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ABSTRACT

Aims. We calculate the energy release associated with a strong first-order phase transition, from normal phase N to an “exotic”
superdense phase S, in a rotating neutron star. Such a phase transition N −→ S, accompanied by a density jump ρN −→ ρS , is
characterized by ρS/ρN >

3
2 (1 + P0/ρN c2), where P0 is the pressure at which phase transition occurs. Configurations with small

S-phase cores are then unstable and collapse into stars with large S-phase cores. The energy release is equal to the difference in mass-
energies between the initial (normal) configuration and the final configuration containing an S-phase core, the total stellar baryon
mass and angular momentum being kept constant.
Methods. The calculations of the energy release are based on precise numerical 2D calculations. Polytropic equations of state (EOSs)
as well as realistic EOSs with strong first-order phase transition due to kaon condensation are used. For polytropic EOSs, a large
parameter space is studied.
Results. For a fixed “overpressure”, δP, defined as the relative excess of central pressure of a collapsing metastable star over the
pressure of the equilibrium first-order phase transition, the energy release Erel does not depend on the stellar angular momentum. It
coincides with that for nonrotating stars with the same δP. Therefore, results of 1D calculations of Erel(δP) for non-rotating stars
can be used to predict, with very high precision, the outcome of much harder to perform 2D calculations for rotating stars with the
same δP. This result holds also for δPmin < δP < 0, corresponding to phase transitions overcoming the energy barrier separating
metastable N-phase configurations from those with an S-phase core. Such phase transitions could be realized in the cores of newly
born, hot, pulsating neutron stars.
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1. Introduction

One of the mysteries of neutron stars is the structure of their su-
perdense cores. Many theories of dense matter predict a phase
transition into an “exotic” state (i.e., not observed in the labo-
ratory). Theoretical predictions include boson condensation of
pions and kaons, and deconfinement of quarks (for a review see
e.g. Glendenning 2000; Weber 1999; Haensel et al. 2007).

The first-order phase transitions, accompanied by disconti-
nuities in the thermodynamic potentials, seem to be the most
interesting, as far as the the structure and dynamics of neutron
stars are concerned. In the simplest case, one considers states
consisting of one pure phase. High degeneracy of the matter con-
stituents implies that the effects of temperature can be neglected.
At thermodynamic equilibrium, the phase transition occurs at a
well defined pressure P0. It is accompanied by a density jump at
the phase interface.

A first-order phase transition in a neutron star core is asso-
ciated with the collapse of the initial metastable configurations
of exclusively of non-exotic (normal – N) phase, into a more
compact configuration with a core of the superdense (S) exotic
phase. At the core edge the pressure is P0, and the density under-
goes a jump from ρN on the N-side to ρS on the S-side. The col-
lapse, called “core-quake”, is associated with a release of energy,
Erel. A neutron star core-quake implied by a first-order phase
transition in a stellar core could occur during an evolutionary

process in which central pressure increases. Examples of such
processes are mass accretion and pulsar spin-down. In both
cases, the initial and final configurations are rotating. One as-
sumes that the baryon mass of the collapsing star, Mb, is con-
served (no mass ejection) and that the total angular momentum,
J, is also conserved (J loss due to radiation during a core-quake
due to radiation of the electromagnetic and gravitational waves
is negligible).

Crucial for the core-quake is the value of the parameter
λ ≡ ρS/ρN . If λ < λcrit ≡ 3

2 (1 + P0/ρN c2), then the configurations
with arbitrarily small cores of the S-phase are stable with respect
to axisymmetric perturbations (Seidov 1971; Kaempfer 1981;
Haensel et al. 1986; Zdunik et al. 1987). To have a core-quake in
an evolving neutron star, a metastable core of the N-phase with
central pressure Pc > P0 and radius rN should form first. This
core is “overcompressed”, with the degree of overcompression
measured by a dimensionless “overpressure” δP ≡ (Pc−P0)/P0.
At some critical value of the overpressure, the S-phase nucle-
ates, and the S-core of radius rS forms. For δP −→ 0, we have
rS −→ 0. This is the case of a weak first order phase transition.
Up to now, all but one numerical calculation was restricted to
the spherical non-rotating neutron stars (Haensel & Prószyński
1982; Haensel et al. 1986; Zdunik et al. 1987; Haensel et al.
1990; Muto & Tatsumi 1990). An exception is the work based
on precise 2D calculations performed for weak first-order phase
transitions in rotating neutron stars (Zdunik et al. 2007).
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For a strong first-order phase transition (λ > λcrit) in a neu-
tron star core, δP −→ 0 implies rS −→ rS ,min, where rS ,min
is a sizable fraction of the stellar radius. The core-quake, ac-
companying the phase transition, is a large-scale phenomenon,
with energy release Erel ∼ 1051−1052 erg. Existing numerical
calculations were restricted to spherical non-rotating neutron
stars (Migdal et al. 1979; Haensel & Prószyński 1980, 1982;
Kaempfer 1982; Berezin et al. 1982, 1983; Diaz Alonso 1983;
Berezhiani et al. 2003).

