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A new method is described for constructing initial data for a binary neutron-star system in quasiequili-
brium circular orbit. Two formulations for nonconformally flat data, waveless and near-zone helically
symmetric, are introduced; in each formulation, the Einstein-Euler system, written in 3 + 1 form on an
asymptotically flat spacelike hypersurface, is exactly solved for all metric components, including the
spatially nonconformally flat potentials, and for irrotational flow. A numerical method applicable to both
formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are
shown for solution sequences of irrotational binary neutron-stars with matter approximated by parame-
trized equations of state that use a few segments of polytropic equations of state. The binding energy and
total angular momentum of solution sequences computed within the conformally flat—Isenberg-Wilson-
Mathews—formulation are closer to those of the third post-Newtonian (3PN) two point particles up to the
closest orbits, for the more compact stars, whereas sequences resulting from the waveless/near-zone
helically symmetric formulations deviate from the 3PN curve even more for the sequences with larger
compactness. We think it likely that this correction reflects an overestimation in the Isenberg-Wilson-
Mathews formulation as well as in the 3PN formula, by ~1 cycle in the gravitational-wave phase during
the last several orbits. The work suggests that imposing spatial conformal flatness results in an under-
estimate of the quadrupole deformation of the components of binary neutron-star systems in the last few

orbits prior to merger.
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L. INTRODUCTION

Inspiral to merger of binary neutron stars (BNS) is one
of the most promising sources of ground-based
gravitational-wave detectors. A fully general relativistic
numerical simulation is the unique approach to predict
the gravitational waveform from the late inspiral to merger
phase. Such a simulation begins with preparing quasiequi-
librium initial data with a close orbital separation
~45-50 km.

Quasiequilibrium initial data for binary neutron stars
introduce two kinds of inaccuracies into inspiral simula-
tions. One is due to ignoring the radial component of the
velocity of orbiting stars, the other to artificial restrictions
on the geometry of the initial hypersurface [1]. A common
choice for the geometry of the initial hypersurface is a
conformally flat three-geometry [2,3], and a similarly re-
strictive alternative is presented in [4].' The former error is
reduced by adding radial velocity to minimize the oscil-
lation around the inspiral orbit, where the radial velocity
may be determined empirically or calculated from the post-
Newtonian formula of inspiraling point masses. Both er-
rors become negligible if the initial separation of the binary
is large enough, possibly five orbits or more before the

'"For the computation of black hole-neutron star binary in
quasiequilibrium, see e.g. [5]
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merger; but increasing separation increases the cost of
computing time, and maintaining accuracy in numerical
simulations may still be an issue.”

In a previous paper [7], we have reported that the in-
accuracy of the binary orbit arising from spatial conformal
flatness can be largely removed if one solves the full
Einstein equation for all metric components, including
the nonconformally flat part of the spatial metric, on a
Cauchy surface 3, using the formulation presented in
[8-10]. In this formulation, Einstein’s equation is written
in a 3 + 1 form and the time derivative of the conformal
three metric, d,%,,, which carries the dynamics of the
spacetime in our choice of the gauge, is set to zero. ¥,
is conformally related to the spatial metric vy, in each slice
3, by Yap = ¥*¥a, with ¢ a conformal factor. As a
result, the field equations for the metric components be-
come elliptic equations on an initial slice X.,, and they yield
an asymptotically flat metric. We call this approach the
waveless (WL) formulation .

We have also experimented with another formulation for
quasiequilibrium initial data in which all components of
the metric are computed; preliminary results were pre-
sented in [11]. In this approach, helical symmetry is im-
posed in the near zone from the center of mass to the radius

*For long-term simulation of binary black hole inspirals and
matching to the post-Newtonian results, see e.g. [6]

© 2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.80.124004

KOJI URYU et al.

~A = 7/, and either the WL formulation is applied
outside, or the computational domain is truncated at this
radius. Here, () is the orbital angular velocity and A is the
wavelength of the dominant, primarily € = m = 2 quad-
rupole, mode of the gravitational waves expected to be
radiated from the system. In this paper, we discuss the
near-zone helically symmetric (NHS) formulation together
with the WL formulation, for which numerical methods are
common.

A significant difference in the binding energy and total
angular momentum between the solutions from WL/NHS
formulations and those from a conformally flat formula-
tion, the Isenberg-Wilson-Mathews (IWM) formulation
[12,13], is found and is discussed in the later section. In
the IWM formulation, the solution sequences—the plots of
these quantities as functions of orbital angular velocity—
become closer to those of third post-Newtonian (3PN)
point particles up to the closest orbits when the compact-
ness of each star is increased. In contrast, sequences ob-
tained from the WL/NHS formulations deviate more from
the 3PN curve for larger compactness.

We expect waveless and helically symmetric solutions to
accurately approximate the outgoing metric in the near
zone, where the gravitational-wave amplitude is small
compared to the Coulomb part of each metric potential.
Results of Ref. [11] and of the present paper support this
expectation by showing that corresponding WL and NHS
solutions nearly coincide.

Several groups have developed simulation codes for
BNS inspirals and merger; stable long-term simulations
[14,15], magnetized BNS simulations [16], and black hole-
neutron star binary merger simulations [17] are now fea-
sible. As mentioned above, however, accurate modeling of
the last several orbits of inspiraling binary compact object
using quasiequilibrium sequences will be still useful, be-
cause the lower computational cost allows one to study
gravitational-wave sources by exploring a wider parameter
space, varying the mass ratio and the dense matter equation
of state (EOS). One of the other applications will be the
comparison with the results of simulations, which becomes
a reliable calibration for both of the numerical solutions.

This paper is organized as follows: In Sec. II we describe
the WL/NHS formulations. These are essentially identical
to those introduced in our previous papers [9—11], except
for a few modifications suitable for coding. All equations
used in actual coding are written in Appendix A in detail.
As a model for the EOS of high density matter, the pa-
rametrized EOS developed in [15,18] is used in the com-
putations and is briefly introduced in this section. In
Sec. III the numerical method is discussed, with emphasis
on the major differences from the previous conformally flat
code. In Sec. IV we report results from the WL/NHS
computation of binary systems and of constant-rest-mass
quasiequilibrium sequences.

In this paper, spacetime indices are Greek, spatial in-
dices Latin, and the metric signature is — + + + . For
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writing the basic equations, geometric units with G = ¢ =
1 are used, while for tabulating the numerical solutions, cgs
units or other appropriate units are used.

II. FORMULATION

A. 3 + 1 decomposition and gauge conditions

The spacetime M = R X X is foliated by a family of
spacelike hypersurfaces (%,),cg parametrized by t. The
future-pointing unit normal n¢ to the hypersurface 2, is

related to the generator % of time translations, for which
t*V,t =1, by

t“ = an® + B°. (1)

Here « is the lapse function and 8¢ the shift vector, with
B%n, = 0. n® is related to the gradient of ¢ by n, =
—aV,t. It is also related to the helical vector k%, the
generator of time translation in a rotating frame, by

¢ = an® + w?, 2)

where a spatial vector w® := B¢ + ()¢ is the rotating
shift in the rotating frame, and () is a constant angular
velocity of the rotating frame. The helical vector £ is not
everywhere timelike, but it is transverse to the surface 2,
and normalized as k*V ¢ = 1.

The spatial metric vy, (¢) induced on 3, by the spacetime
metric g,z is equal to the projection tensor orthogonal to
n%, Yap = &ap t Nang, restricted to 3,,. We introduce a
conformal factor ¢/, a conformally rescaled spatial metric
Yap» and a flat spatial metric f,,, with y,, = ¢*¥,,, and
with the conformal factor specified by the condition ¥ = f,
where ¥ and f are the determinants of ¥,, and f,,. In a
chart (¢, x*), the metric g,z has the form

ds® = —a’df® + Yty (dx + BUdn)(dx” + BPdr). (3)

Let us denote by h,;, and h® the differences between the
conformal metric and the flat one:

’)7ab = fab + hab’ ,yab = fab + hab' (4)

The extrinsic curvature of each slice 2, is defined by

1

-5 £n Yabs (5)

Kah = )

where the action of £, on vy, in the above definition, and
on other spatial tensors hereafter, is given by

1 1
£n7ah = 76t7ab - 7£,87ah; (6)

a a
here 9,7, is the pullback of £,y,4 to X,, with £, the Lie
derivative along the vector ¢* defined on M, and £ is the

Lie derivative along the spatial vector 8¢ on %,,.
Einstein’s equation is written in the 3 + 1 form

(Gup — 87T, 5)n*nP =0, 7
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(Gaﬁ - 877Ta,8)7aanﬁ = 0: (8)

1
(Gup — 8wTaﬁ)(yaﬁ + Enanﬁ) 0 ©

1
(Gup = $7To) (a0 = 3 707") =0 (10

These equations are the Hamiltonian and momentum con-
straints, the trace of the spatial projection combined with
the Hamiltonian constraint, and the tracefree part of the
spatial projection, respectively. They are solved for ¢, B,,
the combination a ¢, and A,,,. For perfect-fluid spacetimes,
the stress-energy tensor 7%F is written

TP = (e + p)u®uP + pg®P, (11)

where € is the energy density, p the pressure, and u® the 4-
velocity of the fluid.

The above set of equations are solved imposing as
coordinate conditions the maximal slicing condition,

K =0, (12)
and the generalized Dirac gauge condition [9—11],
o [e]
Db’)?ab — Dbhab — 0, (13)

[e]
where D, is the covariant derivative associated with the flat
metric f,;,. Concrete forms of Egs. (7)—(10) are presented
in Appendix A.

B. Waveless and near-zone helically symmetric
formulations

As a model for binary compact objects in general rela-
tivity, helically symmetric spacetimes have been intro-
duced [19] and studied by several authors [20-27].
Helically symmetric binary solutions for point particles
in a post-Minkowski framework [28] analogous to the
electromagnetic two-body solution [29], and for several
toy models have been calculated [11].

Helically symmetric spacetimes do not admit flat
asymptotics. However, it is expected that, up to a certain
truncation radius where the energy of radiation does not
dominate the gravitational mass of the system, solutions
have an approximate asymptotic region in which gravita-
tional waves are propagating in a curved background. Such
a solution, however, has not yet been calculated success-
fully in the regime of strong gravity.

