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ABSTRACT

Aims. We analyze potentially observable phenomena during spin evolution of isolated pulsars, such as back bending and corequakes resulting
from instabilities, which could result from phase transitions in neutron star cores.
Methods. We study these aspects of spin evolution of isolated compact stars by means of analytical models of equations of state, for both
constant-pressure phase transitions and the transitions through the mixed-phase region. We use high-precision 2-D multi-domain spectral code
LORENE for the calculation of the evolutionary sequences of rotating neutron stars. This allows us to search the parameter space for possible
instability regions, and possible changes in the stability character of rotating stars with phase transitions in their cores.
Results. We determine the conditions on the density jump in constant-pressure phase transitions which leads to the back bending phenomena
or to the existence of the unstable segments in the evolutionary sequences of spinning down isolated normal neutron stars. We formulate
the conjectures concerning the existence of two disjoint families of non-rotating and rotating stationary configurations of neutron stars. To
clarify the effect of rotation on the stability of neutron star we present the particular case of EOSs leading to marginal instability of static and
rotating configurations: marginal instability point in non-rotating configurations continues to exist in all evolutionary spin-down tracks. We
discuss the fate of rotating stars entering the region of instability calculating the change in radius, energy release, and spin-up associated with
the corequake in rotating neutron star, triggered by the instability. The energy release is found to be very weakly dependent on the angular
momentum of collapsing star.
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1. Introduction

The properties of the high-density matter in compact stars are
now studied by means both of nuclear physics and astrophysics.
Many different equations of state (EOS) were proposed in the
literature, based on different theoretical models of dense mat-
ter. In particular, it has been postulated that at high enough
density, matter contains hyperons, and that phase transitions
to exotic phases of dense matter, such as meson (pion, kaon)
condensates, or quark matter can occur in the dense compact
star cores (for a recent review of possible states of matter in
compact star cores see e.g. Glendenning 2000). Unfortunately,
the lack of precise knowledge of strong interactions between
hadrons in dense matter, as well as deficiencies and approxi-
mations plaguing the many-body calculations of the EOS pre-
vent us from knowing the actual structure of neutron star cores.
Terrestrial experiments cannot supply information on the prop-
erties of matter at density >∼1015 g cm−3 expected at neutron
star center. We can only hope that observations of neutron stars

will provide us with constraints which will enable us to select
a correct dense matter model, or at least to limit the number of
acceptable dense matter theories.

Particularly interesting method of searching for the phase
transition in neutron star cores via pulsar timing was proposed
by Glendenning et al. (1997). As a pulsar spins down, its cen-
tral density increases, and for a certain density a new phase
of matter can appear. In the case considered by Glendenning
et al., the new phase consisted of quark matter. The authors
suggested, that the softening of the EOS, induced by the for-
mation of the new dense phase, leads to a temporary spin-
up era, the phenomenon called back-bending. Originally, the
name comes from nuclear physics, where the phenomenon of
“back-bending” was observed in the systematics of the moment
of inertia of excited states of rapidly rotating nuclei, see e.g.,
Ring & Schuck (1980). The calculations of Glendenning et al.
were performed within the slow-rotation approximation (Hartle
1967; Hartle & Thorne 1968), supplemented with additional re-
lations resulting from accounting for the rotational stretching
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and frame-dragging effects (Weber & Glendenning 1991,
1992).

Several other authors (Heiselberg & Hjorth-Hensen 1998;
Chubarian et al. 2000) carried out their calculations of the back-
bending phenomenon using the slow rotation approximation
of Hartle. However, as shown by Salgado et al. (1994), the
Hartle method, when compared with results of exact 2-D nu-
merical codes, breaks down for angular velocity close to the
Keplerian one.

First calculations concerning back-bending based on exact
2-D code were performed by Cheng et al. (2002). These authors
used the version of KEH code (Komatsu et al. 1989a,b), im-
proved by Stergioulas & Friedman (1995) (see also references
therein). In their work, Cheng et al. focused on the role of the
crust for the very existence of the back-bending. Indeed, as they
show, even a slight change in the physical state of the crust (for
example, a change in the crust-core transition pressure) may
significantly affect the results. This shows that high precision
is mandatory for reliable calculation of the back-bending phe-
nomenon.

Another important article containing results based on 2-D
computations with the Stergioulas & Friedman (1995) code,
was published by Spyrou & Stergioulas (2002). They showed
that the results obtained by Glendenning et al. (1997) are
plagued by large numerical uncertainties. For example, the
very same EOS as that used by Glendenning et al. (EOS from
Table 9.2 of Glendenning 2000) did not yield the back-bending
phenomenon at all in Spyrou & Stergioulas (2002)! It became
evident that the back-bending problem is much subtler than
previously considered, and that it requires careful handling
as well as high-precision 2-D computations. Also, Spyrou &
Stergioulas pointed out some errors in previous papers on back-
bending. For example, the formula for braking index must be
corrected by taking into account the rotational flattening of the
star (Sect. 6 in Spyrou & Stergioulas 2002).

Most recently, Zdunik et al. (2004) showed that the back-
bending phenomenon can also occur for the EOSs different
from the mixed-phase one. They also pointed out importance
of the stability with respect to the axi-symmetric perturbations.
The appearance of hyperons in the dense matter (Balberg &
Gal 1997) softens some EOSs so much, that pulsars losing
angular momentum actually spin up during a period of time.
Paradoxically, during this spin-up phase pulsars could lose a
significant amount of their angular momentum.

It should be stressed that all previous works (except of
Zdunik et al. 2004) considered back-bending as a feature of
the the dependence of the moment of inertia, I, on the rotation
frequency, f ≡ 1/rotation period: I = I( f ). As shown recently
by Zdunik et al. (2004), this can easily lead to incorrect deter-
mination of the stability of rotating stars. Zdunik et al. (2004)
pointed out that many cases claimed before to correspond to the
back-bending, actually cannot be realized in nature because of
the instability with respect to the axi-symmetric perturbations.

