�U’�2� 	 r2sin2�B2�U’�2���1=2, where � is
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the comoving rest-mass density, " the specific internal
energy, P the pressure.

The equation for the shift,

 

�4Ni 	 1
3

�ri �rjN
j � Ji; (2.10)

can be further simplified by introducing a vector Wi and a
scalar � according to

 4Wi � Ji; (2.11)

 4 � � �Jix
i: (2.12)

The shift can then be computed from

 Ni � 7
8W

i � 1
8�

�ri�	 �ri�Wkxk��; (2.13)

and will automatically satisfy Eq. (2.10). The vector-type
Poisson equation [Eq. (2.10)] for Ni has hence been re-
duced to four scalar-type Poisson equations for Wi and �.

Let us now discuss the matter part. We treat the matter as
a perfect fluid, the energy momentum tensor of which is

 T	� � �
�

1	 "	
P
�

�
u	u� 	 Pg	�; (2.14)

where u	 is the fluid 4-velocity. We adopt a �-law equation
of state in the form

 P � ��� 1��"; (2.15)

where � is the adiabatic index. In the absence of thermal
dissipation, Eq. (2.15) together with the first law of ther-
modynamics imposes a polytropic equation of state

 P � 
�1	1=n; (2.16)

where n � 1=��� 1� is the polytropic index and 
 a
constant.

The relativistic Euler equation is described in axisym-
metric stationary spacetime as

 

h;j
h
�
ut;j
ut
	 utu’�;j � 0 �j � r; ��; (2.17)

where h � �1	 "	 P=�� is the specific enthalpy. The
Bernoulli’s equation is derived by integrating the relativ-
istic Euler equation [Eq. (2.17)] as (see e.g. [26])

 H� K 	 Rrot � C; (2.18)

where

 H �
Z dh

h
� lnh � ln�1	 �"�; (2.19)

 K �
Z dut

ut
� lnut � ��� ln�; (2.20)

and C is a constant of integration. We adopt two types of
rotation profile, uniform and differential rotation, in this
paper. For a uniformly rotating star, we simply set the
rotational energy potential Rrot � 0 since �;j � 0. For a
differentially rotating star, we assume a specific type of
rotation law as

 utu’ � A2
rot��c ���; (2.21)

where �c is the central angular velocity, Arot the degree of
differential rotation, in order to integrate Eq. (2.17) analyti-
cally. In the Newtonian limit (ut ! 1 and u’ ! $2�,
where $ is the cylindrical radius), the corresponding rota-
tional profile reduces to

 � �
A2

rot�c

$2 	 A2
rot

; (2.22)

which is called j-constant rotation law. The rotational
potential energy for this case is

 Rrot �
Z
utu’d� � �1

2A
2
rot��c ���2: (2.23)

The enthalpy is derived from the Bernoulli’s equation
[Eq. (2.18)] as

 

H � Hmax 	 �K � Kmax� � �Rrot � R
max
rot �

� ln�1	 �"max� 	 ��max � �� 	 �ln�max � ln��

� �Rrot � R
max
rot �; (2.24)

where Hmax, Kmax, Rmax
rot represents the values at the maxi-

mum enthalpy. The rotation law of the star [Eq. (2.21)]
becomes

 A2
rot��c ��� �

r2sin2�B2��� N’�

N2 � r2sin2�B2��� N’�2
: (2.25)

We also rescale the gravitational constant during the
iteration process in order to determine the radius of the
star [24]. Since the gravitational constant only enters
through the matter of the star, we split the equation for
lapse into two parts: One comes from the spacetime ge-
ometry and the other from the matter, and solve them
independently (� � �q 	 �m, �q is the contribution from
the spacetime geometry and �m the one from the matter).
After that we set the equatorial surface in the computa-
tional domain and varies the gravitational constant [27] in
the following:

 G �
�Hmax 	 �max

q � ln�max 	 Rmax
rot � � �H

sur 	 �sur
q � ln�sur 	 Rsur

rot �

�sur
m � �max

m
; (2.26)

VISCOSITY DRIVEN INSTABILITY IN ROTATING . . . PHYSICAL REVIEW D 74, 084006 (2006)

084006-3



where Hmax, �max
q , ln�max, Rmax denotes the value at the maximum enthalpy, Hsur, �sur

q , ln�sur, Rsur denotes the value at the
equatorial surface of the star, which are unknown in each iteration step.