Helical symmetry,

£i8ap =0, (14)

implies for the 3-metric and extrinsic curvature on a initial
hypersurface X,

£Yar =0, £Ky = 0. (15)
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Using the relation k* = an® + w®, we have

1

£n70b = _Z£w’ygb’ (16)

1
£nKah = __£wKub' (17)
!
Because k¢ is timelike in the fluid, helical symmetry for
the fluid variables,

£ku“ = 0, £k€ = 0, £kp = 0, (18)

has the meaning of stationarity for a rotating observer.

Our formulation for the nonconformally flat data of
binary compact objects in a quasiequilibrium quasicircular
orbit is based on the helically symmetric formulation. We
further impose either a waveless condition or near-zone
helical symmetry in the gauge (12) and (13).

a. Waveless formulation As discussed in [10], the con-
dition, 9,9** = O(r™3), is sufficient to enforce Coulomb-
type fall-off in the asymptotics. For our waveless formu-
lation in this paper, we impose the stronger condition

ati}ab = O’ (19)
which amounts to writing the extrinsic curvature as
1 1 N3 (y\1/3
K, =—¢% - =) 9l=
ab = 50 BYab o ?’ab(y) (7)
1 1
= §£ﬁ?’ab + a Yar Q€ g Ingp?, (20)

where helical symmetry is used to get the second equality.
Only the first term on the right-hand side (r.h.s.) remains in
the maximal slicing condition. Because the trace of
Eq. (20) has the same form for K = 0 as the trace of the
original Eq. (5), the waveless condition (19) does not affect
the maximal slicing condition. Note that the second term of
the r.h.s. of Eq. (20) does not appear in the tracefree part of
K,;,; in other words, the time derivative of the conformal
factor ¢ does not appear in the initial value formulation in
this slicing. The other time derivatives are given by the
helical symmetry conditions, Eqs. (17) and (18).

b. Near-zone helically symmetric formulation Near-zone
helical symmetry means that we impose helically symmet-
ric conditions (16)—(18) in the region from the center of the
source to about one wavelength of the € = m = 2 mode of
the gravity wave, r < A := 7r/(); we then either truncate
the domain of numerical computation at this radius or use
the waveless formulation outside. The latter implies for
K, the condition

Ko - €0 Y ab for r < aa,
B Y ap + Y QEg Ingg* for r = aA,
21

where the constant a, the coordinate radius of the helically
symmetric zone in units of A = 7/}, is restricted to
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a < 1.5. Without this restriction, iterations fail to con-
verge to a binary solution. In the near-zone-helical +
outside-waveless formulation, all metric components, in-
cluding those of the spatial metric, have Coulomb-type
fall-off. We have compared the NHS solution to the WL
solution in our previous paper [11] and confirmed that the
difference in the nonconformal flat part of the spatial
metric is about 1% for the BNS of M,/R ~ 0.17, where
M, /R is the compactness, the ratio of the gravitational
mass to the circumferential radius of a spherical star having
the same rest mass as each component star of the binary.

C. Formulation for the irrotational flow

The late stage of BNS inspiral is modeled by a constant-
rest-mass sequence of quasiequilibrium solutions with
negligible spins and magnetic fields, a description appro-
priate to a binary of old pulsars with spin periods longer
than 100 ms. Since the viscosity of the high density matter
is expected to be negligible, a neutron star in a binary
system is not spun up by the tidal torque during the
inspirals. Hence, the flow field remains approximately
irrotational, and each neutron star is modeled by an irro-
tational perfect fluid [30].

The equation of motion, V BTaB = (), for a perfect fluid
has the form

VTP = pluPVg(hu,) + V,h] + hu,Vg(puP)
—pTV,s =0, (22)

where s is the entropy per baryon mass, /4 is the relativistic
enthalpy per baryon mass & := (e + p)/p, and local ther-
modynamic equilibrium dh = Tds + dp/p is assumed.
We assume constant entropy per baryon (s = const) every-
where inside the neutron star, together with a one-
parameter EOS,

p = p(p). (23)
The form
uPVg(huy) + Vyh =0 (24)

of the relativistic Euler equation then follows from local
conservation of baryon mass,

V,(pu®*) = 0. (25)

Written in terms of the Lie derivative along u®, these last
equations have the form

1
—£,(p/—8) =0, 26
\/_—g u(p g) ( )

£,(huy) + V h = 0. 27)

A state is stationary state in the rotating frame if it is
helically symmetric, if each physical field is Lie derived by
the helical vector field k¢, as in Eq. (18), or
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£i(pu'\/=8) =0,

where u' is the scalar u®V .
The relativistic Euler Eq. (24) can be rewritten as

and £.(hu,) =0,  (28)

uPwg, =0, (29)
where
Wgy = Vﬁ(hua) - Va(hbtﬁ) (30)

is the relativistic vorticity tensor. This implies that, for
irrotational flow, hu, has a potential ®,

hu, =V o, (31)

and hence the relativistic Euler equation has a first integral.
With a spatial velocity v® in the rotating frame defined by

u® = u'(k* + v9), (32)

where v*n, = 0, Eq. (27) becomes
h
£,(huy) +V, h = u’[£k+v(hua) +V, —[:I
u
h
= u[Va<£v(I) + 7) =0; (33)
u

therefore the first integral is

h
£, + i g, (34)

where & is a constant.® Note that Egs. (28) and (31) imply a
flow with £,® = constant. Such a flow is both irrotational
and helically symmetric with the shape of the star fixed in
the rotating frame. Solutions describing irrotational bi-
naries in Newtonian and post-Newtonian gravity are found
in [31], and details of the formulation for helically sym-
metric irrotational flow are given in [20,32].

There are three fluid variables and two parameters to be
determined in the above formulation. The fluid variables
are a thermodynamic variable, the velocity potential @,
and the time component of the 4-velocity u’; and these are
calculated from the first integral (34), the rest-mass con-
servation Eq. (26), and the normalization of the 4-velocity,
uu® = —1. A concrete form of these equations are pre-
sented in Appendix A 3. For the independent thermody-
namic variable, we choose ¢ := p/p, and other
thermodynamic variables are determined from the thermo-
dynamic relations and the one-parameter EOS, which are
briefly explained in the next section. The number of fluid
variables and parameters are augmented in the numerical
computation, which is mentioned in Appendix B 2 (or see

[33D.

*Cartan identity Kf w g, = £;(hu,) — V,,(hugkP) implies, for
the helically symmetric irrotational flow satisfying £;(hu,) = 0
and Ba = 0, a relation, hu,k® = constant, equivalent to
Eq. (34).
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D. Parametrized equations of state

Recently, a parametrization for the EOS of nuclear
matter has been studied, and it is shown that a parametrized
EOS with three polytropic intervals approximates with fair
accuracy a variety of current candidate EOS, over a range
of densities that extends from the inner crust to the maxi-
mum neutron-star density [18]. Two of these intervals and
three parameters cover densities below the central density
of a 1.4M, neutron star, and waveforms from binary
inspiral can be used to constrain this three-dimensional
subspace of the parameter space [15]. This parametrized
EOS is used in our models for BNS data.

1. Construction of piecewise polytropic EOS

In presenting these piecewise polytropes, it is helpful to
introduce a relativistic Emden function ¢ by

q:=rplp (35)

and to write the remaining thermodynamic variables in
terms of g. For an isentropic flow with s = 0, the local
first law of thermodynamic equilibrium, dh = Tds +

%d p, takes the form
1
dh = —dp, (36)
p

where £ is the enthalpy per baryon mass.
A piecewise polytropic EOS is given by

p=Kip", (37)

in the intervals p € [p;,_y, p;), i = 1,- -+, N, with p; = 0
and py = 0. In this section the subscript i denotes the ith
interval, associated with a set of constants {I";, K;} with i =
1,--+, N, and labels the value of quantities at the higher
density side of each interval, [p;_, p;). Because we con-
sider only continuous EOS, p;, h;, €; and g; are the values
of each of these quantities at density p;.

The constant indices I'; are N model parameters, and
values of one thermodynamic variable at interfaces com-
prise a set of N — 1 model parameters. A requirement that
the pressure at the interface is continuous,

T; I
Kipil =Ki+1pl'l 1, (38)

uniquely specifies values of K; up to one free parameter,
one of K; of a specific ith interval, which is usually
specified by prescribing the value of pressure p; at the
corresponding interface density p;. Therefore we have
2N parameters for a parametrized EOS with N intervals.
To compute other thermodynamic quantities from ¢, we
use the following relations, valid in the ith interval, ¢ €

[gi-1 q:):
p= Ki—l/(l",-—l)ql/(r,-—l)’ (39)

p= Ki—l/(l"f—l)qri/(rifl)’ (40)
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I
h—hi = T — 1(4 = qi-1), (41)

€ =ph—p, (42)

where Eq. (41) is obtained by integrating the relation

1 I;
dh=—dp =—=—"—dq (43)
p I,—1

l

in the ith interval ¢ € [g,_,, g;). Here,

i .
h,-=ho+zpil(qj—qj—1), (44)
j=1t

with iy = 1 and g, = O.

2. Choice for the parameters

In the latter sections, we present the results of quasi-
equilibrium BNS solutions calculated using two types of
parametrized EOS. The first EOS contains one free pa-
rameter, which is used to estimate the accuracy of the
measurement of the EOS parameter, and the neutron-star
radius, by gravitational-wave observations of the inspirals
of BNS [15]. The second EOS is a four-parameter fit to the
candidates of neutron-star EOS. Those candidate EOS are
tabulated nuclear EOS, and the parametrized EOS with
four parameters approximates each candidate within the
rms residual typically in the order of ~0.1%, and ~4.3%
for the worst case [18].

The parametrized EOS with one parameter uses two
polytropic intervals. The lower density interval approxi-
mates the known subnuclear density EOS, the fixed crust
EOS, around O0.1pgc ~ pnec by setting (I'o, Ky) =
(1.356 92, 3.593 89 X 10'3). Here, p,,. is the nuclear satu-
ration density, and the constant K is in cgs units which
give the pressure p in dyn/cm?. For the second polytropic
interval at the higher density side, the adiabatic index is set
I'y = 3. Then, the pressure p, at the density p, =
10'*7 g/cm? is chosen as a parameter, and the dividing
density at the fixed crust and the next polytropic piece p is
determined as the intersection of the two intervals. Further
details are found in [15].