One of the aims of the present work is to determine reli-
ably and precisely the stability regions on the back bending
segments of the spin evolution tracks. In order to avoid any pre-
cision problem, and to investigate large and possibly complete
parameter space, we will work with analytical EOSs of dense

matter exhibiting a softening at supra-nuclear density. Two ex-
amples of softening by a phase transition will be considered.
We will study EOSs with constant-pressure phase transitions,
characterized by a density jump obtained using the Maxwell
construction. Second, we will use EOSs with phase transition
extending over a finite pressure range in which two pure phases
coexist forming a mixed-phase state. Such EOSs are obtained
for the first-order phase transition between two pure phases by
relaxing the condition of local electric charge neutrality and re-
placing it by less stringent condition of the global neutrality
(Glendenning 1992). Mixed-phase state can be realized pro-
vided the surface tension at the interface between the two pure
phases is not too large.

The plan of the article is as follows. In Sect. 2 we present
various types of analytical EOSs used in the calculation of the
spin evolution tracks. Numerical methods used in exact 2-D
calculations are briefly presented in Sect. 3. Our numerical re-
sults are described in Sect. 4. We first describe the general cri-
teria for the back-bending and the stability for spinning-down
stars. Then, the results for the EOSs with a mixed-phase seg-
ment are studied in Sect. 4.1, and those with constant pressure
phase transition with density jump are reviewed in Sect. 4.2.
In Sect. 5 we describe a link between the existence of unstable
segments in the families of static and rotating configurations of
neutron stars. Change in neutron star parameters, accompany-
ing transitions between two rotating configurations, triggered
by instabilities of isolated rotating neutron stars, are studied
in Sect. 6. Modifications in the pulsar timing and pulsar age
evaluations, due to phase transitions in spinning-down isolated
neutron stars are studied in Sect. 7. A summary of our results
and their discussion is presented in final Sect. 8. Formulae re-
ferring to analytical models of EOSs with phase transitions are
collected in the Appendix.

2. Analytical EOS

Studies of stability of stationary rotating configurations require
high accuracy of the 2-D calculations. This is particularly true
for the determination of a critical configuration which sepa-
rates the stable configurations from the unstable ones. On the
other hand, in our search for criteria which link the proper-
ties of the phase transition in dense matter with its effect on
the stability of stellar configurations with new-phase cores we
wanted to explore possibly large space of the phase transition
parameters. In view of this, we decided to use analytic forms of
the EOSs. In this way, the EOSs were easy to handle, and we
could easily change the phase-transition parameters in a con-
tinuous way, detecting with high precision the appearance of
instability. Moreover, with our numerical methods of solving
the hydrostationary equilibrium problem, we had no unneces-
sary preoccupation with control of precision (see Sect. 3).

2.1. Constant pressure phase transition

Normal phase is described by a polytrope of index ΓA. The
phase transition to a dense phase takes place at a specific pres-
sure, PAB, at which normal phase of baryon density nA coexists
with dense phase of baryon density nB, with baryon density
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Fig. 1. Two examples of EOSs employed in our calculations: constant-
pressure phase transition (dashed line, EOS with ΓA = ΓB = 2.25, the
density jump λ = 1.3, can be found in Table 2) and transition through
a mixed-phase state (solid line, thin dotted lines mark n1 and n2; EOS
MM of Table 1). Top panel: p(ρ) diagrams. Bottom panel: density pro-
files in stellar core, for a M = 1.33 M� neutron star models.

jump nB − nA > 0. Coexistence, equivalent to phase equilib-
rium, corresponds to equality of baryon chemical potential of
both phases. The high-density phase B is a polytrope of in-
dex ΓB. Details of the construction of the analytical EOSs are
given in the Appendix A.1.

2.2. Phase transition via the mixed-phase state

Normal phase is described by a polytrope of index ΓA. Mixed
phase starts at baryon density n1, and ends at n2; it has a poly-
tropic EOS with index Γ < ΓA. This approximation is rather
good for a sizable lower-density part of the mixed-phase seg-
ment (see Bejger et al. 2005). To be specific, pure high-density
phase, which exists at n > n2, was assumed to be quark mat-
ter, with a bag-model EOS. Details of construction of the an-
alytical EOSs are given in the Appendix A.2. Depending on
the values of parameters, we obtained three possible types of
the EOS with mixed phase region. First, we obtained EOSs
which give exclusively stable models between the minimum
and maximum allowable mass; they are called MSt (Mixed

Table 1. Main parameters of the EOSs with mixed-phase segment.
Below the mixed-phase transition point n1 a polytropic EOS with ΓA

is used. Mixed phase extends within n1 < nb < n2, and is described
by a polytrope with adiabatic index Γm. Above the density n2 we as-
sume pure quark matter with MIT bag model EOS p = 1

3 (ρ − ρ0)c2.
In all cases the dimensionless polytropic pressure coefficient K was
equal 0.025 (see Appendix A for details). Mstat

b,max and Mstat
max denote the

maximum allowable baryon and gravitational mass of the non-rotating
star. The EOSs are labeled as follows: MSt produces a stable back
bending, MUn – an unstable one, and MM produces a marginally sta-
ble case (for more details see the text).

EOS ΓA n1 Γm n2 Mstat
b, max (Mstat

max)
[fm−3] [fm−3] [M�]

MSt 2 0.35 1.5 0.8 1.508 (1.393)
MUn 2.5 0.2 1.3 0.65 1.586 (1.453)
MM 2.25 0.25 1.25 0.57 1.685 (1.534)

Fig. 2. Examples of the three EOSs with phase transition through the
mixed-phase state, considered in the present paper. The parameters of
the EOSs are given in Table 1.