In order to test our numerical code internally, we check the virial identities GRV2 [28] and GRV3 [29], the latter being a
relativistic version of the classical virial theorem. The relative errors are defined by

 GRV 2 � 1	

R
�
0 d�

R
1
0 rdr�GRV2m�r; ��R

�
0 d�

R
1
0 rdr�GRV2q�r; ��

; (2.27)

 GRV 3 �

R
2�
0 d’

R
�
0 sin�d�

R
1
0 r

2dr��GRV3q�r; �; ’� 	 �GRV3m�r; �; ’��R
2�
0 d’

R
�
0 sin�d�

R
1
0 r

2dr�GRV3m�r; �; ’�
: (2.28)

where

 �GRV2m�r; �� � 8�A2�P	 �E	 P�UiU
i�; (2.29)

 �GRV2q�r; �� �
3
2A

2KijKij � �ri� �ri�; (2.30)

 �GRV3m�r; �; ’� � 4�A2B�3P	 �E	 P�UiUi�; (2.31)

 �GRV3q�r; �; ’� �
3
4A

2KijKij � �ri� �ri�	 1
2

�ri� �ri�:

(2.32)

Note that the two quantities GRV2 and GRV3, that should
be identically 0 in the ideal equilibrium configuration, have
already been rescaled by the typical source term of the
equation, and therefore automatically defined as a relative
error of our computation.

The gravitational massM, proper massMp, total angular
momentum J, rotational kinetic energy T, gravitational
binding energy W can be computed from
 

M �
Z 2�

0
d’

Z �

0
sin�d�

Z 1
0
r2drA2B�N�E	 3P

	 �E	 P�UiUi� 	 2r sin�B�E	 P�N’UiUi�;

(2.33)

 Mp �
Z 2�

0
d’

Z �

0
sin�d�

Z 1
0
r2drA2B��; (2.34)

 J �
Z 2�

0
d’

Z �

0
sin�d�

Z 1
0
r2drr sin�A2B2�E	 P�UiUi;

(2.35)

 

T �
1

2

Z 2�

0
d’

Z �

0
sin�d�

Z 1
0
r2dr


 r sin��A2B2�E	 P�UiUi; (2.36)

 W � Mp 	 T �M: (2.37)

Since we use a polytropic equation of state in the equilib-
rium, it is convenient to rescale all quantities with respect
to 
. Since 
n=2 has dimensions of length, we introduce the
following nondimensional variables

 

�M � 
�n=2M; �R � 
�n=2R; �J � 
�nJ;

�T � 
�n=2T; �W � 
�n=2W; �� � 
n=2�:

(2.38)

Henceforth, we adopt nondimensional quantities, but omit
the bars for convenience (equivalently, we set 
 � 1).

Our computations have been made via a multidomain
spectral method [30]. We have developed a code to imple-
ment this method by using the C++ library LORENE [31].
The key advantage of the spectral method is that the
required number of grid points to obtain a sufficiently
high accuracy is quite small compared to the grid points
in finite differencing, and the accuracy is guaranteed up to
the round-off error in principle. Since this method is only
applicable to smooth functions, we treat the discontinuity
at the surface of the star by splitting the computational
domain. Note that we introduce three computational do-
mains to cover the space. The innermost domain covers the
whole star, while the outermost one is compactified which
allows to cover the space up to spatial infinity. We also use
surface fitting method to split the domain at the surface of
the star [30]. This method works perfect until the equato-
rial surface of the star has a cusp, which happens when the
uniformly rotating star approaches to the mass shedding
limit, or the star is highly deformed from the sphere due to
differential rotation.

B. Iterative evolution approach

We follow the iterative evolution approach [15,16] to
investigate the viscosity driven instability in rotating rela-
tivistic stars. We particularly focus on the effect of relativ-
istic gravitation for compressible fluids. The physical
viewpoint of this approach is only shown in Newtonian
incompressible star that to study the transition from a
uniformly rotating axisymmetric body (Maclaurin spher-
oid) to a nonaxisymmetric body (Jacobi ellipsoid).
According to Christodoulou et al. [32], the above defor-
mation process is driven by viscosity, since it only varies
the circulation but keeps the other two conserved quanti-
ties, total energy and angular momentum, in the Newtonian
incompressible star. The computational viewpoint of this
approach is that instead of performing the time evolution of
the star to investigate the stability of the star, we treat the
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iterative number as evolutional time and determine the
stability of the star. The advantage of this approach is
that there is no restriction to the evolutional time step
even in a high compactness star. Note that it is entirely
difficult to study the secular instability in the explicit
evolution scheme in full general relativistic hydrodynam-
ics, since the restriction from the Courant time step scales
as ��M=R��1=2. The uncertain issue in this approach is
that whether one can treat iterative number as evolutional
time, and there is no relationship between each other in a
mathematical sense. However there is a correspondence: In
the Newtonian incompressible star, Gondek-Rosińska and
Gourgoulhon [17] investigate the difference between the
exact critical value on the bifurcation point (e.g. [5]) and
find that it is within the round-off error.