In the present paper we calculate the energy release due to a
strong first-order phase transition in a rotating neutron star. The
calculations are performed using very precise 2D codes and a set
of EOSs with strong first-order phase transitions. We show that
similarly to the case of a weak first-order phase transition stud-
ied in Zdunik et al. (2007), the energy released during a core-
quake depends only on the excess of the central pressure of the
metastable configuration over P0, and is to a very good approxi-
mation independent of the angular momentum of collapsing star.
Moreover, we show that this property holds also for core-quakes
with initial Pc < P0, which require additional energy needed to
overcome the energy barrier.

The paper is organized in the following way. In Sect. 2 we
describe the general properties of the first-order phase transitions
in the stellar core with particular emphasis on the metastabil-
ity and instability of neutron star cores. Analytic models of the
EOSs with first-order phase transitions, allowing for very precise
2D calculations, are considered in Sect. 3.1, where we derive
generic properties of the energy release due to a first order phase
transition at the center of a rotating star. In Sect. 3.2 we present
our results obtained for a realistic EOS of normal phase, and we
confirm the remarkable properties of the energy-overpressure re-
lation (i.e., the independence from J), obtained in the previous
section. In Sect. 4 we discuss the decomposition of the energy
release into kinetic and internal energies. Section 5 is devoted
to the problem of transition of one phase star into stable, two
phase configuration through the energy barrier. Finally, Sect. 6
contains discussion of our results and conclusion.

2. Families of neutron stars

All constituents of matter are strongly degenerate and the tem-
perature dependence of the EOS parameters can be neglected at
the densities under consideration. In what follows we will use the
notation from Zdunik et al. (2007) (see the schematic Maxwell
construction in Fig. 1 there); here we will focus on strong phase
transitions only. The mechanism of nucleation to the S-phase is
essentially the same as in a weak (λ < λcrit) phase transition.
Discussion of the nucleation time τnucl of the S-phase in an ac-
creting or spinning down neutron star with increasing Pc was
presented by Zdunik et al. (2007); the particular case of a hot ac-
creting neutron star was considered by Berezhiani et al. (2003).
Calculations of τnucl in a dense neutron star core metastable with
respect to the pion condensation were performed by Haensel
& Schaeffer (1982) and Muto & Tatsumi (1990). The case of
nucleation of quark matter was studied by Iida & Sato (1997,
1998), while nucleation of the kaon condensate was considered
by Norsen (2002).

For a given EOS, nonrotating hydrostatic equilibrium
configurations of neutron stars form a one-parameter family,
the parameter being, e.g., central pressure Pc. Notice, that Pc
is preferred over ρc because the pressure is strictly continuous
and monotonous in the stellar interior, while density can suffer
discontinuities. For an EOS with a first order phase transition,
and without allowing for metastability of the N phase, neutron

Fig. 1. Baryon mass vs. equatorial radius for hydrostatic equilibrium
configurations calculated for three types of EOSs of dense matter, de-
scribed in the text. Solid line – stable; dotted line – unstable configu-
rations. Thick lines correspond to the non-rotating models, thin lines
to the rigidly rotating configurations with a fixed total stellar angular
momentum J = 1.2 ×GM2

�/c.

stars form two families: a family of stars composed solely of the
N-phase {C}, and a family of those having an S-phase core {C�}.