The four-parameter fit uses the same crust EOS as
above, and three other polytropic intervals. The adiabatic
indices of higher polytropic intervals {I';, I';, I';}, and the
pressure p; at the interface between i = 1 and 2 are chosen
as fitting parameters, while the dividing density p, is
evaluated in the same way as above, and other dividing
densities are fixed as p; = 10'*7 g/cm® and p, =
10" g/cm?. The EOS parameters and corresponding data
for the spherical solutions are summarized in the later
Sec. I'V. Further details for the four-parameter fit are found
in [18].
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III. COMPUTATION

A system of elliptic equations and algebraic relations are
solved applying a self-consistent field iteration scheme
[34]. Recently, the convergence of such scheme for
Newtonian barotropic stars has been mathematically ana-
lyzed in [35].

The WL/NHS code for the irrotational BNS presented in
this paper is developed on top of the former BNS code in
which the IWM formulation is used [36]. Another version
of the WL/NHS code, based on the triaxially deformed
rotating neutron-star code described in [33], has been
developed, and its results are presented elsewhere. The
numerical method used in these codes is briefly repeated
in Appendix B.

A. Imposition of Dirac gauge

The primary difference between the WL/NHS code and
an IWM code is the computation of the nonconformally flat
part of the spatial metric ¥,, = f,, + h,,- The conformal
spatial metric ¥, has to satisfy two conditions, ¥ = f and

o

D, 7% = 0, which turn out not to be automatically satis-
fied when the spatial tracefree part of Einstein’s equa-
tion (10) or its concrete form in the code, either
Eq. (A57) or (A60), is solved for h,,. To impose these
conditions on ¥,, accurately, we first make a gauge trans-

o

formation of h,, to satisfy D,h%’ = 0, and we then correct
the conformal factor to enforce the relation y = !> f at
each iteration cycle. Note that these two conditions are not
explicitly imposed in Eq. (A57) or (A60), and they are
violated mainly due to the numerical error of finite
differencing.

The gauge vector is calculated numerically by the fol-
lowing procedure: a perturbation of the spatial metric 6y,

[ o
0Yab = 6Yap — Do&p — Dpéos (45)

implies, to the same order, that the conformally rescaled
metric with ¥ = f satisfies

B B o o 2 [o]
0Vap = 6Vap — D&y — Dpéa + gfachfc- (46)

We adjust h,;, to this order to satisfy the Dirac gauge
condition; namely, writing

o o 2 o i
h;b = hah - Dafb - Dhga + gfachgc’ (47)

we let i/, satisfy the Dirac gauge condition to linear order
o
in hy, DR, = 0, which leads to
o 1 o o b o b
Anfa + §DaD fb =D hab' (48)

This equation is solved by introducing the decomposi-
tion

PHYSICAL REVIEW D 80, 124004 (2009)

1 o
fu = Ga - ZDaB’ (49)

which results in a set of elliptic equations,

[e] o o o
AG, = D’h,,, and AB= DG,. (50)

These equations (50) are solved using the same Poisson
solver described in Appendix B, and a solution is substi-
tuted in Eq. (49) and then in Eq. (47). In the r.h.s. of
Eq. 47), h,, is calculated from the tracefree part of
Einstein’s equation, either Eq. (A57) or (A60), and it is
replaced by #/,,, which satisfies the Dirac gauge condition
more accurately. We have also experimented with a trans-
formation of the contravariant components of 4% analo-

o
gous to Eq. (47), and let D,h% = 0 be satisfied; however,
the results did not change.
After the above gauge transformation, the condition y =
f is imposed by adjusting the conformal factor ¢ to

Y= df(%)m, (51)

where ¥’ is the determinant of %/, = f,, + h/,. Note that,
to impose ¥ = f, we do not change the value of //,. These
two corrections to /., and ¢ are made once per iteration
The other parts of the method of computation, including
the iteration scheme, are common to our previous codes
[33,36,37], which are briefly reviewed in Appendix B.

B. Coordinate and grid parameters

The WL/NHS code uses two coordinate patches: a
spherical patch, called the central coordinate system, on
which the metric components are calculated, and a surface-
fitted spherical-coordinate patch on which the fluid varia-
bles are computed. The origin of the central coordinates
(r, 6, @) is the mass center of the binary system, and that of
the surface-fitted coordinates (7, 64, ¢ ) is the geometric
center of the component star, where 7, is related to the
radial coordinate r, by #; = r;/R(0, ¢;) and R(0;, ¢ ) is
the surface of the star. We match the radial coordinate lines
at (6, ¢) = (7/2, 0) of the central coordinates, and that of
the surface-fitted coordinates (6, ¢,) = (7/2,0), and set
the 6 = 0 and 6, = O lines to be parallel. Only the octant
of the whole space for the central coordinate is solved,

TABLE I. Summary of grid parameters. (CC) stands for the
central coordinates, and (SFC) for the surface-fitted coordinates.

N,.: Number of intervals Ar; in r € [0, r,] (CC).

n,: Number of intervals Ar; in r € [0, r.] (CC).

Ny: Number of intervals A6; in 0 € [0, /2] (CC).
N: Number of intervals A¢; in ¢ € [0, 7/2] (CC).
N{ : Number of intervals A#; in 7, € [0, 1] (SFC).
Ng_: Number of intervals Af; in Gf € [0, 7/2] (SFC).
N{;: Number of intervals A¢; in ¢, € [0, 7] (SFC).
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TABLE II. Coordinate parameters, and the number of grid
points used in this paper. R, is the geometrical radius of the
neutron star along the (6, ¢ ) = (7/2,0) line. /;,,, and I o are
the highest multipoles included in the Legendre expansion in the
central and surface-fitted coordinates, respectively.

n, Ny Ny Lo NI NI N, tha
160 64 64 40 32 32 24 8

Tp re Nr

10°R, SR, 250

while a quarter for the surface-fitted coordinate. The
spherical coordinates correspond to the Cartesian coordi-
nates in the usual way; the (6, ¢) = (77/2, 0) line to the
(positive) x axis, the (77/2, 7/2) line to the y axis, and the
6 = 0 line to the z axis.

The accuracy of the numerical solutions depends on the
resolution of the finite differencing determined by the grid
spacings (Ar, A6, Ap), and the order of the truncation of
multipole expansion €,,,,. The latter is constrained by the
resolution since the multipoles involved in the Green’s
function, which oscillates rapidly for the larger €, should
be resolved on the grids. The radial grid spacing Ar of the
central coordinates is equidistant for r € [0, r.], and in-
creases in geometric progression for r € [r,, r,]. The grid
spacings of the other coordinates are equidistant. For fur-
ther details, see [33,36,37]. For the grid parameters defined
in Table I, we choose values listed in Table II. Typically, 1
cycle of iteration takes about 70 s for this grid setup using a
single core of Intel Xeon CPU X5450 with 3.00 GHz clock.

IV. QUASIEQUILIBRIUM SOLUTIONS

A. Behavior of h;; for selected solutions

Quasiequilibrium solutions of irrotational BNS are cal-
culated for the various sets of EOS parameters summarized
in Table III. As an example of the WL solutions, we present
in Fig. 1 contours of selected components of h;; for the
parametrized EOS HB, with orbital radius d/R, = 1.5,

TABLE III.

PHYSICAL REVIEW D 80, 124004 (2009)

where R is the coordinate radius (half the diameter) of
the neutron star along the x axis. For a qualitative com-
parison, contours are also shown for the leading order
terms O(r~ ") of the asymptotic solution of #;; in a second
order post-Newtonian (2PN) approximation with maximal
slicing and a transverse-traceless gauge for #;;, as derived
in [38] [see, Eq. (5.30)], namely,

Jj°

11 3 . . 5 ..
hij=;{Zlij+an(n’lkj+n11k,-)—gn’nflkk

3 .. 1 5
+ gn’n-’nknllkl + g 6ij1kk - g Bijnknllkl}

+ 0(r7?), (52)

where

X
and n'=—.
r

I = /pxixjd3x, (53)

In the quadrupole integrals /;;, we substituted two 1.35M,
point masses, separated by the same coordinate length as
the above WL solution. The region shown in these figures
does not extend far enough to have asymptotic behavior,
though the contours qualitatively agree.

In Fig. 2, selected components of h;; are plotted along
the x axis for the cases with parametrized EOS 2H, HB,
and 2B, from top to the bottom panels. In each case the
orbital radius is again d/R, = 1.5. In our models, the
gravitational mass of the corresponding spherical star is
M, = 1.35My and M, /R of each EOS increases in the
order of 2H, HB, 2B (see Table III), which is reflected by
the increasing amplitude of 4;;. Here and after, the com-
pactness of each component star in the binary system
means the value of M| /R for a single spherical star with
the same rest mass.

In the right panels, corresponding to the left panels, log-
log plots of the &, and &, components are shown up to the

Parameters of each EOS and properties of the spherical neutron-star model based on that EOS and having gravitational

mass M, = 1.35M,. The pressure p, [dyn/cm?] is the value at the dividing density p; = 10'*7 g/cm?, and values of log(p;) and
{I'}, 'y, '3} are taken from Table I of [15] and Table III of [18]. The parameters to fit the crust EOS are chosen as (I'y, K,) =
(1.356 92, 3.593 89 X 10'3) where K| is in cgs units, and the dividing density p, used to model the transition from the crust to the
nuclear matter is tabulated in the log of p, [g/cm?]. In the following calculations for BNS, a spherical solution of each EOS with
gravitational mass M, = 1.35M,, is used as a reference, whose rest mass M, in solar mass units, circumferential radius R in km,
compactness M, /R in the geometric unit G = ¢ = 1, and log of the central density p, in g/cm? are tabulated.

Model log(po) log(py) I I I's M{[Mo] My[Mo] R [km] M;/R log(p,.)
2H 13.847 34.90 3 3 3 1.35 1.4549 15.224 0.13097 14.573
HB 14.151 34.40 3 3 3 1.35 1.4927 11.606 0.17181 14.918
2B 14.334 34.10 3 3 3 1.35 1.5251 9.7268 0.20500 15.141
SLy 14.165 34.384 3.005 2.988 2.851 1.35 1.4947 11.469 0.17385 14.934
APRI1 14.294 33.943 2442 3.256 2.908 1.35 1.5388 9.1385 0.21819 15.221
FPS 14.220 34.283 2.985 2.863 2.600 1.35 1.5055 10.702 0.18631 15.038
BGNI1HI1 14.110 34.623 3.258 1.472 2.464 1.35 1.4789 12.626 0.15792 14.912
ALF3 14.188 34.283 2.883 2.653 1.952 1.35 1.5069 10.350 0.19264 15.150
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FIG. 2 (color online).