Our computational study of the iterative evolution ap-
proach is divided into two stages; construction of a rotating
equilibrium star and the determination of the viscosity
driven bar-mode stability of a rotating equilibrium star.
To construct a rotating equilibrium star, we first construct
a spherical star with given parameters of � and Hmax, as an
initial guess of the metric components and the matter
profile. Next we solve gravitational field equations and
determine the new matter profile for the next iteration
step. During the iteration we impose rotation at the given
iteration step, start varying the angular velocity to the given
required value at the given iteration step, stop varying the
angular velocity at the given required value at the given
iteration step. We stop our iteration cycle when the relative
error of the enthalpy norm between the previous step and
the current step is within 1:0
 10�7. We check the rela-
tivistic virial identity and the identity for all the equilib-
rium configuration and find that the relative errors of GRV2
and GRV3 are & several 
10�4.

To determine the stability of rotating relativistic star
driven by viscosity, we follow all the computational pro-
cedure to construct a rotating equilibrium star until we
reach the relative error of the enthalpy norm at 1:5

10�7. At this iteration step, we put the following m � 2
perturbation in the logarithmic lapse to enhance the growth
of the bar-mode instability as

 � � �eq�1	 "ampsin2� cos2’�; (2.39)

where �eq is the logarithmic lapse in the equilibrium, "amp

is the amplitude of the perturbation. We diagnose the
maximum logarithmic lapse of the m � 2 coefficients in
terms of mode decomposition as

 q � maxj�̂2j; (2.40)

where

 � �
X1
m�0

�̂me
im’: (2.41)

We also define the logarithmic derivative of q in the
iteration step N i as

 

_q
q
�
qi � qi�1

qi�1
; (2.42)

where qi denotes q at the iteration step N i. We determine
the stability of the star in terms of viscosity driven insta-
bility as follows. When the diagnostic q grows exponen-
tially after we impose a bar-mode perturbation in the
logarithmic lapse, we conclude that the star is unstable.
On the other hand when the diagnostic decays after we put
a perturbation, the star is stable. More precisely, we moni-
tor the derivative of q after we impose a bar-mode pertur-
bation. We conclude that the equilibrium star is unstable
when the _q=q settles down to a positive constant value,
while stable to a negative constant value. Note that the
existence of the plateau in _q=q after the several iteration
steps once we put a perturbation confirms us that we are in
the linear perturbation regime, and therefore guarantees
our choice of the perturbation amplitude we imposed
("amp). Finally we determine the critical value of T=W as
the minimum one in the unstable branch. We also confirm
our argument in all equilibrium stars that there is a con-
tinuous transition between stable and unstable stars as a
function of T=W in our model. We summarize our compu-
tational procedure in Fig. 1.

III. UNIFORMLY ROTATING STARS

Before studying the viscosity driven instability in uni-
formly rotating stars, we examine the dependence of the
perturbation amplitude "amp and the collocation points on
the critical value of viscosity driven bar-mode instability
�T=W�crt. Note that we introduce three domains to cover
the whole space, and each domain has a relationship of
N r � 2N � � 1 and N ’ � 4, where N r, N �, N ’

       Initial guess: Spherically symmetric stars

                                                                           Guess of next matter configuration

                             1. Impose rotation at the given iteration step

                             2. Start varying the angular velocity 

                                 to the required value at the given iteration step

                             3. Stop varying the angular velocity

                                 at the required value at the given iteration step

       Solve gravitational field equations

                                                                                                     NO

       Check the convergence of the norm of the enthalpy

                             YES

       Equilibrium configuration

                                             Impose a bar mode perturbation

       Check the signature of q/q 

positive                             negative

       Unstable              Stable

FIG. 1. Sketch of the computational procedure to determine
the stability of rotating stars.
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represents the collocation points for the radial direction,
the polar angle, the azimuthal angle, respectively.