The configuration {C�} with a small S-phase core is unstable
for λ > λcrit ≡ 3

2 (1 + P0/ρN c2) (Seidov 1971; Kaempfer 1981;
Haensel et al. 1986; Zdunik et al. 1987). Therefore, the topol-
ogy of the complete set of stable hydrostatic configurations of
non-rotating neutron stars, parametrized by Pc, and plotted, e.g.,
in the mass-radius plane, depends on the value of λ. Namely,
for λ < λcrit, the sum of {C} and {C�} is continuous, while for
λ > λcrit it is not (i.e., the families {C} and {C�} are disjoint).
Recently, it has been shown that this property is generic for an
EOS with a phase transition, and holds also for rigidly rotating
neutron stars (Zdunik et al. 2006).

An important global parameter for hydrostatic equilibrium
configurations is their baryon mass, Mb. It is defined as the
baryon number of the star, Ab, multiplied by the “mass of a
baryon”, m0, defined as 1/56 of the mass of the 56Fe atom:
m0 = 1.6586 × 10−24 g. During evolution of an isolated neutron
star, including the phase transitions in its interior, Mb remains
strictly constant.

We define the equatorial radius of an axisymmetric neutron
star as the proper length of the equator divided by 2π. Examples
of Mb–Req curves for non-rotating and rotating neutron stars
without a phase transition {C}, with a weak first-order phase tran-
sition {C�weak}, and a strong first-order phase transition {C�strong},
are shown in Fig. 1. Dotted segments correspond to unstable
configurations (instability with respect to the axisymmetric per-
turbations). As one sees, fast rotation significantly changes the
Mb(Req) dependence, e.g., by increasing the mass and the radius
of the configuration with Pc = P0 denoted by C0.

General relations between models calculated for three types
of the EOS can be formulated. At a given Mb, Req(C�strong) <
Req(C�weak) < Req(C). Moreover, maximum allowable baryon
masses satisfy Mb,max(C�strong) < Mb,max(C�weak) < Mb,max(C); the
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Fig. 2. Zoomed fragment of Fig. 1, in the vicinity of the phase transi-
tion. For other explanations see the text.

same inequalities are valid for maximum allowable gravitational
mass, Mmax.

Differences in the mass-radius behavior are most pronounced
in the vicinity of configuration C0, with Pc = P0. This region,
bounded by a rectangle in Fig. 1, is shown in Fig. 2, where the
arrows connect configurations with same Mb. For simplicity, we
first consider non-rotating stars. For λ < λcrit, configurations
with Pc > P0 form a monotonous branch C�weak. For λ > λcrit, a
segment with P0 < Pc < P�c,min consists of configurations C�strong

with dM�/dρ�c < 0, which are therefore unstable with respect to
radial perturbations. Therefore, for λ > λcrit the stable branches
{C} and {C�} are disjoint. In both cases (“weak” and “strong”),
the central density jumps from ρN to ρS when passing from the
C branch to the C� branch. All these properties were derived a
long time ago for non-rotating neutron stars. Recently it has been
shown that they hold also for phase transitions in rigidly rotating
neutrons stars when the stationary axially symmetric families C
and C� contain configurations of a fixed stellar angular momen-
tum J (Zdunik et al. 2006). The standard non-rotating case cor-
responds to J = 0.

3. Calculation of the energy release

We restrict ourselves to axially symmetric, rigidly rotating
neutron stars in hydrostatic equilibrium. In what follows, by
“radius” we mean the equatorial circumferential radius, Req.

We assume that at a central pressure Pc = Pnucl the nucle-
ation of the S phase in an overcompressed core, of a small ra-
dius rN (of configuration C) initiates a strong first-order phase
transition. This leads to formation of a large S-phase core of ra-
dius rS in a new configuration C∗, as shown in Fig. 3.

We compare the hydrostatic equilibria of neutron
stars corresponding to the EOSs with and without the
phase transition using the numerical library LORENE
(http://www.lorene.obspm.fr), obtaining the axisym-
metric, rigidly rotating solutions of Einstein equations as in
Zdunik et al. (2007). The accuracy of the solution, measured

Fig. 3. Transition from a one-phase configuration C with a meta-stable
core of radius rN to a two-phase configuration C� with a S-phase core
with a radius rS . These two configurations have the same baryon mass
Mb = M�b and total angular momentum J = J�. Notice that in contrast
to the case of a first order phase transition with λ < λcrit studied in
Zdunik et al. (2007, see Fig. 2 of that paper), here rN is much smaller
than rS (in the limiting case rN = 0 while rS is sizeable).

with the general relativistic virial theorem (Gourgoulhon &
Bonazzola 1994), is typically 10−6.