PHYSICAL REVIEW D 80, 124004 (2009)

FIG. 1 (color online). Contours of (h,, — hy,)/2 (left panels)
and h_, (right panels) in the xy plane. Top panels are those of a
WL solution with the EOS parameter HB and the orbital radius
d/Ry = 1.5, where R, is the coordinate radius (a half of the
diameter) of the neutron star along the x axis. Contours are drawn
every 0.001 step, where the solid (dashed) contours in the top
panels corresponds to positive (negative) values of A;;. Thick
dotted circles are the surface of neutron stars. Bottom panels are
the contours of the 2PN asymptotic formula (52) calculated for
the two point masses assuming the same coordinate separation
d/Ry = 1.5, and mass M = 1.35M X 2. Contours are also
drawn every 0.001 step. In the left top and bottom panels, the
outermost contour (interrupted by the boundary of the figure)
corresponds to —0.002. In the bottom two panels, contours out of
range ( < —0.01 for the left panel, and = *=0.005 for the right)
are truncated.

10-2 I G N
—_ . N B yy
- Y74
< 10 -
10-6 -é iy -2‘ by -1‘ . 0‘ - 1‘ HH‘;T‘Z\‘ o 3
10 10 10 10 10 10 10
x/\

x/\
102 .
< 1o _
10° 3 e 2 - 1 e 0 e T e 2 — 3
10 10° 10° 10 10 10 10
x/\

Selected components of /;; along the x axis of the WL solutions with the orbital radius d/Ry, = 1.5 for

parametrized EOS 2H, HB, and 2B, from top to bottom panels of both sides, respectively. Left (right) panels are log-linear (log-log)
plots, where the x axis is normalized by A := 77/€). Upper and lower thin solid lines in the right panels are, respectively, the A, and /.,
components of the asymptotic solutions (52) of two point mass, M; = 1.35M, each, separated as the numerical solutions, d/R, = 1.5.

h in left panels is defined by &, := (h,, — h,,)/2.
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boundary of the computational domain. Upper and lower
thin black lines in the right panels are, respectively, the &,
and h,, components of the asymptotic solutions (52) of two
point masses. These lines do not exactly match the h;;
countours of the corresponding of numerical solutions for
several reasons, including finite-size and higher order post-
Newtonian effects. However, the lines shift systematically
from the numerical A;;, which suggest that the numerical
h;; scales properly in the asymptotic region (as well as in
the near zone) as the compactness increases.

B. Quasiequilibrium sequences with different
compactness

A constant-rest-mass sequence of quasiequilibrium so-
lutions for irrotational BNS is considered as a model for
the last several orbits of inspiral before merger. Such
sequences are computed for the models with different
EOS parameters listed in Table III. The fixed rest mass
of each model is that of a spherical star whose gravitational
mass is M; = 1.35M. Quantities of the spherical star for
each model are also presented in the same Table.

In Fig. 3, the binding energy E;, := M py — M and the
total angular momentum J, normalized by twice the gravi-
tational mass of the spherical star M = 2M, are plotted for
models 2H, HB, and 2B. In the top and middle panels, the
results of the WL sequences are compared with the results
of IWM sequences and of nonspinning point particles in
3PN circular orbits. Clearly, the IWM sequences coincide
with the 3PN curve up to smaller separation (larger QO M),
whereas the WL sequences significantly deviate from the
3PN sequence. As the compactness (in this case from 2H to
2B) increases, the curves of the IWM sequence around the
smallest separation come closer to the 3PN curve. In con-
trast to this, deviations of the WL sequences from the 3PN
curve are even larger for the larger compactness.

In the bottom panel of the Fig. 3, the binding energy
E, := Mapy — M of the WL sequences are compared
with the results of the NHS sequences. Clearly, the differ-
ence in the binding energy of two formulations is less than
a percent; that is, the WL solutions almost coincide with
the helically symmetric solution in the near zone.

In [10], we have derived asymptotic conditions for
equality Mapy = Mg of the ADM and Komar masses
[39], which is related to the relativistic virial relation for
the equilibrium [40],

/x”ya“VBTaBJ—gd3x =0. (54)

In the WL/NHS formulation, the asymptotic fall-off of
each field is sufficiently fast to enforce the equality. In
Fig. 4, we evaluate the values of the fractional differences
|M spm — M|/ M spy for the WL sequences with the pa-
rametrized EOS 2H, HB, and 2B. The plots show that the
differences are less than 2 X 1074, The compactness in-
creases in the order of 2H, HB, and 2B; the fractional

PHYSICAL REVIEW D 80, 124004 (2009)
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FIG. 3 (color online). Plots of the WL, NHS, and IWM se-
quences for the parametrized EOS 2H, HB, and 2B. Top panel:
Binding energy E;, = M py — M normalized by M = 2M,; with
respect to the normalized angular velocity QM of the WL and
IWM sequences. Middle panel: Total angular momentum J
normalized by M? of the WL and IWM sequences. Bottom
panel: Normalized binding energy of the WL and NHS sequen-
ces. In each panel, a thin solid curve corresponds to that of the
3PN approximation.
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FIG. 4 (color online). Fractional differences of M py and My
with respect to the orbital radius d/R of the WL sequences for
parametrized EOS 2H, HB and 2B.

differences, however, do not necessarily increase with in-
creasing compactness in this range M,/R < 0.2. The fact
that the fractional difference is well controlled for these
sequences is evidence that the binding energy in Fig. 3 is
calculated accurately. The virial relation Eq. (54), normal-
ized by M spw, 1s also calculated to examine the accuracy
of the numerical solutions, whose absolute value is about
0.5 ~ 1 times that of the fractional difference of two
masses.

C. Quasiequilibrium sequences with four-parameter
fitted EOS

In the paper [18], optimal values for the parameters of
four-parameter fitted EOS have been derived for 34 candi-
dates of the neutron-star EOS (17 selected EOS of nuclear
matter with varied parameters). We choose five represen-
tative EOS, which are SLy [41], APR1 [42], FPS [43],
BGNI1HI1 [44], and ALF3 [45]. The first three are made
only from normal nuclear matter, while BGN1H1 involves
a mixed phase with hyperons, and ALF3 with quarks. For
the latter two EOS, the value of I" becomes smaller in the
mixed phase with the exotic matter at a few times above
nuclear density [18]. However, BGN1HI is a stiff EOS
having the largest p; among them, and hence the core of
the mixed phase is not large for the mass M; = 1.35M,,.

In Fig. 5, the binding energy E,, of the WL sequences for
these parametrized EOS are plotted. As in the case of the
one-parameter parametrized EOS in Sec. IV B, the sequen-
ces with higher compactness M /R extend to higher values
of OM. Also, the WL sequences deviate from the 3PN
curve at larger QM. Among these EOS, APRI is the
softest, giving the most compact neutron-star model; and
the corresponding binary sequence reaches the highest
value, ~0.058, of QM. However, as seen in the bottom
panel of Fig. 5, the binding energy curve of APRI is
slightly off from the 3PN curve even for the smaller QM

PHYSICAL REVIEW D 80, 124004 (2009)
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FIG. 5 (color online). Binding energy E; of WL sequences for
the four-parameter fitted EOS. Top panel: for the EOS,
BGNI1HI, SLy, and FPS. Bottom panel: for the EOS, ALF3,
and APRI.

of the sequence. In our neutron-star code, using a finite
difference scheme, the core of the neutron star is covered
by fewer grid points in the central coordinates when the
binary separation becomes larger and the neutron stars
more compact; this may increase the numerical errors.
We plan to incorporate a binary computation in the new
code [33], in which enough grids are maintained, to
densely to cover the neutron star, irrespective of the binary
separation or neutron-star radius. The results of the APR1
curve as well as more compact binary sequences will be
studied using the new code.

In [15], the gravitational waveform computed from in-
spiral simulations has been analyzed to estimate the accu-
racy with which gravitational-wave observations can
constrain neutron-star radius, an EOS parameter correlated
with the departure from point-particle inspiral. A promis-
ing result is that the neutron-star radius can be constrained
to 6R ~ 1 km for an interferometric detector with the
sensitivity of Advanced LIGO, in either a broadband con-
figuration or a narrowband with peak sensitivity around
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1150 Hz. This suggests that the successful observations of
gravitational waves may exclude even a couple of EOS
shown in Fig. 5.

D. Comparison of the orbital phase in the last several
orbits

In this section, we approximately determine the orbital
evolution in the late inspiral phase up to the onset of
merger using the quasiequilibrium sequences computed
in the previous section. To construct a quasiequilibrium
sequence, one assumes that each BNS evolves adiabati-
cally along the sequence, that the radial velocity is much
smaller than the orbital velocity. Given the rest mass and
the EOS, each quasiequilibrium sequence is defined by one
parameter: The total energy and angular momentum of the
binary system along a sequence are parametrized by the
orbital angular velocity as E({2) and J(Q).

The time evolution of the angular velocity then becomes

dQ _ (dENTVAE _ poyo
o —( dQ) — F(Q)~". (55)

dt

For the gravitational-wave luminosity, dE/dt, we adopt the
3.5PN formula for two point masses [46]. Tidal deforma-
tion of the neutron stars in close orbits makes the attractive
force between two stars stronger, and hence it accelerates
the orbital velocity, resulting in the enhancement of the
gravitational-wave luminosity. Thus, the 3.5PN formula for
the luminosity is likely to underestimate that of the BNS.
However, this effect plays an important role only for the
last ~1 orbit, and for most of the late inspiral orbits, the
3.5PN formula is a good approximation.

Numerical integration of Eq. (55) provides the relation
between ¢ and () from

¢ = f dOF(Q). (56)

From this, the angular velocity as a function of time, (z),
is obtained. Using this relation, we can also compute the
approximate orbital phase evolution by

1
N=o [ Q. (57)

We note that the numerical model with the maximum value
of () for each sequence presented in this paper does not
exactly, but does approximately, correspond to a solution at
the closest orbit. We stop the integration of Eq. (56) when
() reaches its maximum.

In the top panel of Fig. 6, (OM is plotted as a function of
time for EOS 2B, HB, FPS, and SLy in the WL formula-
tion. In the bottom panel of Fig. 6, the results for 2B and
HB, calculated in both the WL and IWM formulation, are
compared. We also plot the results of two point masses,
derived from the Taylor-T4 formula [47].