Stable). Second, we obtained the EOSs which produced two
distinct stable families of neutron stars, i.e., low density fam-
ily and high density family. They are represented by two seg-
ments in the mass-central density plane and are separated by
a segment of unstable configurations. Such an EOS is denoted
by MUn (Mixed Unstable). There are also EOSs which yield
a vanishingly short unstable segment of static configurations,
so that the configurations are “marginally stable” there (an in-
flection point). This class of EOSs will be denoted by MM
(Mixed Marginally Stable). Parameters of examples of analyt-
ical EOS of each of these three types are given in Table 1, and
their P(ρ) plots are shown in Fig. 2. These examples of the
EOSs have n1 similar to the models tabulated in Tables 9.2–9.3
by Glendenning (2000). Our values of n2 ∼ 3n1 are systemati-
cally lower than those of Glendenning (2000) which are char-
acterized by n2 ∼ 4n1. However, this difference is not relevant
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for the general results of our analysis of stability of rotating
stars.

3. Numerical methods

Hydrostationary stellar models have been computed by solv-
ing the Einstein equations for stationary axi-symmetric space-
time. The numerical calculations were performed by means of
the rotstar code, a part of the LORENE public-domain object-
oriented C++ scientific library based on spectral methods. For
the complete set of equations as well as the tests and the de-
scription of the numerical code we refer the reader to the ar-
ticles by Bonazzola et al. (1993), Bonazzola et al. (1998)
and Gourgoulhon et al. (1999). For the purpose of the present
work, we have employed two (in the case of a constant-pressure
phase transition) and three (phase transition via a mixed-phase
state) spectral domains to describe the stellar interior and sur-
face. The division into domains makes use of the adaptive coor-
dinates while setting the boundaries between different phases.
Therefore, the density field is smooth in each domain and the
resulting accuracy is very high – in terms of GRV2 and GRV3
virial error indicators (see Nozawa et al. 1998) the relative
error was on average ∼10−7.

4. Back-bending and stability of rotating
configurations

As it has has been already mentioned by us in the previous
paper treating specifically the back bending in hyperon stars
(Zdunik et al. 2004), the back bending phenomenon itself is
strictly connected with the existence of a minimum of Mb along
the sequence of rotating configurations with fixed f . More gen-
erally, the softening of the EOS leads to the flattening of the
M(Req) and M(ρc) curves representing these sequences. Here,
Req is the circumferential equatorial radius. The effect is larger
for larger values of f , and it appears above some critical value
of f . The softening of the EOS results then in a local maximum
of Mb. In such a case, there exists a region, close to the local
maximum mass, in which the decrease of J leads to the increase
of f , and this is equivalent to back bending. The fragment of
the curve, for which M decreases as a function of ρc, does not
necessarily correspond to the instability region – the decrease
at fixed f does not imply the decrease at fixed J. Only the latter
condition is equivalent to the instability of rotating configura-
tion with respect to the axi-symmetric perturbations (Friedman
et al. 1988). Summarizing, the particular shape of the M(Req)
curve for a fixed f indicates the presence of the back bending
phenomenon, whereas the shape of M(Req) at a fixed total an-
gular momentum J tells us if the configurations are stable.

In the present paper we will show examples of the EOS
with constant-pressure (density-jump) phase transitions and
mixed-phase transitions for which one of the two situations
occurs:

– 1) all configurations are stable but the back bending exists;
– 2) the phase transition results in the instability region for

rotating stars.

Fig. 3. Total angular momentum versus rotation frequency f (left pan-
els), and moment of inertia I ≡ J/Ω versus f (right panels), for EOSs
MSt and MUn. The stability criterion is easily applied to left panels.
It is clear that for the MSt EOS back bending feature is not associ-
ated with an instability, with all configurations being stable. On the
contrary, the MUn EOS produces back bending with a large segment
of unstable configurations. Simultaneously, the I( f ) curves for both
EOSs are very similar and apparently show very similar back-bending
shapes.

To distinguish between these two cases we can look at the be-
havior either of the curves Mb(ρc)J or J( f )Mb ; the quantity fixed
along a sequence is indicated by the lower index. For such
curves the instability criterion directly applies. However, is not
so easy to detect the instability using the I( f )Mb plot, which
may be similar to that corresponding to a fully stable sequence.
An example is presented in Fig. 3, where we plot two func-
tions: J( f )Mb and I( f )Mb for the two models of EOS (MSt and
MUn) which are described in detail in Sect. 4.1. Upper pan-
els correspond to the stable model MSt and lower to the MUn
model for which a region of unstable configurations exists. The
difference between the MSt and MUn cases is clearly visible
in left panels (J( f )Mb curves), where we can easily recognize
the instability region for MUn model, by applying the condi-
tion (dJ/dρc)Mb

> 0, and keeping in mind that ρc is mono-
tonic along this curve. However, the upper and lower right
panels (I( f )Mb ) are quite similar, without any qualitative dif-
ference. Simultaneously, the back bending phenomenon in the
MUn case is very large (almost by 200 Hz), and obviously the
phase transition results in an instability (increase of J for in-
creasing ρc). And yet, I(ρc) is a monotonic decreasing function
all the time.
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Fig. 4. Upper panel: stellar baryon mass vs radius for fixed frequency
(dashed lines) and fixed total angular momentum (solid lines), for the
model MM of mixed-phase EOS. Bottom panel: stellar angular mo-
mentum as a function of the rotational frequency for fixed baryon
mass (indicated as a label, in solar masses) for the same MM EOS.
This EOS corresponds to the marginal case from the point of view of
stability – the curves M(Req)J and J( f )Mb have flat horizontal regions.
The regions of back-bending are drawn by thick lines.

4.1. Transition to a mixed phase

In Figs. 4–6 we present the results obtained for three different
choices of the EOS’s parameters describing mixed phase phase
transitions (Table 1).