First we vary the amplitude "amp in the range between
1:00
 10�3–1:00
 10�5. We show the diagnostic _q=q in
Fig. 2. The general picture of _q=q in our computation is
composed of three stages: (1) _q=q � 0 (2) Sudden change
in _q=q at a certain iteration step (3) Continuous smooth
function. (1) represents the stage of constructing the axi-
symmetric rotating equilibrium configuration. Since we
solve the equations in the axisymmetric spacetime, there
is no nonaxisymmetric contribution in this stage and there-
fore both q and _q=q are 0 up to numerical error. (2) repre-
sents a reaction due to a sudden imposition of a bar-mode
perturbation in the logarithmic lapse. The quantity _q=q
should drastically change at this iteration step. (3) repre-
sents the post-perturbation stage, which determines the
stability of the equilibrium star. When _q=q takes a positive
value after a certain iteration step we conclude that the
equilibrium star is unstable, while takes a negative value
stable. Note that it is in the linear perturbation regime when
_q=q takes a constant value after the perturbation. Therefore

the solid and dash-dotted lines in Fig. 2 are stable while
dash and dotted lines are unstable (plotted in Fig. 3). The
diagnostic _q=q suggests us to impose the amplitude below
1:00
 10�4, since there is no plateau for the case of
N � � 17, "amp � 1:00
 10�3 in the stable star (Fig. 2).
We also check whether we have a continuous transition
from the stable star to the unstable one in terms of T=W
(Fig. 3), and confirmed that there exists a minimum T=W in
the unstable stars. We determine the minimum value as
�T=W�crt. The monotonic increase of the final value of _q=q

as increasing T=W (Fig. 2) also supports the previous
statement. We find in Table I that the critical value of
T=W depends on the choice of "amp for only 0.4%, which
means that we are in the high convergence level of the
choice of "amp.

Next we show our result of two different choices of the
collocation points N � � 17 and 25 in Table I, and find
that the critical T=W depends on the choice of N r and
N � only for 0.4%. This means that we are also in the high
convergence level in the choice of collocation points.
Therefore we briefly estimate that our accuracy level of
the critical value of T=W is & 1%. Hereafter we choose the
parameter sets "amp � 1:00
 10�5 and N � � 17 to de-
termine the critical value of viscosity driven instability in
uniformly rotating stars.

After we determine our choice of "amp and the colloca-
tion points, we study the critical value of T=W of the
viscosity driven instability in uniformly rotating stars.
We show the diagnostic of the two closest star to the
critical value of T=W for sixteen different parameters in
Fig. 4. Note that there is a clear plateau after we put a
perturbation, and therefore we are in the linear perturbation

0.130

0.131

0.132

T
 / 

W

0.130

0.131

0.132

0.130

0.131

0.132

0.130

0.131

0.132

Νθ=17
ε = 1 x 10

-3 ε = 1 x 10
-4 ε = 1 x 10

-5 ε = 1 x 10
-5

Νθ=17 Νθ=17 Νθ=25

FIG. 3. Stability of uniformly rotating stars of � � 2:3,
M=R � 0:01 for four different parameters. Circle (open) and
circle (filled) denotes stable and unstable to viscosity driven bar-
mode perturbation, respectively. We fix the compactness for each
parameter up to four digits. Note that there is a monotonic
transition from stable to unstable when increasing T=W.

TABLE I. Dependence of critical T=W on the amplitude "amp

and on the collocation points in uniformly rotating stars of � �
2:3, M=R � 0:01.

"amp N � �T=W�crt

1:00
 10�3 17 0.1308
1:00
 10�4 17 0.1313
1:00
 10�5 17 0.1313
1:00
 10�5 25 0.1308

150 200 250
-0.05

0

0.05

q 
/ q

200 300 400
-0.05

0

0.05

200 300 400

N
-0.05

0

0.05

q 
/ q

200 300

N
-0.05

0

0.05

Νθ=17, ε
amp

=10
-3

Νθ=17, ε
amp

=10
-5 Νθ=25, ε

amp
=10

-5

Νθ=17, ε
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=10
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FIG. 2. Diagnostic _q=q as a function of iteration numbers
N for sixteen different uniformly rotating stars of � � 2:3
and M=R � 0:01. Solid, dash-dotted, dashed, dotted lines de-
notes T=W � �0:1306; 0:1307; 0:1308; 0:1309� for
�N �; "amp� � �17; 1:00
 10�3�, T=W � �0:1309; 0:1312;
0:1313; 0:1314� for �N �; "amp� � �17; 1:00
 10�4�, T=W �
�0:1309; 0:1312; 0:1313; 0:1314� for �N �; "amp� � �17; 1:00