The top panel of Fig. 6 shows that for the small values of
), all the curves approximately agree, irrespective of the
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FIG. 6 (color online). Top panel: Orbital angular velocity, (),
as a function of time for EOS 2B, HB, FPS, and SLy of the WL
sequences. Bottom panel: Same as the top panel but for EOS 2B
and HB of the WL and IWM sequences. For the both panels, the
results by the Taylor-T4 formula are also plotted. The units of ()
and time are M ! and M, respectively. For comparing the results,
the time axis is shifted such that QM = 0.03 is aligned at t = 0
for all the curves.

OM

EOS. This is natural because for such small values,
tidal deformation does not play an important role and
orbital velocity is sufficiently small (v < 0.3c¢) that the
post-Newtonian formula (Taylor-T4 formula) with the
point-particle approximation should be an excellent
approximation.

By contrast, the values of (7) computed from the
numerical sequences deviate from those given by the
Taylor-T4 formula for QM = 0.035-0.04, for all of the
EOS and all formulations used to compute the quasiequi-
libria. This is due to the tidal deformation of the neutron
stars; the rate of change of the energy as a function of ()
approaches zero for the close orbits, as seen in Figs. 3 and
5. This deviation occurs at more distant orbits for less

124004-11



KOJI URYU et al.

compact neutron stars (i.e., for the stiffer EOS), indicating,
as expected, that one can extract from the curve (7)) a
characteristic of the component neutron stars related to
their compactness and a corresponding parameter of the
EOS.

The bottom panel of Fig. 6 shows that the curves (z)
computed by the WL and IWM formulations are signifi-
cantly different, as expected from the results of E({)). In
the case that the IWM formulation is adopted, the merger
time is overestimated by ~50M, which is a quite a large
factor. This suggests that the results in the IWM formula-
tion do not work well for predicting the evolution of the
last several orbits before the onset of merger.

In Fig. 7, we plot the curves of N as a function of QM;
the top panel is for EOS 2B, HB, FPS, and SLy in the WL
formulation and the bottom for EOS 2B and HB in the WL
and IWM formulation. The top panel shows that the num-
ber of orbital cycles in the late inspiral phase depends
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FIG. 7 (color online). Top panel: Orbital cycle, N, as a func-
tion of time for EOS 2B, HB, FPS, and SLy of the WL
sequences. Bottom panel: The same as the above but for EOS
2B and HB of the WL and IWM sequences. For the both panels,
the results of the Taylor-T4 formula are also plotted. For com-
paring the results, the time axis is shifted such that N =0 is
aligned at QM = 0.03 for all the curves.
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strongly on the EOS. For a soft EOS, e.g., EOS 2B, in
which the compactness of the neutron star is largest, the
number of cycle is largest. By contrast, for a stiff EOS such
as SLy, the number of cycles may be smaller by ~1 than
that for EOS 2B.

In the bottom panel of Fig. 7, the results for the number
of cycle calculated from different formulations are com-
pared. As expected from the results for €(z), the IWM
formulation overestimates the number of cycles. The error
AN is ~0.5 for the EOS 2B; i.e., one cycle of gravitational
waves would be overestimated.

V. DISCUSSION

The deviations of the binding energy and total angular
momentum of WL/NHS sequences from the 3PN point-
particle sequence as well as from the IWM sequences are
likely to be due to the tidal deformation of neutron stars in
the binary system coupled with general relativistic effects.
As the compactness of the component neutron stars in-
creases, the deviation from the 3PN sequence at a certain
value of QM decreases—WL/NHS sequences become
closer to the point-particle sequence, but not by as much
as the IWM sequences do. It has been believed that, as the
compactness of the component neutron stars increases, the
behavior of the binding energy and angular momentum of
binary sequences more closely approximates that of point
masses. This is found in the results of IWM sequences but
to a lesser extent in the WL/NHS sequences. The behavior
of the IWM sequence was interpreted as the effacing of the
tidal effects due to the strong gravity: that is, as the
compactness increases, the sequences of binary neutron-
star solutions become much closer to the sequences of two
point masses, because the tidal effect is masked by the
stronger self-gravity of each component star. However, the
results of WL/NHS sequences suggest that such effacing of
the tidal effect seen in IWM sequence is an artifact of the
conformally flat approximation, at least for the case of
equal mass binary neutron stars.

In the WL/NHS formulations, all components of
Einstein’s equation are solved without approximation on
a initial hypersurface, while in the IWM formulation, some
terms of second post-Newtonian order are truncated. As
discussed in [7] the difference between the IWM and WL/
NHS formulations in the binding energy E,, is estimated at
second post-Newtonian order as Mh,,v¢v?, where the
magnitude of the orbital velocity v“ is typically v ~
0.34(QM/0.04)!/3. Since h,y, is O(v*), the order of the
difference in the binding energy is given by AE,/M =
O(v®) ~ 1073, and a larger deviation as v becomes larger
for more compact sequences is expected. This estimate is
consistent with our results shown in Figs. 3 and 5. Note also
that the tidal effect is larger for the EOS with a larger I as
we used in our computations. So far, our WL/NHS codes
have passed several code tests (as have the IWM codes),
and results of two independent WL codes agreed for a BNS
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sequence with M, /R = 0.17 as shown in [7]. These results
support our argument that the WL/NHS results accurately
correct the IWM results. A computation of quasiequili-
brium BNS sequences using a totally different numerical
method, such as the fully constrained scheme [9], would be
a helpful additional check.

We think our results suggest that the circularity of orbit
is more accurately enforced on a WL/NHS sequence than a
IWM sequence. However, in such quasiequilibrium se-
quences, some important features of realistic inspirals are
ignored. Those include the radial velocity due to gravita-
tional radiation reaction at 2.5PN order that is likely to be
comparable to the 2PN terms during the last few orbits
where the neutron-star velocity is of order v ~ 0.1, and a
tidal lag angle of about 10-20 degrees that is found in
inspiral simulations. Therefore, a caveat is that estimates of
the merger time and orbital cycles using quasiequilibrium
sequences shown in Sec. IV D involve errors due to ignor-
ing these effects.

Recently, several groups have developed methods to
treat the general relativistic tidal deformations analytically
[48]. Comparison of these analytic results and the present
results for WL/NHS sequences may be useful in calibrating
the binding energy or the total angular momentum of the
quasiequilibrium sequence in the regime where the relativ-
istic tidal effects become important. Finally, by combining
the analytic and numerical results, more accurate quasie-
quilibrium models for the late inspirals may be constructed
[49].

The WL/NHS formulations can be also used to construct
models of rotating neutron stars. In [50], axisymmetric
rotating relativistic stars are computed using the fully con-
strained formulation with maximal slicing and the gener-
alized Dirac gauge conditions [9]. Those solutions agreed
with the ones calculated using a stationary axisymmetric
metric with the additional discrete symmetry of the simul-
taneous transformation, t — —¢ and ¢ — —¢. The WL/
NHS formulations include more general stationary axisym-
metric spacetimes, which do not depend on the additional
symmetry. Therefore, the WL/NHS formulations can be
applied, for example, to rotating neutron stars that may
have both toroidal and poloidal components of the mag-
netic fields as well as meridional circulation. Even in this
case, the WL/NHS formulation can be used to compute
exact equilibria that are more general than those calculated
in [51]. We plan to extend our codes to compute relativistic
rotating stars and binary systems that each include strong
magnetic fields.
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APPENDIX A: BASIC EQUATIONS

In this Appendix, the system of equations used in WL/
NHS codes is presented in detail. The equations include all
components of Einstein’s equation, the first integral of the
relativistic Euler equation, and the rest-mass conservation
equation for the irrotational flow. The WL/NHS formula-
tions are based on [9-11].

1. Conventions

As mentioned in Sec. IT A, the 3 + 1 decomposition is
applied to the spacetime M in the WL/NHS formulations.
First, several definitions for the quantities relating to the
spatial geometry are introduced.

a. Connections

The spatial metric y,;,, a conformally rescaled spatial
metric ¥,,, and a flat metric f,;, are associated with the

o
derivatives D, D, and D, respectively. We introduce the
conformal rescaling by y,, = ¥*¥,,, whose determinant
¥ is equal to that of the flat metric f, ¥ = f, to specify the
decomposition of the spatial metric uniquely. Covariant
derivatives D, and D, are related by

DX = D, X + C¢_X°, (A1)

where X is a spatial vector, and a coefficient C¢, is written

1 - i
ab =57 (Da¥ap + DpYaa — DaYap)

2 o -
= E(beDaw + ¥ uDpth — Y ¥Dytp).  (A2)

~ [e]
Also, D, and D, are related by

- o
D ,X* = D X + C} X6, (A3)
where C¢, is written
) 1 od o B o B o .
Cop = 57” (Dy¥ap + DpVaa — DaFap)
1 —ed o] o [
=3 YD yhay + Dphyg — Dghgy). (A4)
A trace of C¢,
b I_,.0 1 ° \/—
C) =D v, . =—=D_4/9, A5
ba 27 aVbe \/7 aN'Y ( )

and the condition ¥ = f that specifies the conformal de-
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- o
composition imply C¢, = 0 and hence D, = D, . The
relations

- - ° -
yace, + y°Ce, + D,y =0 (A6)

o
and ¥ = f, and the Dirac gauge condition D,y =
imply y*°C5, = 0.

b. Conformally rescaled extrinsic curvatures
The form of the extrinsic curvature K, is discussed in
Sec. IIB. In the equations for our numerical code, it is
decomposed in terms of the trace K = y“’K,, and the
tracefree part A,

1
Ky =Au + §7abK' (AT)

The conformally rescaled tracefree part A,” is defined as

AL =4l (A8)
and its index is lowered (raised) by ¥, (7%°).