Model MM has been chosen to be a marginal one – there
exists a region where the curve Mb(Req) (or Mb(ρc)) is locally
horizontal, which means the marginal stability. The function
Mb(Req) for non-rotating star ( f = 0) has an inflection point
slightly above the configuration where phase transition to the
mixed phase occurs. At a fixed f , the condition for an inflection
point reads,
(
∂Mb

∂ρc

)
f

= 0,

(
∂2Mb

∂ρ2
c

)
f

= 0. (1)

In a special static case ( f = 0) this condition is fulfilled for
Mb � 1.42 M� and R � 14 km. For this marginal EOS model,

Fig. 5. The same as in Fig. 4 but for the MSt EOS. Phase transition
does not result in the stability loss – all configurations are stable.

the back bending phenomenon exists at all rotation rates, and
for baryon masses larger than 1.42 M�. The region for which
back-bending exists is bounded by the points corresponding to
the local maxima and minima of the function Mb(Req) at fixed
rotational frequency f . In the marginal model for which the
inflection-point condition, Eq. (1), is fulfilled for non-rotating
stars, even an infinitesimally slow rotation leads to the mini-
mum and maximum of the function Mb(R) f (albeit infinites-
imally close to each other), which is equivalent to the back-
bending (see dashed curves in Fig. 4). However, imposing
rotation does not result in the instability – the functions Mb(ρc)J

are monotonously increasing, independently of the rotation rate
(solid curves in Fig. 4). Strictly speaking, for each J there exists
an inflection point of the function Mb(ρc)J (within the accuracy
of our calculation). The size of back bending, defined as a fre-
quency range for which f increases for decreasing J (and in-
creasing ρc), depends on the mass of the star (see bottom panel
of Fig. 4). In the model MM, the back bending range varies
from 0 (for Mb ≤ 1.42 M�) to ∼180 Hz for the star with mass
Mb = 1.685 M�, equal to the maximum mass of non-rotating
configurations (i.e. not supra-massive ones).
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Fig. 6. The same as in Fig. 4 but for MUn EOS. Upper panel:
Phase transition results in the stability loss, i.e., there exists a region
where Mb decreases with increasing ρc at fixed J (marked by dotted
lines). Lower panel: plots in the J − f plane, where on the dotted
segments J increases as ρc increases (unstable configurations). Both
features indicate instability with respect to the axi-symmetric pertur-
bations.

Model MSt produces a set of stable configurations in the
region of phase transition (Fig. 5). Here, Mb is an increasing
function of ρc for non-rotating configurations, as well as along
all rotating sequences of configurations at fixed J, terminating
at the global maximum mass configurations. The back-bending
phenomenon is in this case limited to the baryon masses larger
than that for which the curve Mb(Req) (or equivalently Mb(ρc))
at fixed f has a flat, horizontal region (strictly speaking, where
the Eq. (1) is fulfilled). The numerical values for the MSt model
are Mb > 1.45 M� and f > 400 Hz (see for example the bottom
panel of Fig. 5, where the curve for Mb = 1.45 M� has almost
vertical part).

For the MUn model there exists a region for which config-
urations are unstable, i.e. the baryon mass is decreasing func-
tion of ρc at fixed J (Fig. 6). In some sense this instability is
not very strong – the difference between the maximum (local)
and minimum mass is of the order of 0.3%. However this
feature (existence of instability region) is characteristic to all

rotational frequencies – for all values of angular momentum (J)
fixed along the curve, the baryon mass has local maximum and
local minimum connected by an unstable sequence of stellar
configurations.

4.2. Constant pressure phase transition

For non-rotating configurations, the reaction of the star to a
constant pressure (first order) phase transition has been studied
in detail in the second half of 1980s (see Zdunik et al. 1987, and
references therein). The appearance of a new, dense phase in
the center of the star results in the change of the derivatives of
the global stellar parameters with respect to ρc (see the formula
B6 in the appendix of an article by Zdunik et al. 1987). Two im-
portant dimensionless parameters are: fractional density jump
λ = ρB/ρA and the relativistic parameter xA ≡ PAB/(ρAc2).
There exists a critical value of λ, λcrit =

3
2 (1+ xA), such that for

λ > λcrit configurations with an infinitesimally small B-phase
core are unstable with respect to collapse into a new configura-
tion with a large core of the dense phase. Putting it differently,
a phase transition with λ > λcrit destabilizes the star at cen-
tral pressure Pc = PAB at which the phase transition occurs.
It should be stressed that while λ < λcrit guarantees stability
of small-core configurations, it does not assure the stability of
configurations with a finite, or – in an extreme case – a large
core. In such a case the instability would result from the soft-
ness of the B phase somewhat above ρB and not directly from
an over-critical λ. In other words the compressibility of a mat-
ter leads to the larger mean density in the core than the value ρB

at the phase boundary. The response of the whole star to the ap-
pearance of the dense core built of the B-phase of the matter is
determined by the mass and radius of this core (strictly speak-
ing, this statement is true for non-rotating configurations, see
Zdunik et al. (1987); for rotating ones also rotation rate and re-
sulting oblateness play role). As a result even if λ < λcrit the
first order phase transition can lead to the unstable configura-
tions for finite size of the core. As a result for the given model
of the matter in the phases A and B there exist the maximum
value of density jump λmax for which all configurations below
maximum mass are stable. Of course λmax ≤ λcrit and the dif-
ference between λmax and λcrit is larger for softer EOS in the
phase B.