The neutron-star models can be labeled by the central pres-
sure Pc (central density is not continuous) and rotational fre-
quency f = Ω/2π. These parameters are natural from the point
of view of numerical calculations. But we can introduce an-
other parametrization, more useful for other purposes. In order
to study the stability of rotating stars, a better choice is the cen-
tral pressure, Pc, and the total angular momentum of the star,
J.

We additionally assume that the transition of the star from a
one-phase configuration to the configuration with a dense core
of the S-phase takes place at fixed baryon mass Mb (no mat-
ter ejection) and fixed total angular momentum of the star J
(loss of J due to the electromagnetic or gravitational radiation
is neglected). The energy release during transition C(Mb, f ) −→
C�(Mb, f �) is therefore calculated from the change of the stellar
mass-energy during this process,

Erel = c2
[
M(C) − M(C�)

]
Mb,J
. (1)

The precision of the determination of Erel depends on the nu-
merical accuracy of calculations of the configurations with the
same J and Mb. Taking into account that Erel is 3 ÷ 4 orders of
magnitude smaller than M (for the overpressures ranging from a
few to 20 percent) this precision is typically better than 1%.

3.1. Energy release for polytropic EOSs

The use of the polytropic EOSs for the N and S phases not
only guarantees very high precision of numerical calculation, but
also opens the possibility of the exploration of a wide region of
the parameter space. A description of the polytropic EOSs and
their application to relativistic stars with phase transitions was
presented in detail in our previous publications in this series
(Bejger et al. 2005; Zdunik et al. 2006).
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Fig. 4. Total baryon mass Mb of hydrostatic stellar configuration, ver-
sus central pressure Pc, at fixed stellar angular momentum J. The solid
line denotes stable states, dash-dot line - the states that are metastable
with respect to the N−→ S transition. For a central pressure Pnucl the
S-phase nucleates in the super-compressed core of configuration C, and
this results in a transition C −→ C∗ into a stable configuration with a S-
phase core and central pressure P∗c. Both configurations C and C∗ have
the same baryon mass Mb.

Table 1. The parameters of the polytropic EOSs.

EOS KS γS λ λn

(erg cm−3)
PolW 5.11 × 1011 3.5 1.44 1.4
PolS1 1.602 × 1011 4 1.66 1.6
PolS2 1.257 × 1011 4 1.77 1.7

Parameters of our EOS models are collected in Table 1. The
basic EOS for the N phase, named PolN, is P = KN c2(nb/n1)γN ,
where n1 = 0.1 fm−3 and KN = 4.15 × 1012 erg cm−3, and
γN = 2.5. Construction of the EOS for the S-phase and of the
first order phase transition at P = P0 is based on Appendix A
of Zdunik et al. (2006). The transition point is the same for
all three EOSs, and is defined by P0 = 3.686 × 1034 erg cm−3,
nN = 0.25 fm−3, and ρN = 4.42 × 1014 g cm−3. The density jump
corresponding to the phase transition is defined by the param-
eters λ = ρS/ρN and λn = nS/nN, connected by the relation
λ = 1 + (λn − 1)(1 + P0/ρN c2). The S-phase EOS is a polytrope
with the parameters KS and γS . The non-rotating reference con-
figuration C0 has M = M0 = 1.38 M� and R = R0 = 15.2 km.
The phase transition in PolW1 is weak (λ < λcrit), while those in
PolS1 and PolS2 are strong (λ > λcrit).

In Fig. 5 we present the energy release as a function of
r̄S = rS/R(C), for several values of the angular momentum of the
metastable configurations C(J). As we see, the energy release
corresponding to a given value of r̄S depends rather strongly on
the total angular momentum. For example, the value of Erel at
r̄S = 0.41, for J = 1.0 GM2�/c, is twice that for J = 0 (nonrotat-
ing star). Moreover, the value of Erel for minimum r̄S (at fixed J)
is (nearly) independent of J. This reflects the independence
of Erel(δP = 0) from J.