We define Lyvy,;, as the tracefree part of £5y,,, where
X is a spatial vector on X,

1
LxYab = £xVab = 5 Yab Y ExVea (A9)

3

2
= DaXh + tha - gf)/achXC'

The r.h.s. of this equation is a conformal Killing operator,
and its conformally rescaled version is defined by

(A10)

LY = ¥*LxVap- (A11)

Note that a vector is rescaled, X* = X¢, and ,,, is used
when lowering the index of the rescaled vector.
When helical symmetry, £,¢,5 = 0, is imposed as in

Sec. 11 B, the tensors A,, and A, have the forms

1
Aub:_

Lw7ab and Aah = _Lwi‘/ah’ (A12)
2a0 a0
respectively; while for the WL formulation,
1 ~ 1 - _
Ay = ﬁLﬂYab and A, = ZLB‘}/ab‘ (A13)

The following expression for the conformally rescaled A,
is used later,

o2
Aah = _<Daﬁh + DbBa - gyachﬁ )
|
+ ﬂﬂ'yh‘L(ﬁyac. (A14)
The last term in the above
. B 1. B
Ly¥Var =£4Vap — 57ab76d£¢ Ved (A15)

PHYSICAL REVIEW D 80, 124004 (2009)

- <o 2 e

= Dad)b + th)a - §7¢1ch¢ ’

with ¢* = ¢* and ¢, = 7., P", appears only in the

helically symmetric case and is eliminated when the WL
formulation is used.

(Al6)

c. Conformally rescaled intrinsic quantities

The Ricci tensor °R,, of the spacelike hypersurface 3,
associated with the spatial metric y,;, is decomposed into
terms related to the conformal factor i, 31?;/’, and the

conformal Ricci tensor 3I§ab associated with ¥ ,,:
3 —3pY 4L 3p
R, ="R,, +°R,. (A17)

The first term is written

SRY = — 2D Dy — Fup DDy + DDy
ab ‘ll ab abd/ c '7[/2 a b

2.
- 'Yab_chl//Dcw‘ (A18)
4
In 3R ,, terms linear in h,,;, or h%’ are separated as
3p 127 3D L BNL
Ry = =5 D Dehgy + RO, + R, (A19)

where RD, includes terms linear in the conformal metric in
the form of flat divergences

1, o 0
Ray = =3 (acDsFe & focDaF) (A20)

o [e]
@ 1= D,y = Dyh"; (A21)

nonlinear terms, R\, are written
B 1 © ) ) o
Ry =~ E(Dthchhad + D 1D hyg
o O [o]
+ h*“D.Dy4hy,) — D,CE, + C,Co — CI.C5,

1 o o
- E[Db(hach) + Da(hthc)] + Fccc,ab’
(A22)

where C,. . *= ¥.4C%,. The above expression for RN can
be simplified by applying the condition ¥ = f and the
generalized Dirac gauge condition, implying C%, =0
and F* = 0.
The Ricci scalar curvature >R of 3, is related to the
conformal Ricci scalar °R := 73R , by
3R = i31§ — iDaD 1 (A23)
U >

2. Equations for the gravitational fields

Equations used in the numerical code are shown below.
Although we impose the gauge conditions (12) and (13),
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the following equations are not restricted to these choices.
The conformal decomposition, however, is specified by a
condition y = f that is used, for example, to obtain the

o
relation D, = D, .
a. Hamiltonian constraint

The projection of Einstein’s equation along the normal
n® to the hypersurface yields

1
(Gup — 87T, 5)nnP = §(3R + K?* — K,,K* — 167py)

= 0. (A24)
Substituting Eq. (A23), we have
(Gop — 87T, 5)n"nP
4 L /NS < - 2
=—|-DD,y + 3R —"—(A,,A% ——K2>
¢5 [ alp ] ] ab 3
- 27r¢5pﬂ] = 0. (A25)

The above equation is rewritten to isolate the flat

o o o
Laplacian A := DD, ¢ on the left-hand side, and the
other terms are treated as a source on the r.h.s.,

o
Ay =Sy (A26)
with the source Sy given by
o o o /N
Sy = —h"D,Dyy + ¥°CS, D . + §3R
Sl . 2
— %(AabA”b — §1(2) — 27 py. (A27)

b. Momentum constraint

The momentum constraint is written in an elliptic equa-
tion to be solved for the covariant component of the con-
formally rescaled nonrotating shift B, := ¥,,B8°. We
begin with

(Gap — 877'Taﬁ)ya“nﬁ
= -D,K,> + D,K + 87,

I =67 by 4 27 :
= _FDb(lp Aa )+§DaK+87T]a:O, (A28)
then substitute Eq. (A14) and a relation
D,b,p" - D,D,B" =>R,, B (A29)

to obtain

PHYSICAL REVIEW D 80, 124004 (2009)
Dy By +3DuD, B + R, B+ QDL ),
+ 2aAabiDb(‘%ﬁ) - gaﬁal( —167aj, = 0. (A30)
From the first two terms of the r.h.s. of Eq. (A30), the flat

o o O
terms AB, +1D,D" B, are similarly isolated,

DyD"B, +5D,DyB"

[OSTIE

o

5 °© o, b-o o _
= ﬁa+ DaD Bb—i_thch:Ba

W | =

o ~ . N D S bce N 3
. ~bcDb(CgaBd) — ’ybLCZL.DdBa - yb CZaDcﬁd

10 o -
+ 3 Da(h*D, B = 7 ChB). (A31)

- o
We keep D, instead of replacing it by D, and a connection
C¢, in a couple of terms in the Eq. (A31), to shorten the
equation. A decomposition proposed by Shibata,

10

- [o]
B.=G,+ gDa(B - x"G,), where D x> = &2,

(A32)

o
is substituted in the expression for the flat operator A3, +
o o _
$D.D" By
o o o]
D,(AB — x"AG,),
(A33)

+
N =

to obtain elliptic equations that are solved simultaneously,

(A34)

o
AB = xS, (A35)

where the source S, is written
o o [e] - -~
Sa = _hbcDchﬁa + 5/bCDb(Cga d) + 7bCCZCDdBa
L~ 10 o ~
+ ¥PC4,D.Ba — gDa(thDth — ¥C4.Ba)
U S o~ (PO
—3R,,B" — QD L 4%, — 2aAa”—6Db<—)
1/ o
4 - .
+ gaDaK + 167aj,. (A36)
A term D’L 4%, is computed from

[
DL 4% = DL yFap — Co, 7Ly Vea

o
+ D YLy Vap + Co ¥ LyFap  (A3T)
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which is dropped when the WL formulation is used (see
Sec. IIB).

c. Spatial trace part of Einstein’s equation

The spatial trace of Einstein’s equation is combined with
the Hamiltonian constraint,

1
(Gup — SWTQE)(')/“‘; + En“n'8>

1 2
- _Z’;R + ED“Daa + 2£”K

1

= (K> + TK,K®) = darlpy +25) =0, (A38)

and it is solved for the combination « ¢/. Using a relation,
1 2 2 [~ =~ -
— 3R+ ZDYD,a = —S[D“Da(atp) - ﬂﬁe],
4 a a 8

(A39)

and applying helical symmetry, the above equation is
rewritten

1
(Gaﬁ - SWTaﬁ)(yaB + Enan'g)

2 a ¢3~_ 5
= 8| D) SR K
—a ( abA”"+152K2)—27Ta1//5(pH+2S):|=

(A40)

[e]
Isolating the flat part A(a ), an elliptic equation is derived

Z(a;&) =S (A41)
where the source S, is written
Su h“bD Db + y"chbD (ayp) + 8¢ R
+ YLK + ou/rS( A, A% + 15—2K2)
+ 2ma i (py + 25). (A42)

d. Spatial tracefree part of Einstein’s equation

The projection of Einstein’s equation to the initial hyper-
surface 3, is written

(GaB

_£nKab + yab£nK + 3Rab

- 877Taﬁ)yaa7bﬁ

1
- §7ab3R + KK,

1
- 2KachC - EYab(Kz + chKCd)

1
- —(Dana - yuchDca) - 87TSub. (A43)
(¢4
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The equation to solve for the nonconformal part of the
spatial metric h,, is derived from the tracefree part of the
above Eq. (A43). The tracefree operation eliminates terms
proportional to y,;,. Applying helical symmetry, (16) and
(17), the tracefree part of Eq. (A43) is written

1
(Gap — SWTaB)(Yaa?’bﬁ - g%b?’aﬁ> &b =0,

(A44)
where &, is defined by
1 \ 1
Eab ::_f’wKab + Rab ——Dana
@ a
+ KK,y — 2K K, — 87S,  (A45)
and ETF is its trace free part
gTF — Ccn, d 1 cd
YaVp — g YabY gcd
C s 1 _
= (77 377 (A46)

The tracefree part of the tensors are also denoted by super-
scripts TF, hereafter. We further eliminate terms propor-
tional to 7y,;, remaining in this expression for £, later in
this section.
We derive two different equations to solve for #,,. One
o

is an elliptic equation in which Ah,, is separated from 3R,
as in Eq. (A19); it is used for both the WL/NHS formula-
tion. The other is for the NHS formulation in which an

o
operator (A — Q2%)h,, is separated. The ¢ derivative
term in this operator is separated from a term %;EwKab,
which is derived by applying helical symmetry, (16) and
(17), to the time derivatives. For the former equation, the
above &, is rewritten

1° o 1
Eap = =5 My + RD, + R + SRV — —D.Dyax

+ KK, 87 S,

(A47)

1
— 2K, K, +—£,K,, —
a

and for the latter,

Eap = 2(A 020%)h,;, + RD, + RN + 3R,

1
— —D,Dya + KK,y — 2K, K,°
6]

1 1
+ —£,K,, — = Q%% h,, — 87S,,. (A48)
@ 2 ¢
Terms proportional to y,, in Eqs. (A47) and (A48) are
now eliminated further to simplify the equations.