Numerical results for a collection of sets of EOSs with con-
stant pressure phase transition are collected in Table 2. The
parameters presented in this table correspond to the onset of
back bending, i.e., the rotational frequency and baryon mass
for which the curve Mb(Req) f or f (J)Mb starts to have a flat re-
gion. More precisely, at these values of frequency and mass,
an inflection point appears in the curves under consideration.
We also included parameters of those EOSs for which all non-
rotating stars with Mb < Mstat

b,max are stable. This means that
for such EOSs the Mb(ρc) curve for static configurations in-
creases monotonically up to Mstat

b,max. The parameter λmax gives
then the maximum value of the density jump for a fixed set of
other EOS parameters (adiabatic indices ΓA and ΓB, number
density threshold nA) for which this property of neutron stars
is valid; in other words λmax corresponds to the “marginally
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Table 2. Selected sets {KA,ΓA,ΓB, nA, λ} of EOSs with a constant
pressure phase transition. For all cases, KA = 0.025 and nA = 0.25
(see the text and Appendix A.1).

EOS λ fon [Hz] Mon
b [M�] Mstat

b, max [M�]

ΓA = 2,
ΓB = 2,
λmax = 1.364

1.344 247 1.033 1.256
1.318 368 1.071 1.283
1.265 482 1.131 1.342
1.212 555 1.193 1.407
1.159 601 1.248 1.477
1.106 624 1.286 1.554

ΓA = 2,
ΓB = 2.25,
λmax = 1.382

1.371 189 1.021 1.475
1.318 407 1.087 1.534
1.265 507 1.149 1.597
1.212 570 1.208 1.667
1.159 620 1.272 1.743

ΓA = 2,
ΓB = 2.5,
λmax = 1.393

1.371 257 1.034 1.712
1.318 453 1.110 1.776
1.265 522 1.160 1.844
1.218 576 1.215 1.918
1.159 608 1.258 1.999

ΓA = 2.25,
ΓB = 2.25,
λmax = 1.432

1.376 412 1.307 1.642
1.322 537 1.387 1.709
1.268 611 1.463 1.782
1.215 662 1.536 1.861
1.161 694 1.597 1.947
1.107 709 1.636 2.041

ΓA = 2.25,
ΓB = 2.5,
λmax = 1.444

1.430 222 1.242 1.803
1.376 449 1.325 1.859
1.322 556 1.403 1.940
1.268 623 1.477 2.016
1.215 668 1.545 2.099
1.161 696 1.602 2.190

ΓA = 2.5,
ΓB = 2.5,
λmax = 1.472

1.437 361 1.559 1.967
1.382 532 1.661 2.040
1.329 624 1.754 2.119
1.273 686 1.844 2.205
1.219 731 1.933 2.297
1.164 757 2.001 2.398
1.109 780 2.076 2.509

ΓA = 2.5,
ΓB = 3,
λmax = 1.487

1.437 428 1.590 2.348
1.382 566 1.689 2.427
1.329 646 1.871 2.512
1.273 701 1.870 2.603
1.219 738 1.945 2.703
1.164 761 2.011 2.811

stable” case. Increasing λ implies increasing softening of the
EOS by the phase transition. If λ > λmax, the phase transi-
tion leads to the existence of an unstable branch of the non-
rotating stellar configurations. This unstable branch separates
stable family of neutron stars with A-phase cores from a sec-
ond family of superdense neutron stars with B-phase cores:
these are two distinct neutron-star families. It should be men-
tioned that this feature (existence of the unstable region) does
not depend on rotation – the unstable branches exist also for
rotating configurations (strictly speaking for any value of a to-
tal angular momentum of the star J there exist a region with
(∂Mb/∂ρc)J < 0). We have tested this feature (existence of or
the lack of unstable regions) for very small departures from

Fig. 7. The definition of the frequency of the onset of back-bending
phenomenon, fon, and corresponding mass, Mon

b . In the presented
example fon = 449 Hz and Mon

b = 1.325 M�.

marginally stable case (|λmax − λ| < 0.005). From numerical
results it follows that if λ < λmax all rotating configurations are
stable (before loosing stability at maximum mass point) and
if λ > λmax we have two branches of stable configuration for
rotating stars (for any J).

Picking up the onset parameters is visualized in Fig. 7
where we display Mb(Req) for one of the EOSs from Table 2.
The curves are plotted for three frequencies, with middle one
corresponding to the back bending onset, f = fon. Last column
of Table 2 gives the maximum allowable baryon mass for static
configurations, Mstat

b,max. We restrict ourselves to back bending
for the normal (non supra-massive) stars, which appears dur-
ing the spin-down evolution which terminates eventually by
a non-rotating stable configuration. The dependence between
the back-bending onset parameters – f = fon, corresponding
baryon mass, and the intrinsic parameters of the EOS – the
density jump λ, as well as the “departure” from the critical
configuration (∆λ = λmax − λ) is presented in Fig. 8. The three
families of curves visualize the data from Table 2 (solid lines
for ΓA = 2, dotted for ΓA = 2.25 and dashed for ΓA = 2.5). The
value λmax defines the onset of back-bending at the limit f = 0;
in this case the back-bending phenomenon is present for any
rotational frequency. As it can be seen on the left panel, the on-
set frequency fon depends very weakly on the EOS in the dense
core – the main parameter describing the reaction of the star to
the appearance of this phase transition is the density jump. The
right panel presents the same data not normalized with respect
to the maximum density jump λmax – the results can be very
well approximated by the dependence f 2

on = a∆λ + b (∆λ)3/2.
These two plots can be treated as a slice through the parameter
space to search for regions of the back-bending appearance –
in the right panel, the back-bending is present, for a particular
model, above its curve.
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Fig. 8. The onset frequency of the back-bending phenomenon as a
function of the departure of λ from the maximum density jump λmax

(λmax − λ, left panel), and density jump λ as a function of fon

(right panel) for models presented in Table 2 (solid lines for ΓA = 2,
dotted for ΓA = 2.25 and dashed for ΓA = 2.5).