10�5�, and T=W � �0:1306; 0:1307; 0:1308; 0:1310� for
�N �; "amp� � �25; 1:00
 10�5�, respectively.
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FIG. 4. Diagnostic _q=q as a function of iteration steps N for sixteen different uniformly rotating stars. Solid and dashed lines
denotes the unstable and stable stars, respectively. Note that the T=W for each stable star in the same compactness is 0.0001 lower than
the critical value of that of an unstable star (see Table II).
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FIG. 5. Stability of uniformly rotating stars for sixteen different parameters. Circle (open) and circle (filled) denotes stable and
unstable to viscosity driven bar-mode perturbation, respectively. We fix the compactness for each parameter up to four digits. Note that
there is a monotonic transition from stable to unstable when increasing T=W.
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regime. We also study the stability of the stars in terms of
T=W (Fig. 5) and determine the critical values of insta-
bility, which are summarized in Table II and in Fig. 6. We
find that the relativistic gravitation stabilizes the star from
viscosity driven instability, and that the critical value of
T=W for each compactness is almost insensitive to the
polytropic � of the equation of state. The Newtonian
compressible calculation has been performed in Fig. 3 of

Bonazzola, Frieben, and Gourgoulhon [15] that the critical
value of T=W is �0:134 which is not so sensitive to the
variation of the polytropic �. Our computational results
(Fig. 6) shows that the critical T=W is �0:137 for M=R �
0:01, �0:145 for M=R � 0:05, �0:150 for M=R � 0:1,
�0:157 forM=R � 0:15, respectively. The critical value of
T=W monotonically increases when increasing the com-
pactness of the star, which means that the relativistic
gravitation stabilizes the viscosity driven instability. Note
that the � below the smallest � in each compactness of the
star plotted in Fig. 6 represents that the star is stable up to
the mass-shedding limit.

IV. DIFFERENTIALLY ROTATING STARS

Next we follow the same approach to study the critical
value of viscosity driven bar-mode instability in differ-
entially rotating stars. We study two cases based on the
variation of rotation profile during the iteration for differ-
entially rotating stars. One is that we fix the rotation profile
throughout the iteration. The physical time step which
corresponds to the iteration step is much shorter than the
dynamical time in this case since the different fragments of
the fluid in terms of a cylindrical radius move at different
azimuthal speeds, and therefore the trace shows a spiral
structure. The other is to change the rotation profile
throughout the evolution. Since we mimic the model that
the viscosity changes the rotation profile, the total angular
momentum is approximately conserved throughout the
process. We use the same collocation points as in the
case of uniformly rotating stars.

2.2 2.4 2.6 2.8 3

Γ
0.130

0.135

0.140

0.145

0.150

0.155

0.160

(T
 / 

W
) cr

t

FIG. 6. Critical value of T=W as a function of � for four
different compactness of uniformly rotating stars (see
Table II). Circle (open), circle (filled), square (open), and square
(filled) denotes the compactness (M=R) of 0.01, 0.05, 0.1, and
0.15, respectively. The star whose adiabatic index is �low � 0:1,
where �low is the lowest � of the unstable star in each compact-
ness in the figure, is stable.

TABLE II. Critical value of T=W of viscosity driven instability in uniformly rotating relativistic stars.

�a Rp=Re
b Hmax

c Rd Me Jf �T=W�crt M=R GRV2 GRV3

2.30 0.5276 0.009 199 0.9323 0.009 322 0.000 208 2 0.1313 0.009 999 6:44
 10�5 �1:54
 10�4

2.40 0.5446 0.008 465 0.7518 0.007 518 0.000 140 0 0.1336 0.010 00 3:22
 10�5 �9:60
 10�5

2.50 0.5526 0.008 002 0.6322 0.006 322 0.000 100 8 0.1350 0.010 00 �3:78
 10�5 1:04
 10�4

2.60 0.5482 0.007 662 0.5528 0.005 528 7:904
 10�5 0.1391 0.010 00 5:04
 10�5 �2:14
 10�5

2.70 0.5590 0.007 368 0.4825 0.004 825 6:057
 10�5 0.1385 0.010 00 7:99
 10�5 �1:73
 10�4

2.80 0.5510 0.007 130 0.4352 0.043 52 5:023
 10�5 0.1420 0.010 00 �1:24
 10�5 8:59
 10�5

2.90 0.5663 0.006 933 0.3879 0.003 879 3:966
 10�5 0.1389 0.010 00 5:85
 10�5 �1:52
 10�4

2.50 0.5312 0.045 42 0.8140 0.040 71 0.001 986 0.1409 0.050 01 4:72
 10�5 �1:30
 10�4

2.60 0.5368 0.042 91 0.7267 0.036 33 0.000 161 6 0.1434 0.050 00 5:04
 10�5 �4:94
 10�5