In Fig. 6 we present the energy release as a function of
the overpressure of the metastable N phase in the center of
the metastable star C(Mb, J), for several values of J. The value
of Pnucl (or δP) can be determined from microscopic consid-
erations, combined with physical conditions prevailing at the
star center as well as with the evolution rate. Having deter-
mined Pnucl, we can determine the energy release, Erel, due to

Fig. 5. (Color online) The energy release due to the core-quake of a
rotating neutron star as a function of the dimensionless equatorial radius
of the S-phase core, r̄S . Calculations are performed for the EOS PolS1
from Table 1. Different curves correspond to the different values of the
total angular momentum of rotating star, fixed along each curve, J =
J̃ GM2

�/c = (0, 0.1, . . . , 1.3) × GM2
�/c, from the right-most curve to

the left-most curve.

the core-quake C(Mb, J) −→ C�(Mb, J), where the metastable
one-phase configuration, and the final two-phase configuration,
have the same values of the baryon mass Mb and total angular
momentum J.

As we see in Fig. 6, the energy release in a collapse of a ro-
tating star is nearly independent of the angular momentum of the
collapsing configuration, and depends exclusively on the degree
of metastability of the N phase at the stellar center (departure of
matter from chemical equilibrium), measured by the overpres-
sure δP. Consequently, to obtain the energy release associated
with a core-quake of a rotating neutron star, it is sufficient to
know the value of Erel for a non-rotating star of the same central
overpressure. More detailed analysis of the dependence of Erel
on the rotation of the star leads to the conclusions that although
this effect is very small (of the order of 1%) it is systematic, as
visualized in Fig. 7.

The configurations C(Mb, J) and C�(Mb, J), considered in
this section, are the fast rotating ones; those with largest J are
close to the Keplerian (mass shedding) limit. This is visualized
in Fig. 8, where we plot the oblateness of the star and the kinetic
to potential energy ratio. And still, in spite of the fast rotation
and high oblateness, the energy release is the same as in a non-
rotating star of the same initial central overpressure.

Thus, the remarkable independence of Erel from J, obtained
in Zdunik et al. (2007) for λ < λcrit, when the small-core approx-
imations were valid, holds also for λ > λcrit, where perturbative
arguments cannot be used.

3.2. Realistic EOS – an example

Here, we check the general validity of results obtained for a
polytropic EOS discussed in Sect. 3.1 by performing numerical
calculations for realistic EOSs with a strong first-order phase
transition. For the EOS of the crust we took the model of
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Fig. 6. (Color online) The energy release due to the mini-collapse of a
rotating neutron star as a function of the overpressure δP of the N phase
of the matter in the center of the star, for three EOSs from Table 1.
The bottom curve is calculated for the PolW EOS with a weak first-
order phase transition, so that Erel(0) = 0. The middle curve and the
top curve are for the PolS1 and PolS2 EOSs, respectively, with strong
first-order phase transitions. The points of different color correspond
to the different values of total angular momentum of the rotating star,
J = J̃ GM2

�/c = (0, 0.1, . . . , 1.3)×GM2
�/c. For a given EOS, results for

all rotating configurations can be very well approximated by a single
curve, independent of J.

Fig. 7. (Color online) The difference between the energy release due
to the mini-collapse of a rotating neutron star and a non-rotating one
as a function of the overpressure δP for the PolS1 EOS (the middle
curve in Fig. 6). The points of different color correspond to the different
values of total angular momentum of the rotating star, J = J̃ GM2�/c =
(0, 0.1, . . . , 1.3) × GM2�/c from bottom to top. Note the two orders of
magnitude difference in the scale of the vertical axis in this figure and
Fig. 6.

Fig. 8. Top panel: the ratio of polar radial coordinate to the equatorial
radial coordinate ratio. Bottom panel: the ratio of the kinetic energy,
T and the absolute value of the potential energy, W, for the reference
stellar configurations (central pressure P0, Table 1) consisting of the
N phase of dense matter, described by the polytropic EOS, PolN, of
Table 1. Large dots correspond to the values of the total stellar angular
momentum, J = J̃GM2

�/c = (0.1, . . . , 1.5) ×GM2
�/c, which were used

in Figs. 5, 6.