5. Rotation and stability/instability of normal
configurations

Rotation can influence stability of a star of a given baryon mass.
In particular, stars with Mb > Mstat

b,max cannot exist without rota-
tion and collapse into black hole as soon as their rotation fre-
quency falls below a certain minimum value. Here, however,
we will restrict to a different problem of stability, which will
concern the normal configurations only.

In what follows we will use the term “stability” in
a restricted sense. Namely, by stability (instability) of an
equilibrium configuration we will mean stability (instability)
with respect to radial perturbations in the non-rotating case,
and with respect to axi-symmetric perturbations for rotating
configurations.

We studied a very large set of EOSs with phase transitions
at constant pressure, as well as those with transition through a
mixed phase state. We then produced static sequences and nor-
mal rotating sequences for these EOSs. Our calculations were
very precise, because we used analytic forms of the EOSs. The
results for both constant pressure phase transitions, and those
proceeding through mixed phase, turned out to be qualitatively
the same. In all cases, if non-rotating configuration were sta-
ble (monotonically increasing Mb(ρc) and M(ρc)), then for any
value of the total angular momentum J the functions Mb(ρc)J

and M(ρc)J were monotonically increasing, too. Thus, when all
non-rotating configuration with Mb < Mstat

b,max were stable (with
respect to radial perturbations), all normal rotating configura-
tions were stable too (with respect to axi-symmetric perturba-
tions). On the other hand, if for non-rotating stars there existed
a region with decreasing Mb(ρc) and M(ρc), even extremely
small one with a very shallow minimum, then an unstable re-
gion persisted within the rotating configurations, at each value
of J. These two cases are illustrated in the Figs. 5 and 6.

We studied also the case of marginally stable EOS. An
inflection point, witnessing marginal stability, present in the
Mb(R) or M(ρc) curves for non-rotating stars continued to ex-
ist in the Mb(Req) or M(ρc)J curves for normal rotating stars
(Figs. 4, 9).

The analysis of numerical results leads us to an interesting
conclusion. Namely, for an EOS with a phase transition (con-
stant pressure one or through mixed-phase state), rotation

Fig. 9. The mass M of the star as a function of central baryon num-
ber density nc for the MM model. Dashed lines – fixed rotational
frequency. Solid lines – fixed total angular momentum J. The verti-
cal lines correspond to the densities of transitions from the nuclear to
mixed phase and from the mixed phase to the pure denser phase (here
– quark matter) – see Table 1.

neither stabilizes nor destabilizes normal sequences of station-
ary configurations based on this EOS. We define a family of
configurations as a compact set (in mathematical sense) of con-
figurations. Similarly, an EOS leading to a marginally stable
point for non-rotating stars, produces also spin-down evolution
tracks with a marginally stable point. Our result can be formu-
lated as three conjectures:

I) If an EOS with a phase transition gives a single family
of static stable neutron stars then it produces also a single
family of stable rigidly rotating normal stars.

II) If an EOS with a phase transition gives two disjoint fami-
lies of stable static stars then it gives also two disjoint fam-
ilies of stable rigidly rotating normal stars.

III) If an EOS with a phase transition gives two families of sta-
ble static stars separated by a marginally stable configura-
tion, then it gives also two families of stable rigidly rotating
normal stars separated by a line consisting of marginally
stable configurations.

6. Corequake resulting from instability

As was shown on many occasions in the preceding sections,
an isolated neutron star, loosing its angular momentum, moves
down along the line of fixed Mb in the J( f ) plane, and can
at some moment reach the instability point (i) (the minimum
of J( f ) at fixed Mb in Fig. 10). The subsequent behavior of
the star cannot be described by our stationary rigidly rotating
model. In real world, the star has to collapse, rearranging the
angular momentum distribution in its interior. What we can do,
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Fig. 10. Evolution of an isolated pulsar loosing angular momentum,
after it reaches the instability region in J − f plane and then collapses.
Arrows lead from unstable configuration to a collapsed stable one,
with the same baryon mass and angular momentum. Dotted lines –
unstable configurations.

is determining the final stationary state (f), which by construc-
tion will be a stable rigidly rotating neutron star. We assume,
that the transition conserves the baryon number of the star and
is sufficiently rapid so that the angular momentum loss can be
neglected. Therefore, the final stable configuration will have
the same Mb and J as the unstable initial one, Mb,f = Mb,i,
Jf = Ji. The difference between the parameters of these config-
urations (mass, equatorial radius, moment of inertia) gives us
the energy release, and changes in equatorial radius and rota-
tion frequency, due to the collapse implied by the instability.

Examples are shown in Figs. 10–12 for our EOS model
MUn. As the star becomes more compact, collapse is accompa-
nied by the decrease of the equatorial radius (by a few kilome-
ters) and by a significant spin up. For a given EOS, the changes
in radius, energy release, and spin-up are function of the angu-
lar momentum at the instability point:∆Req(Ji), ∆E(Ji), ∆ f (Ji).
As we see in Fig. 11, the energy release depends rather weakly
on the rotation of the unstable configuration (i.e., on the value
of Ji). It should be mentioned that our MUn model is only an
example of the EOS resulting in the instability region within
the hydrostatic equilibria. For EOSs with a weaker phase tran-
sition this instability region would be narrower and the changes
of stellar parameters in the collapse would be smaller. However
an approximate constancy of the energy release (i.e., its very
weak dependence on J = Ji = Jf) seems to be a generic prop-
erty of rotating neutron stars undergoing a collapse due to a
first order phase transition.

In order to discuss in more detail the energy release dur-
ing collapses i −→ f, we plotted in Fig. 12 the gravitational
mass of the star, M, as a function of angular momentum, J, at

Fig. 11. Changes of stellar parameters of a rotating solitary neutron
star, due to a collapse which occurs after a pulsar loosing angular
momentum reaches an unstable configuration.