2.70 0.5486 0.040 90 0.6513 0.032 56 0.001 306 0.1426 0.050 00 7:01
 10�5 �1:64
 10�4

2.80 0.5380 0.039 51 0.6089 0.030 44 0.001 171 0.1483 0.050 00 �1:02
 10�4 1:34
 10�4

2.90 0.5471 0.038 20 0.5586 0.027 93 0.000 986 8 0.1469 0.050 00 4:99
 10�5 �1:23
 10�4

2.70 0.5241 0.097 10 0.7320 0.073 19 0.005 049 0.1501 0.099 99 7:93
 10�5 �7:16
 10�5

2.80 0.5351 0.091 97 0.6734 0.067 35 0.004 319 0.1506 0.1000 7:23
 10�5 �1:86
 10�4

2.90 0.5423 0.088 24 0.6274 0.062 74 0.003 773 0.1507 0.1000 8:09
 10�5 �3:63
 10�5

2.90 0.5242 0.1608 0.6634 0.099 57 0.008 380 0.1567 0.1501 3:16
 10�5 �6:99
 10�5

a�: Adiabatic index of the equation of state
bRp=Re: Ratio of the polar proper radius to the equatorial proper radius
cHmax: Maximum enthalpy
dR: Circumferential radius
eM: Gravitational mass
fJ: Total angular momentum
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First we show the case of fixed rotation profile through-
out the evolution. The diagnostic in Fig. 7 shows that there
exists a critical value of viscosity driven instability. Note
that the plateau at the late stage of the iteration clearly
shows that we are in the linear perturbation regime. We
also monitor the stability of differentially rotating stars in
terms of different T=W in Fig. 8. We find a monotonic
transition from a stable star to an unstable star as a function
of T=W, which guarantees the determination of critical
value of T=W as a minimum T=W in the unstable stars.
We summarize our finding in Table III.

We find the following two issues in the critical value of
T=W. One is that relativistic gravitation also stabilizes
differentially rotating stars from the viscosity driven insta-
bility. The above statement also holds in uniformly rotating
incompressible relativistic stars and in uniformly rotating
compressible relativistic stars, and therefore we find that
this statement is quite general one. The other is that dif-
ferential rotation also stabilize the star from the viscosity
driven instability. The critical value of T=W is 0:13–0:16
for a uniformly rotating star, while 0:18� 0:25 for a differ-

TABLE III. Critical value of viscosity driven instability in differentially rotating relativistic stars. We choose � � 2 polytropic
equation of state and the degree of differential rotation as Â � 1.

Rp=Re Hmax R M J �T=W�crt M=R GRV2 GRV3

0.4458 0.007 594 1.978 0.019 78 0.011 65 0.1828 0.010 00 �2:03
 10�6 2:28
 10�6

0.3985 0.038 30 1.894 0.094 68 0.013 15 0.1999 0.050 00 3:92
 10�6 4:92
 10�4

0.3820 0.074 92 1.758 0.1758 0.035 65 0.2186 0.1000 3:88
 10�7 �4:52
 10�6

0.3457 0.1116 1.609 0.2414 0.060 25 0.2354 0.1500 �1:93
 10�5 �9:03
 10�6

0.2982 0.1581 1.455 0.2910 0.082 10 0.2496 0.2000 �3:63
 10�6 �1:55
 10�5
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FIG. 7. Diagnostic _q=q as a function of iteration steps N for five different differentially rotating stars. Solid and dashed lines
denotes the unstable and stable stars, respectively. Note that the T=W for each stable star in the same compactness is 0.0001 lower than
the critical value of that of an unstable star (see Table III).
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FIG. 8. Stability analysis of differentially rotating stars for five
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stable and unstable to viscosity driven bar-mode perturbation,
respectively. We fix the compactness for each parameter up to
four digits. Note that there is a monotonic transition from stable
to unstable when increasing T=W.
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entially rotating stars with moderate degree of differential
rotation.