Introducing barred quantities,
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_ 2 . -~ 6 - -
3Ry, = = DDy + 5 Datr Dy, (A49)

o o
D,D,a = D,Dya — CchD a —

(A50)
their combination becomes
_ 1 - _
SRY, — —D,Dya
LD, Dy@d?) + — €5, Do(a )
- o E—— o
aw a b wz abtc
4 o o o
+ ?[Da(a $)Dyip + Db(a ¥)D, ], (AST)

which satisfies
~ 1 TF _ 1 - _ TF
(3be - —Dana) = (3R;”b — —Dana) . (A52)
o o

Next, substituting K,;, = A,y + %yabK to terms relating to
K, their tracefree part satisfies

1 TF
(KKab - 2Kachc + a£wKab)

1 1 TF
= (gKAab - ZAaCAbC + Ef‘wAab) (A53)
For the matter source term,
Sab = Tap¥a® v, = (€ + pPluguy + vupp,  (A54)

where u, «- We also introduce a barred quantity

(A55)

=y, u
S_ab = phuaub’
that satisfies ST = ST where h = (€ + p)/p is used. The

o
tracefree operation to the operator (A — Q29%)hy is writ-
ten

1 . |
- 5(%L7bd - g?’mﬁ’”’)(A 0292 e

I ° 1o, o
- EI:(A - Qza(zﬁ)hab + gi‘/abDethDehcd
l_
- §7ab926¢h0da¢hcd:|» (A56)

o
where relations ¥°/D,h.; = /9 4h.q = 0 implied by
y = f is used. The same operation to the Laplacian is
written similarly as above, but without 9, terms.
Finally, the trace free part T} = 0 results in the follow-

ing elliptic equation,

[e]

Ahub

=S (AS57)

where the source S, is defined by

2 o o o o
‘,[/ (Dan¢/ + DbaDal//)’

PHYSICAL REVIEW D 80, 124004 (2009)

_ 1 o o
Sap = 24, =3 VDN Dehea, (A58)

and ETF is a tracefree part of £, which is written using the
rescaled A,

. _ _ _ 1. - 1 3
Eu =R + RN+ 3R — —D,Dya + 3 KA,

-~ 1 - _
- 2'1114AacAbc + _£m(¢4Aab) - 87TSab' (A59)
o

o
For the equation with the operator A — 0297, it is written

o
(A - Qza%b)hab = Sub (A6O)
with
B o )
Sab = 255}1;: 5/abDethDehcd
1
+ 3 Y Q2010 4hes (A61)

Using the rescaled A, &, is defined by

_ o o 1o, -
Eup =R, + RN +3RY, — —D,Dja + VKA,

R~

1
- 2¢4AacAb +— £ (lﬂ ab) - Eﬂza%ﬁhab

— 875, (A62)

where a difference from (A59) is a term in the last line.

e. Matter source terms

In the above, the matter source terms, py, j,, S and S,
that appear in the field equations are obtained from the
stress-energy tensor. We write the projection of the stress-
energy tensor in terms of the fluid variables and metric
potentials. The 4-velocity for irrotational flow u® =
u'(k* + v®) is decomposed with respect to the foliation

3, as
(A63)

un, = —au

1 o
UYY ga = Ug D o= D D, (A64)
where the velocity potential ® is introduced by hu, =
V,o.

Using these relations, the matter source terms of the field
equations become

pu = Topn®nP = hp(au')* — p, (A65)

o
Ja = — aBYaanﬂ = pau,Da(D’ (A66)
S=T,y*F = hp[(au')* — 1]+ 3p, (A67)
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[e] o
Sah = TaBYaQYbB = %DacDDhq) + PYabs (A68)
or with a barred quantity,
B pe o
Sab = EDa(I)DbCD (A69)

3. Equations for irrotational fluid

Following Sec. IIC and II D, a set of equations used in
our codes to solve for the matter variables are derived. As
independent variables, we choose the relativistic enthalpy
per baryon mass, the time component of the 4-velocity, and
the velocity potential, {&, u’, ®}. For the first two variables,
the first integral Eq. (34) and the normalization of the 4-
velocity u,u® = —1 are solved. Using a relation derived
from Egs. (31) and (32),

A70
ot (A70)
these equations are rewritten,
1 1/2
h = [—2 (£ + 0'D,P)? — Da(I)D‘l(I)] , (AT1)
a
1
u' = T((‘: + a)“Da(I)), (A72)
ah
where the first one is from u,u® = —1, and the second

from Eq. (34).
An equation to calculate the velocity potential ® is
derived from the rest-mass conservation law, Eq. (26),

1 Wp—8) = ——=£,(pu'afy)

Ne v

1
=—D,(apu'v?) =0. (A73)
a
Substituting Eq. (A70) in the above relation, we have an
elliptic equation for @,

h
DD, ® = D, (hu'w®) — (D,® — hu'w,)—D* L.
ap h

(A74)

This equation is solved with Neumann boundary condition
to impose the fluid 4-velocity u® to follow the surface of
the star. The surface is defined by the vanishing pressure
p = 0, which coincide with the &7 = 1 surface in our EOS
(see Sec IID). Hence, the boundary condition is written

u*Voh =0 at h=1, (A75)

and, using £,4 = 0 and Eq. (A70), Neumann boundary

condition for the potential @ is rewritten,
(DD — hu'w*)D, h = 0, (A76)

where D, h is normal to the stellar surface.
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Finally, we rewrite the above set of equations for the
helically symmetric irrotational flow using the flat deriva-
o

tive D;

1

1 o ) _ bo o 1/2
h= [ + aD,07 — o yD,wb0] " @

1 o
u' = T(S + (;)aDaCI)), (A78)
ah
[e]
AD =S, (A79)
where S is defined by
2 [e] o
S= —haD D,,cp + 'y‘”’CCbD o - o7 7D, yD,®
1 ° -
+ e @D, (hu' %) + *hu'D &
h
— (DD — P hul ) %, (A80)
and, for ¥y = f, D,&* = D,&“ = D, [3°.

APPENDIX B: SELF-CONSISTENT FIELD
ITERATION SCHEME

1. Elliptic equation solver

As mentioned in Sec. III B, components of the metric are
computed on a spherical-coordinate grid whose origin is
placed at the center of mass. The momentum constraints
and the tracefree part of Einstein’s equation are a spatial
vector and a tensor equation, respectively, and it would be
natural to write the equations in components along the
spherical coordinates [36]. It is simpler, however, to solve
these equations for Cartesian components, yet on the
spherical coordinates, because each Cartesian component
satisfies a field equation whose principal part is the same as
that of a scalar equation.

For the spatial tracefree part of Einstein’s equation
solved for the nonconformally flat part 4,,, writing the

o [o]
principal part £ := A or A — 0?97, the field equations

become

‘Ehab = Stlb‘ (Bl)

Expanding each Cartesian component of h,, in scalar
o

multipoles, the equation with the operator A — 0?97 be-
comes a Helmholtz equation for each mode,

o
(A + m*Q*)himy,,, = Sy, (B2)

Hence these elliptic equations are integrated using Green’s
formula,
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1
b)) = =4 [ Gl IS
1 o
+ L f [G(x, x')Dh,, (x')
47T oV

[
— (X )D“G(x, x')]dS., (B3)

where x and x' are positions, x, x’ € V C X,, and the
Green function G(x, x') satisfies

LG(x, x') = —47d(x — x'). (B4)

We choose the Green function G(x, x’) without boundary
for the BNS calculations.

[o]
For the Laplace operator, £ = A, a multipole expansion
of G(x, x') in associated Legendre functions on the spheri-
cal coordinate is written

1
lx — x|

[o0] €
T2 2 e (e+ )'me(cose)

P,"(cosf’) cos m(@ — ¢),

Gx, x') =

(B5)

r{’

g(m(r l") _{ o

2. Summary for iteration scheme

Equation (B3) is used as an elliptic equation solver for
the field variables {«, B,, ¥, hy}. In the code, the elliptic
solver is used to compute the combination at/ from
Eq. (A41); to compute the potentials (A32) of the shift
vector 3, from Eqs. (A43) and (A35); and to compute the
gauge potentials (49) from Eq. (50).

For the fluid variables, {h, u’, ®} are found from
Eqgs. (A77)-(A79), respectively. A detailed description of
a method to solve Eq. (A79) is found in [36]. As we use the
surface-fitted coordinates to calculate neutron stars, the
surface R(6 i f) becomes an additional variable. A stellar
surface is defined by the pressure p = 0, and, instead, it is
located by a condition ¢ = p/p = 0 in the code.

A solution is specified by two parameters for an equal
mass binary, which we take to be the orbital angular
momentum and the injection energy, {Q), £}. We introduce
one more parameter R, to normalize the radial coordinate,
where R|, is half the coordinate diameter of a neutron star
along the (64, ¢;) = (7/2,0) line. These parameters are
calculated from the conditions R(7/2,0)/R, =1 and
R(7/2, 7)/R, = 1, after prescribing a value of a thermo-
dynamic variable at a point in a star, for which a central

—mQ2€ + 1)j,(mQr)n,(mQrs),
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where the radial Green function g,(r, ') becomes

€

ge(r,r') = (+1 ’ (B6)

with r- := max{r, ¥}, r— := min{r, '}, and the coeffi-

cients €, are equal to €y = 1 for m = 0, and €,, = 2 for
m=1.
For the case with the Helmholtz operator, L =

A + m?2Q? we choose the Green function for the
half-retarded + half-advanced field [11],

(f—m)!
(€+m)!

o {
G(x, x') = Z Z Sem(r, 1)
€=0 m=0

/" (cos@’) cosm(p — ¢'),

———— P ,"(cosf)

(B7)

where the radial Green function gg,,(r, r') is constructed
from the spherical Bessel functions of the first and second
kinds j,(x) and n(x),

for m =0,

(B8)

for m = 1.

|
value of h is fixed at r; = 0. These conditions are applied
to Eq. (A77), and solved for the three parameters.

All these variables are assigned on each grid point, and
the parameters are calculated from the equations men-
tioned above in each iteration cycle. If we represent the
set of fluid and metric variables by ‘i’, we can describe the
iteration schematically as follows. The variables are up-
dated from their values at the Nth iteration cycle, W to
the (N + 1)th, P+ using softening, in the manner

YD = Q) 4 (1 — Q)W) (B9)

where A is the softening parameter, chosen to be in the
range 0.1 to 0.3 to accelerate convergence. For a criteria to
determine convergence, a relative difference of successive
cycles

2|\p(N+1) — \p(N)|
[WND] -+ W]

(B10)

is used, with § = 1079 in the present calculations.
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APPENDIX C: FORMULAS FOR MASS AND
ANGULAR MOMENTUMS

Definitions of the quantities shown in tables and figures,
which characterize a solution of BNS, and their expres-
sions used in actual numerical computations, are summa-
rized in this Appendix.

The rest mass is the baryon mass density measured by
comoving observers integrated over the initial hypersur-
face, and during the inspiral phase of binary neutron star, it
is considered to be conserved. The rest mass of one com-
ponent of a binary system is written M, and defined by

M02=j pu“dsS, =j pu' a o [yd3x,
pX p)

where dS, = V,t./=gd’x, and /=gd’x = ay®[Fd’x
= ayr’sinfdrdfd ¢, because ¥ = f is assumed.