Fig. 12. Total gravitational mass of the star as a function of its angular
momentum, for fixed baryon number of the star for our EOS model
MUn. The central density is increasing along this curve as marked by
the arrows. The upper segment (dotted) corresponds to the unstable
configurations. Two cusps reflect strict property that the mass and an-
gular momentum have simultaneous extrema along the path with fixed
baryon number.

fixed baryon mass: M = M(J)Mb . Consider an initial configura-
tion C1. As the star looses angular momentum, it moves down
along line a, and reaches eventually the cusp Ci (correspond-
ing to the value of J = Ji). To continue moving on the dotted
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segment CiC2, the star would have to gain angular momentum
and energy!

As we already mentioned, the evolution of the star beyond
the instability point cannot be described by our hydrostationary
model. The star can only collapse to the final configuration Cf ,
with the same values of Mb and J, i.e. along vertical arrow in
Fig. 12. Then, it evolves down the line b.

We notice a very special role played by the point Cx at
which line a and b cross. This is a degeneracy point, which cor-
responds to two very different configurations of the same Mb,
M, and J. However, transitions between these two configura-
tion are prevented by the huge energy barrier.

The existence of the sharp cusps at Ci and C2 on the M(J)Mb

track is a very stringent test of the precision of the numerical
code: it means that mass and angular momentum extrema (for
fixed baryon mass) are reached exactly at the same point. This
property follows from the general relativistic relation dM =

ΩdJ + γdMb (Bardeen 1972). Here, Ω ≡ 2π f , and γ is the
“injection energy per unit mass”. This relation has to be strictly
fulfilled by the stationary configurations. A graph, analogous to
Fig. 12, can be plotted in the M − Mb plane for configurations
with fixed angular momentum J. Also in this case, the existence
of sharp cusps proves the correctness of the numerical code.

7. Phase transition and pulsar timing and age

It has been already pointed out by Spyrou & Stergioulas
(2002), that the back bending phenomenon, resulting from the
growth of a dense-phase core, can lead to significant difference
between the actual pulsar age, τ1, and that inferred from the
measurements of the period P and period derivative, Ṗ, and de-
noted τ2. The calculation of τ2 is based on quite strong assump-
tions. Firstly, pulsar kinetic energy loss due to radiation is given
by the magnetic dipole formula. Secondly, non-relativistic ap-
proximation is used, with pulsar kinetic energy given by 1

2 IΩ2,
where Ω ≡ 2π/P and pulsar moment of inertia is constant,
independent of Ω.

Following Spyrou & Stergioulas (2002), we will use gen-
eral relativistic notion of total pulsar energy, Mc2. Then the
pulsar energy balance is

dM
dt
= − κ

c2
Ωα (2)

where the right-hand-side is the pulsar energy loss rate via
radiation of electromagnetic waves and particles.

Let us consider the increase of stellar energy due to a spin
up to frequency f at constant Mb. In general relativity, the in-
crease is given by ∆M( f ) = [M( f ) − M(0)]Mb . In the standard
model, we neglect the effect of f on stellar structure, so that
∆M = 1

2 I(2π f )2. This is a good approximation when rotation
is slow and EOS is smooth (no phase transition). Equation (2)
can be then rewritten as

Ω̇ = − κ
I0
Ωα−1, (3)

where I0 ≡ I(0) = const.
In the case when angular momentum loss leads to a phase

transition at the stellar center, the situation is much more com-
plicated, because of the strong f -dependence of the pulsar

Fig. 13. The relative mass-energy increase due to rotation of the star
at fixed baryon mass, ε( f ) ≡ [(M( f ) − M(0))/M(0)]Mb , for the EOS
with a phase transition (MM model), is shown using solid line. Three
solid lines are labeled by the gravitational mass of the non-rotating
configuration (in solar masses). Dotted lines correspond to the ε( f )
curves calculated for the standard model, Eq. (3), with α = 4.

structure in the vicinity of the phase transition. This differ-
ence is illustrated in Fig. 13, where we plotted the quantity
ε( f ) ≡ ∆M( f )/M(0) resulting from our calculations, and com-
pared it with results given by standard non-relativistic model
with constant I. As it can be seen in Fig. 13, the approxima-
tion given by Eq. (3) significantly overestimates the change of
frequency associated with a given energy loss. This in turn can
lead to an underestimation of the age of the pulsar – an exam-
ple is presented in Fig. 14. There, we plot the pulsar period,
P, as a function of time, obtained by the integration of Eq. (2)
for magnetic dipole braking (α = 4). We also show results in-
ferred from the observation of a 10 ms pulsar, assuming four
selected values of the pulsar baryonic mass. Taking P = 10 ms
and corresponding Ṗ the extrapolation backward in time using
standard model, Eq. (3), diverges from exact results as soon as
P < 5 ms. If the pulsar is born with period of 2 ms, then its real
age is significantly longer than P/2Ṗ.

8. Discussion and conclusions

The effect of phase transitions in dense neutron-star cores on
the spin-down evolution of isolated stars was studied using an-
alytical representations of EOSs. This guaranteed a very high
precision of our 2-D calculations and allowed us to study a
very large parameter space as far as the phase transitions them-
selves are concerned. In this way, we studied a very broad class
of constant-pressure phase transitions associated with a den-
sity jump in the EOS. We also studied the case of transitions
through a mixed-phase state.

We limited ourselves to the case of normal rotating con-
figurations, which are connected with the non-rotating ones by
the angular momentum loss. We considered two types of in-
stabilities which bound the sets of stationary configurations:
mass shedding and instability with respect to the axisymmetric
perturbations. The EOSs split into two sets: those producing a
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Fig. 14. The evolution of the pulsar period when the energy loss is
described by the magnetic dipole braking with α = 4. Solid curves
– results for our model MM with different values of baryon mass.
Dotted lines correspond to the standard model, Eq. (3). The unit of
time (horizontal axis) is 1000 yr/κ28 where κ28 = κ/1028 [cgs] is pa-
rameter entering Eq. (2).

single family of stable stationary configurations (static and ro-
tating) of neutron stars and those producing two disjoint fami-
lies of stable stationary configurations. Conjectures concerning
normal configurations based on EOSs with a phase transition
has been formulated. If an EOS yields two disjoint families
of static configurations containing “twin neutron stars” of the
same baryon mass but different radius, then also stable normal
rotating configurations form two disjoint regions in the mass –
equatorial radius plane, which contain “twin neutron stars” of
the same baryon mass but of different compactness.