Douchin & Haensel (2001). The constituents of the N phase
of the core were neutrons, protons, electrons, and muons. The
nucleon component was described using the relativistic mean-
field model with scalar self-coupling constructed by Zimanyi
& Moszkowski (1990). The values of the meson-nucleon cou-
pling constants are gσ/mσ = 3.122 fm, gω/mω = 2.1954 fm,
gρ/mρ = 2.1888 fm. The dimensionless coefficients in the cubic
and quartic terms in scalar self-coupling are b = −6.418 × 10−3

and c = 2.968 × 10−3, respectively. As an example of the S-
phase we considered the kaon-condensed matter. We constructed
a specific dense matter model with a strong first-order N −→ S
transition implied by kaon condensation. Coupling of kaons to
nucleons is described by the model of Glendenning & Schaffner-
Bielich (1999), with U lin

K = −115 MeV. The resulting EOS is
shown in Fig. 9. The phase transition is the strong one, with
λ > λcrit (see the caption of Fig. 9). The EOS with kaon conden-
sation that we selected is an example of an EOS with a strong
first order phase transition. It was used to check our theory on
a concrete model of a dense exotic core and using a realistic
description of the neutron star crust. However, the true charac-
ter the phase transition if it occurs in neutron star cores (strong
or weak first order, or perhaps second order) cannot be reliably
predicted because of the uncertainties in the theory of matter at
supranuclear density (see, e.g., Zuo et al. (2004); Li et al. (2006)
and references therein).

In Fig. 10 we show the energy release due to the
C(Mb, J) −→ C�(Mb, J) transition, versus overpressure. The
values obtained for different values of J are marked with dif-
ferent colors and symbols. To an even better approximation than
for the polytropic models, all color points lie along the same
line. For a given overpressure δP, the energy release does not
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Fig. 9. EOS with first-order phase transition due to kaon condensation
described and used in Sect. 3.2. in the present paper. The phase transi-
tion occurs at P0 = 4.604 × 1034 erg cm−3. On the N-phase side, nN =
0.3375 fm−3 and ρN = 5.973 × 1014 g cm−3. On the kaon-condensed
S-side, nS = 0.6122 fm−3 and ρN = 1.125× 1015 g cm−3. Therefore, λ =
ρS/ρN = 1.884, which is greater than λcrit =

3
2 (1 + P0/ρN c2) = 1.629.

depend on J of collapsing metastable configuration. This prop-
erty holds for a broad range of of stellar angular momentum,
J = (0.1, . . . , 1.0) ×GM2�/c.

4. Decomposition of the energy release

As was already said, we restrict ourselves to the stationary, ax-
isymmetric states of rotating neutron stars. In the Newtonian the-
ory, the energy of a rigidly rotating axially symmetric star (body)
is easily decomposed into kinetic energy of rotation, T , and in-
ternal energy, U, which is the total energy of the star measured in
the stellar (body) reference system. The kinetic energy of rota-
tion is T = 1

2 JΩ = 1
2 IΩ2, where the moment of inertia I = J/Ω.

On the other hand, the total energy measured in “the laboratory
frame”, E, is related to U by U = E − JΩ. For a rigid rotation
U = E − 1

2 JΩ.
In general relativity, all kinds of energies sum to give the

stellar gravitational mass, M = E/c2, which is the source of the
space-time curvature. Therefore, the decomposition of Mc2 into
T and U is ambiguous. Here, we will use a standard Newtonian-
like formula, T = 1

2 JΩ, where both J and Ω are well defined
quantities (Friedman et al. 1986).

The transition C(Mb, J) −→ C�(Mb, J) is accompanied by
spin-up of the neutron star, and an increase of its kinetic en-
ergy. Our results show that while Erel is to a very good ap-
proximation independent of J, the kinetic energy increase ∆T ≡
(T�−T )Mb,J =

1
2 J(Ω�−Ω)Mb,J grows rapidly with J. This is seen

in Fig. 10. The contribution to the energy release resulting from
the decrease of the internal energy of the star will be denoted by
E(int)

rel . It is given by

E(int)
rel (δP, J) =

1
2

J(Ω� −Ω)Mb,J + Erel(δP). (2)

Therefore, the energy release in the star reference system is
greater than the total energy release measured by a distant ob-
server. The difference increases rapidly with J, see Fig. 10.

Fig. 10. (Color online) The total energy release, Erel, due to the collapse
of a rotating neutron star, implied by kaon condensation, as a function
of the metastability (overpressure) of the normal phase of the matter
in the center of the star for the EOS in Fig. 9. The points of different
color correspond to the different values of total angular momentum of
the rotating star. The results for all rotating configurations can be very
well approximated by one curve. Solid lines: kinetic energy increase,
∆T = T�−T , for fixed values of J = J̃GM2�/c = (0.1, . . . , 0.8)×GM2�/c.
The bottom line is for J̃ = 0.1, and top line for J̃ = 0.8. Note the
different definition of the sign of Erel = (M −M�)c2 and ∆T = T� − T .