Next we study the variation of the rotation profile since
viscosity also takes a significant role to change it. The time
scale between the change of angular velocity profile and
the growth of the viscosity driven bar-mode are in the same
order in low viscosity approximation, we should check
whether our result is significantly affected by the change
of the rotation profile of the star. In order to mimic this
idea, we vary the parameter of the degree of differential
rotation slightly after we impose a perturbation in the
following manner:

 A�1
rot � A�1�eq�

rot �1� 
rot�N �N ptb��; (4.1)

where 
rot is the degree of the variation of the rotation
profile we set to 1:0
 10�4, N the iteration number,
N ptb the iteration number we impose the perturbation.
Note that viscosity changes the rotation profile to the
uniform one, we put negative sign in front of "rot. Since
the viscosity only affects the local interaction between the
each fluid components, the total angular momentum is
conserved even the viscosity takes the role. Therefore we
also vary the central angular velocity �c in the following
manner

 �c � ��eq�
c �1� 
omg�N �N ptb��; (4.2)

where 
omg is the degree of the variation of the central
angular velocity in order to maintain the total angular

momentum approximately constant. Note that we put a
negative sign in front of 
omg to play an appropriate role
of the viscosity. In practice we vary 
omg in 0.1 steps and
choose the one that changes the angular momentum mini-
mum at the given "rot. For each case the relative change of
the total angular momentum after we impose the perturba-
tion is in the order of & 10�5. We show the relationship
between the relative change of the total angular momentum
and 
omg for several cases in Fig. 9.

Taking into account of the change of rotational profile,
we show our numerical results for the critical values in
Fig. 10. We find that all the stars around the critical T=W
determined for a fixed rotation profile becomes unstable. In
fact, the stage of _q=q that corresponds to the plateau in
Fig. 7 increases in Fig. 10. Therefore we estimate the
relevant two time scales, growth of the bar mode due to
viscosity and the variation time of the rotational profile due
to viscosity, and compare them to discuss the condition to
induce viscosity driven instability.

If we assume that the bar grows exponentially through-
out the iteration, the growth time scale of the bar is
� _q=q��1. The value of _q=q at the plateau in Fig. 7 represent
the growth time scale. On the other hand, the change of the
rotation profile due to viscosity changes the growth time
scale of the bar, and therefore the derivative of the _q=q
represents the time scale of the change of rotation profile.
We define those two time scales as

 �ang � � �q=q��1=2; �bar � � _q=q��1: (4.3)
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FIG. 9. Relative deviation of the total angular momentum between two successive steps in the iteration process, as a function of the
step number N . Solid, dashed, dotted, dash-dotted lines represent "omg � �0:5; 0:6; 0:7; 0:8� 
 10�4 for M=R � 0:01 and T=W �
0:1828, "omg � �0:8; 0:9; 1:0; 1:1� 
 10�4 for M=R � 0:05 and T=W � 0:1999, "omg � �1:1; 1:2; 1:3; 1:4� 
 10�4 for M=R � 0:1 and
T=W � 0:2186, "omg � �1:0; 1:1; 1:2; 1:3� 
 10�4 for M=R � 0:15 and T=W � 0:2354, and "omg � �0:9; 1:0; 1:1; 1:2� 
 10�4 for
M=R � 0:2 and T=W � 0:2496, respectively.
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We summarize those two time scales from our computation
in Table IV.

These two time scales can also be derived analytically in
Newtonian gravity. The azimuthal component of the

Newtonian Navier-Stokes equation is

 

@�

@t
�

�

$3

@
@$

�
$3 @�

@$

�
; (4.4)

where � is a shear viscosity. We assume the time depen-
dence of the angular velocity as ��t� � �eqe�i�t at the
derivation from the equilibrium due to viscosity, the time
scale to change the angular velocity profile to the uniform
rotation is

 �ang � ��1 �
�$2 	 d2�2

8d2�
>
d2

8�
�
R2

8�
�c

�c ��s
; (4.5)

where �s is the surface equatorial angular velocity. Note
that we adopt the j-constant rotational profile to the angu-
lar velocity [Eq. (2.22) in the Newtonian gravity]. The
e-folding time of a compressible uniformly rotating star
(Eq. (A20) of Ref. [33]) based on the Navier-Stokes equa-
tion is

 �bar �

nR

2

5�
�sec

�� �sec
; (4.6)

where 
n is a structure constant depends on the polytropic
index (Table 1 of Ref. [34]; 
n � 0:65345 for � � 2), �sec

a critical value of � for the secular bar-mode instability, R
is the equatorial radius of the star.

Based on the analytical estimation of the two time
scales, the time scales used in our numerical results should
be described as

TABLE IV. Two time scales in differentially rotating stars
extracted from our numerical results.