Very often, neutron stars are called a second family of com-
pact stars, the first family being composed of white dwarfs.
Therefore, our conjecture means that an EOS which produces
a third (disjoint) family of static compact stars, produces also a
third (disjoint) family of rotating normal stars.

We have also shown the existence of a very special class
of “fine tuned EOSs” with phase transitions which produce
marginally stable stationary configurations of normal neutron
stars, which form a boundary separating stable stationary con-
figurations (a line in the mass-equatorial radius plane).

Conditions on the density jump in constant-pressure phase
transitions were derived, under which their presence in the
EOS produces the back bending phenomenon in the spin down
evolution.

The case when a spinning down normal neutron star
reaches an unstable configuration was studied in detail. The
instability leads to neutron star collapse, associated with an en-
ergy release in a “corequake”, decrease of radius, increase of
central density, and spin up of the star. We have shown that

the energy release associated with such a “corequake” depends
rather weakly on the initial rotation frequency at the instability
point. In our examples, energy release was of the order of a few
times 1050 erg.

In the present paper we put accent on the numerical preci-
sion and mathematical strictness. We hope that in this way we
prepared ground for further studies of the impact of the phase
transitions in dense matter on the structure, evolution, and dy-
namics of rotating neutron stars. These further studies will be
performed using realistic EOSs available in the literature and
taking into account important microscopic aspects of the phase
transitions. The kinetics of the phase transition coupled with
stellar spin-down, and the ensuing neutron star corequake are
now being studied. These topics will be the subject of our sub-
sequent papers.
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Appendix A: Analytical equations of state

The relativistic polytrope, following Tooper (1965), relates
pressure p to baryon number density nb by

p(nb) = Knb
Γ, (A.1)

where Γ is the adiabatic index. The second coefficient, K, is
often called the pressure coefficient1.

Dense matter is strongly degenerate, so that the T = 0 ap-
proximation is valid. First Law of Thermodynamics implies
then expression for energy per baryon

E/nb =
Knb

Γ−1

γ − 1
+ C, (A.2)

where the constant C is set, for nb = 0, to be the unit baryon
rest energy2 C = m0c2.

The energy density E is thus given by

E(nb) =
K
Γ − 1

nγb + m0c2nb. (A.3)

The baryon chemical potential µ is therefore

µ(nb) =
p + E

nb
=
ΓK
Γ − 1

nb
Γ−1 + m0c2. (A.4)

A.1. Constant pressure phase transition

We assume that the phase transition takes place in thermody-
namic equilibrium. In a simplest case the transition from less
dense pure phase A to high-density pure phase B occurs at con-
stant pressure. Example of such transition is shown in Fig. A.1.
Pure phases, A and B, will be approximated by polytropes, with
adiabatic indices ΓA and ΓB, respectively. Let us also fix the
mean baryon mass m0A and coefficient KA, and demand that the

1 Unless otherwise mentioned, the coefficient K will be measured
in ρ̂c2/n̂Γ units, where ρ̂ := 1.66 × 1014 g/cm3, and n̂ := 0.1 fm−3.

2 Following many authors, we put unit baryon mass equal to mass
per nucleon in the ground state of atomic matter at zero pressure,
which is 56Fe crystal, m0 = 1.66 × 10−24 g.
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Fig. A.1. Examples of phase transitions considered in the text; con-
stant pressure phase transition (left), and the phase transition through
the mixed-phase state (right).

phase transition occurs between the baryon densities nA and nB,
at constant pressure PAB and chemical potential µ. From con-
stancy of pressure and chemical potential we get

KB = KA · nA
ΓA/nB

ΓB , (A.5)

m0B = m0A + PAB

(
ΓA

nA(ΓA − 1)
− ΓB

nB(ΓB − 1)

)
· (A.6)

A.2. Transition through the mixed-phase state

Lower-density phase A extends up to pressure P1 and density
nb = n1, then follows mixed m-phase with volume fraction of
dense phase χB increasing monotonically from 0 at n1 to 1 at
nb = n2 and p = P2. Again, for simplicity, it will be assumed
that the phase A and mixed-phase m can be approximated by
polytropes (not a bad approximation, see Bejger et al. 2005).
The parameters Km, Γm, and m0m (the mean particle mass in
the mixed-phase) must be related to those of the A-phase in
such a way that pressure and baryon chemical potential stay
continuous across the A −→ m transition point at n1,

Km = KA · n1
ΓA−Γm , (A.7)

m0m = m0A −
P1

n1c2
· ΓA − Γm

(ΓA − 1)(Γm − 1)
· (A.8)

We will further assume that the high-density phase B, existing
at nb > n2, p > P2, and ρ > ρ2, is pure quark matter, with MIT
bag model EOS (Zdunik 2000),

p(E) =
1
3

(E − E0), nb(p) = n0(1 + p/E)3/4, (A.9)

where E0 = ρ0c2 and n0 are the mass-energy density and the
baryon density of the quark matter at zero pressure. The baryon
chemical potential of the B-phase is then equal to

µ(p) = µ0(1 + 4p/E)1/4, (A.10)

where µ0 = E0/n0.

From the continuity of pressure, baryon density, and energy
density at the m −→ B transition point, we get

E0 = E2 − 3P2(n2),

n0 = n2/(1 + 4P2/E2)3/4. (A.11)
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