In this paper, the mass M, is used to specify an equal
mass BNS sequence, and M = 2M; is used to normalize
quantities. M is the gravitational mass of a single spheri-
cal star whose rest mass is equal to the rest mass M, of one
neutron star in the binary system of each model (see
Table III).

The ADM mass M py is rewritten using conformal
spatial metric,

(CDH

1 o
Maom = 1o [ (" = £ £)Dy y.adS,

1
167

1 [o]
b [ (=2)f*D, y*ds,
1677 00

1 [e]
- L f D S,
2T 0

where, in the second equality, the first term vanishes be-
cause of our choice ¥ = f; and ¢y — 1 is used in the
second term. We have calculated approximate values of
M spv using this surface integral at the boundary of the
computational domain. Also, we fit M, /2rto ¢ — 1 near
the boundary, to ensure a constant M, = Mapy. In the
tables, however, the values of M spy are calculated from a
formula in which the above surface integral is converted to
a volume integral using the Gauss-Stokes lemma. We apply
this on the conformal spatial hypersurface, which results in
a simpler formula; since, at spatial infinity ¢y — 1, 7%* —
fe and dS, = V r/fd*x = V, r\7d*x =: dS,, we have

1 ~ ~ 1 ~ ~
MADM=__/ Da¢dSa,=__f Ad/dS,
27 Joo 21 )

jmwffbd — D, 7 gdS,

(C2)

1 -1 - 2
= I:_£3R+_¢S<AabAab__K2>
27 Js 8 8 3
+ 2W¢5pﬂ]\/§d3x.
The Komar mass associated with a timelike Killing field
1 is written

(C3)
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1 1
My = —— | V*PdS,z = ——f R ;iPdS
K 41 ,[oo b 4 )y BT
= [Lerey — 1 ptas,,

= [ atou + 8) = 2,810V, ()
where dS, = naﬁd3x is used. To derive this, the global
existence of a timelike Killing field is assumed. For the
spacetime of WL/NHS formulations, no such timelike
Killing field exists. Instead, an asymptotic Komar mass
can be written

1 1
My = —— [ VP =—f D*
K dar ,/;Q 17dSup 477 J oo adS,
1
=— [ Aad
4 ]z ad>

-l )
4 Js *iab 3

+£,K + 4malpy + S)]Mﬁd%, (C5)

where (G5 — 87T,5)g*? = 0 is used.

In [10], we have derived asymptotic conditions for an
equality of the ADM mass, and the asymptotic Komar
mass [39], Mspm = Myg. The equality is related to the
relativistic virial relation for the equilibrium [40],

[x“'ya“VﬁTaﬂ«/—gd’gx =0. (Co)
In the WL/NHS formulation the asymptotic fall-off of each
field is sufficiently fast to enforce the equality. And in this
case, the above two definitions for My agree as well.

Finally, the total angular momentum is calculated from a
volume form of surface integral at spatial infinity

1 1
Ji=—— a pbds =—fK“ bdas.. (C7
877,[007Tb¢ @ 87 Jw p#"dSe (€D
To calculate J, we set the surface near the boundary of the

computational domain of the central coordinates and use
the Gauss-Stokes lemma to write

— L a b
J=o fz D (K*, $?)dS
— L : a a b
=% [2(87Tju(}l) + K, D, ¢")dS.
1 ) -
= 8_’77 [E<87T]a¢a + AabDa¢b
+ %K(ﬁa;)alﬁ)lﬂGﬁCPX. (C8)

The values of J listed in the tables in next section, are
calculated from the latter formula.
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APPENDIX D: SELECTED SOLUTION
SEQUENCES

Selected waveless solutions of irrotational BNS for pa-
rametrized EOS presented in Table III of Sec. IV are

TABLE IV. Solution sequence for the EOS 2H.

d/R, 2d/M  Ry/M am M apwm J/M?

1.3125 9.2784 7.0693 0.030149 267191 0.96637
1.3438  9.4190 7.0095 0.029649 267206 0.96819
1.3750 95654  6.9566 0.029126 2.67223 097048
1.4375 9.8715 6.8671 0.028019 2.67265 0.97582
1.5000 10.192  6.7948 0.026901 2.67311 0.98279
1.6250 10.873  6.6912 0.024693 2.67422  0.99905
1.7500  11.590 6.6229 0.022648 2.67537 1.0178
1.8750 12330 6.5759 0.020794 2.67648 1.0375
2.0000 13.090 6.5451 0.019118 267756 1.0572
25000 16234 64936 0.014113 268130 1.1415
3.0000 19.455 64852 0.010889 2.68404  1.2229

TABLE V. Solution sequence for the EOS HB.

d/R, 2d/M  Ry/M oM M apm J/M?

1.3750  6.8380 4.9731 0.045877 2.66507 0.89082
1.4062 69403 4.9353 0.045086 266521 0.89216
1.4375  7.0511 49051 0.044231 266536 0.89378
1.5000 7.2800 4.8533  0.042526 2.66580 0.89812
1.6250 77600  4.7754 0.039177 2.66688  0.90829
1.7500 82681 4.7246 0.036025 2.66810 0.92072
1.8750 87975 4.6920 0.033145 2.66932 093485
2.0000 93425 4.6712 0.030526 2.67057 0.94926
25000 11.606 4.6423 0.022621 267511 1.0132

3.0000 13931 4.6435 0.017521 267860 1.0789

TABLE VI. Solution sequence for the EOS 2B.

d/R, 2d/M  Ry/M (9774 M apm J/M?

1.4375 55971 3.8936 0.059912 266109 0.85642
1.4688 5.6801 3.8673 0.058871 266118 0.85733
1.5000 57713  3.8475 0.057759 266133 0.85840
1.5313 58622 3.8284 0.056652 2.66150 0.85959
1.5625 59542 38107 0.055575 266171 0.86099
1.6250 6.1443 37811 0.053414 266211 0.86424
1.7500 65438 3.7393  0.049241 2.66318 0.87225
1.8750 69613  3.7127 0.045416 2.66432 0.88246
2.0000 7.3930 3.6965 0.041907 266555 0.89311
25000 9.1954 3.6782 0.031170 2.67036 0.94283
3.0000 11.050 3.6835 0.024219 2.67433 0.99755
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tabulated in Tables IV, V, VI, VII, VIII, IX, X, and XI.
All quantities are dimensionless in the geometric units
G = ¢ = 1, except for the ADM mass which is in a unit

of solar mass M py [Mo].

TABLE VII. Solution sequence for the EOS SLy.
d/R, 2d/M  Ry/M oM M xpm J/M?
1.3750  6.7360  4.8989  0.046804 266479  0.8804
1.4375 69455 48316 0.045130 2.66505  0.8987
1.4687  7.0572 48049 0.044256 2.66526  0.8983
1.5000  7.1692 47795 0.043403 2.66546  0.8998
1.5625 74012 47367 0.041683 2.66600  0.8952
1.6250  7.6424 47030  0.039990  2.66655  0.9093
1.7500  8.1425  4.6529 0.036778  2.66777  0.9109
1.8750  8.6640  4.6208 0.033842  2.66899  0.9397
2.0000 92007 4.6004 0.031172 2.67025 09413
25000  11.431 45722 0.023105 267481 1.082
3.0000 13.721 45737 0.017898 267834  1.031
TABLE VIII.  Solution sequence for the EOS APRI.
d/Ry 2d/M  Ry/M oM M xpm J/M?
1.6875 5.8207 3.4493 0.057394 266144 0.85585
1.7500  6.0069  3.4325 0.055113 266195 0.85933
1.8125 6.1950 34179 0.052972 2.66247 0.86339
1.8750 63877 3.4068 0.050902 2.66302 0.86770
1.9375 65845 33985 0.048909 2.66363 0.87233
2.0000 6.7839 33920 0.047008 2.66423 0.87706
25000 84399 33760 0.035057 266900 0.92198
3.0000 10.148 33826 0.027269 2.67308 0.97231
TABLE IX. Solution sequence for the EOS FPS.

d/R, 2d/M  Ry/M oM M apm J/M?
1.4375 63451 44140 0.050851 266331 0.87458
1.4688  6.4477 43899 0.049882 2.66346 0.87609
1.5000 6.5504 43669 0.048919 266364 0.87782
1.5313  6.6534 43451 0.047977 266387 0.87955
1.5625 6.7597 43262 0.047029 266415 0.88156
1.6250 69799 42953 0.045139 2.66467 0.88618
1.7500  7.4359 42491 0.041551 266585 0.89672
1.8750 79127 42201 0.038262 266709 0.909 18
2.0000 84036 42018 0.035261 266835 0.92183
25000 10447 41786 0.026166 2.67304 097944
3.0000 12547 4.1822 0.020291 2.67677 1.0401
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TABLE X. Solution sequence for the EOS BGN1HI. TABLE XI. Solution sequence for the EOS ALF3.

d/R, 2d/M  Ry/M oM M apm J/M? d/R, 2d/M  Ry/M oM M apm J/M?

1.4062  7.7372 55020 0.038958 2.66749 091413 1.4375 6.0667 42203 0.053901 2.66264 0.86655
1.4375  7.8579 54664 0.038232 266765 091610 1.4688 6.1649 4.1974 0.052878 2.66279  0.86785
1.4688 79817 54344 0.037499 2.66786 0.91847 1.5000 62628 4.1752  0.051867 2.66297 0.86944
1.5000 8.1086 5.4058 0.036772 2.66810 0.92130 1.6250  6.6732 4.1066 0.047891 2.66396 0.87718
1.5625 83727 53585 0.035291 2.66867 0.92711 1.6875 6.8881 4.0818 0.045973 2.66451 0.88202
1.6875 89226 52875 0.032465 2.66983  0.94095 1.7500  7.1090 4.0623 0.044109 266512 0.88709
1.7500  9.2099 5.2628 0.031101 2.67046 0.94804 1.8125 73353  4.0470 0.042335 266576 0.89298
1.8750  9.7970  5.2250 0.028611 2.67166 0.96421 1.8750  7.5659 4.0352 0.040622 2.66635 0.89878
2.0000 10.402 52008 0.026341 2.67286 0.98037 2.0000 8.0365 4.0183 0.037449 266765 091094
25000 12914 51657 0.019492 267718  1.0507 25000 9.9949 39980 0.027806 2.67237 0.96616
3.0000 15493 51643 0.015068 2.68040 1.1206 3.0000 12.009 4.0031 0.021559 2.67620 1.0244
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