M=R T=W �ang [�N ] �bar [�N ]

0.01 0.1825 1:8
 102 �6:1
 102

0.01 0.1828 1:7
 102 5:1
 104

0.01 0.1834 1:3
 102 3:0
 102

0.01 0.1844 8:1
 101 1:1
 102

0.05 0.1993 1:7
 102 �1:7
 103

0.05 0.1996 1:6
 102 �2:7
 103

0.05 0.1998 1:6
 102 �8:1
 103

0.05 0.1999 1:6
 102 3:1
 105

0.10 0.2180 1:6
 102 �6:6
 102

0.10 0.2184 1:6
 102 �2:6
 103

0.10 0.2185 1:5
 102 �8:1
 103

0.10 0.2186 1:5
 102 8:0
 103

0.15 0.2348 2:0
 102 �4:8
 102

0.15 0.2352 2:0
 102 �1:7
 103

0.15 0.2353 1:9
 102 �3:4
 104

0.15 0.2354 1:9
 102 5:9
 103

0.20 0.2494 8:1
 102 �1:8
 103

0.20 0.2495 8:5
 102 �2:4
 104

0.20 0.2496 7:7
 102 2:3
 103

FIG. 10. Diagnostic _q=q as a function of iteration steps N for five different differentially rotating stars. Solid, dashed, dotted, and
dashed line denotes T=W � �0:1825; 0:1828; 0:1834; 0:1844� and "omg � 0:8
 10�4 for M=R � 0:01, T=W �
�0:1993; 0:1996; 0:1998; 0:1999� and "omg � 0:9
 10�4 for M=R � 0:05, T=W � �0:2180; 0:2184; 0:2185; 0:2186� and "omg � 1:3

10�4 for M=R � 0:1, T=W � �0:2348; 0:2352; 0:2353; 0:2354� and "omg � 1:1
 10�4 for M=R � 0:15, and T=W �
�0:2494; 0:2495; 0:2496� and "omg � 1:0
 10�4 for M=R � 0:2, respectively. Note that _q=q is always increasing around the critical
value of T=W in differentially rotating stars, which means the change of rotational profile due to viscosity unstabilizes the star.
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 �ang � "�1
org; (4.7)

 �bar � "�1
org

�
�c ��s

�c

��
�sec

�� �sec

�
: (4.8)

We confirm that differential rotation stabilizes the star from
viscosity driven instability. Also Eq. (4.8) shows that the
time scale of the bar becomes short when the rotational
profile varies due to viscosity. The critical value of T=W
changes from the one computed in a fixed rotation profile,
but the deviational ratio of T=W is roughly the same order
as the one of rotational profile, which means � "org.

V. CONCLUSIONS

We have studied the viscosity driven instability in both
uniformly and differentially rotating polytropic star by
means of iterative evolution approach in general relativity.
We have focussed on the determination of the critical value
of viscosity driven instability.

We find that relativistic gravitation stabilizes the star
from the viscosity driven instability, with respect to
Newtonian gravitation. Also the critical value is not sensi-
tive to the stiffness of polytropic equation of state for a
given compactness of the star. In a previous study devoted
to compressible stars, Bonazzola, Frieben, and
Gourgoulhon [16] showed that relativistic gravitation
does stabilize the uniformly rotating polytropic stars by
investigating the mass-shedding sequence. Our study
shows the concrete value of �T=W�crt in the case of a
uniformly rotating star. Also we have improved the nu-
merical code with respect to the study [16] by making use
of surface-fitted coordinates.

Besides we have found that differential rotation also
stabilizes the star from the viscosity driven instability. If
we fix the compactness of the star, we find a significant
increase of the critical value of T=W, which supports the
above statement. We also confirm this statement by chang-
ing the rotation profile due to viscosity and find that the
differential rotation still stabilizes the threshold of viscos-

ity driven instability. However to confirm the statement in
differentially rotating stars, the study of other approaches
such as implicit hydrodynamical evolution or eigenmode
analysis should be necessary and helpful.

Finally let us mention the characteristic amplitude and
frequency of gravitational waves emitted throughout the
viscosity driven secular bar-mode instability, which pro-
duces quasiperiodic gravitational waves detectable in
ground-based interferometers. The characteristic ampli-
tude h of gravitational waves estimated from the evolution
of a Jacobi-ellipsoid to a Maclaurin spheroid is (Eq. (4.2)
of Ref. [33])

 h � 9:1
 10�21

�
30 Mpc

d

��
M

1:4M


�
3=4
�

R
10 km

�
1=4
f�1=5;

(5.1)

where d is the distance to the source and the characteristic
frequency f � �=� is f * 1000 �Hz�, depending on T=W
of the star. Note that the frequency increases throughout
this process. Although the frequency regime of the source
is slightly higher than the best sensitivity regime of the
ground-based detectors to follow all the deformation pro-
cess, we may have a chance to detect them when it happens
in the Virgo cluster, for example.
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[20] M. Shibata and K. Uryū, Phys. Rev. D 61, 064001 (2000).
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