5. Phase transition associated with overcoming
the energy barrier

In the case of a strong first-order phase transition, configurations
with Pcrit > Pc > P0 are not the only ones that are metastable
with respect to the N −→ S transition. In order to look for addi-
tional metastable N-phase configurations we plotted, in Fig. 11,
the vicinity of the reference configurationC0 in the Mb−R plane:
for Mb(C0) > Mb > Mb(C�min) we have three equilibrium config-
urations with a given Mb. Consider a triplet of equilibrium con-
figurations C1C�′1 C�1 . Two of them, C1 and C�1 , are stable (local
minimum of energy), and one, C�′1 , is unstable (local maximum
of energy). Notice that the N-phase configurations in the C0Cmin
segment are characterized by a negative overpressure (which
might then be called “underpressure”) δP = Pnucl/P0 − 1 < 0.

In Fig. 11 we indicated, with horizontal lines, several ex-
amples of transitions between equilibrium configurations with
the same Mb. To understand the nature of these transitions, we
plotted in Fig. 12 the energy release, Eq. (1), associated with a
transition between a pair of configurations, versus the negative
overpressure. We see that the functional dependence Erel(δP),
together with (a quite precise) independence from J, continue
smoothly into the region of negative δP. Notice that point A
in Fig. 12 corresponds to C0 −→ C�0 . As far as the transitions
C1 −→ C�′1 (segment BD in Fig. 12) are concerned, they are al-
ways associated with Erel < 0, i.e. to make them, the star should
gain (absorb) energy instead of releasing it. The necessary
energy input is B = |Erel|, and it reaches a maximum at point D,
corresponding to Cmin −→ C�min. Therefore, in order to get to C�′1
by forming a small S-phase core, the system has to overcome the
energy barrier. Then, configuration C�′1 (which is unstable) can
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Fig. 11. Three families of neutron stars in the Mb − Req plane and the
transition C1 −→ C�1 via overcoming the energy barrier.

Fig. 12. (Color online) Energy release, Eq. (1), versus overpressure
δP = (Pc − P0)/P0, for transitions C1 −→ C�1 and C1 −→ C�′1 visu-
alized in the Mb − R plane in Fig. 11. Points of different color corre-
spond to transitions with different angular momentum J = J̃GM2�/c2 =
(0, 0.1, . . . , 0.9) × GM2�/c2. Solid line – results for J = 0 (non-rotating
stars). Point A corresponds to C0 −→ C�0 . Point B corresponds to
C0 −→ C�′0 = C0, point D to Cmin −→ C�min, and point C to C2 −→ C�2 .

collapse into C�1 with a large core, and this collapse is associated
with an energy release. In this way the star reaches the global
minimum of M at fixed Mb. However, this is the case provided
the transition takes place above the horizontal line C2C�2 .

Thus, N-phase configurations in the C0C2 segment are
metastable with respect to the transition to large S-phase core
configuration in the C�0C�2 segment. However, such a transition
requires overcoming the energy barrier of height B. Consider a
specific example with δP = −0.02. Using Fig. 12, we see that
B ∼ 1049 erg while Erel = 3 × 1050 erg. Generally, for this
model of phase transition we have Erel � B for underpressures

δP > −0.03. The excitation energy, Eexc, contained in radial pul-
sations, scales as the square of relative amplitude δR/R. For the
fundamental mode, Eexc ≈ 1053(δR/R)2 erg. Therefore, Eexc ex-
ceeds 1049 erg as soon as δR/R > 0.01, a condition that is easy
to satisfy by an newly born neutron star.

However, a second obstacle for the collapse of the configu-
ration with a negative δP should be pointed out. Apart from the
energy condition allowing overcoming an energy barrier, there
is a timescale condition: there should be enough time to form
the S-phase core. This latter condition may be more difficult to
fulfill than the former one, particularly if there is a need to cre-
ate strangeness, as in kaon condensation or in the formation of
three-flavor u-d-s quark matter from a deconfined two-flavor (u-
d) state. Once again, favorable conditions for C1 −→ C�1 with
overcoming C�′1 could exist in a newborn neutron star. A neu-
tron star born in gravitational collapse not only pulsates, with a
pulsational energy much greater than B, but additionally a high
temperature ∼1011 K in the stellar core can allow for a rapid
nucleation of the S-phase.

6. Discussion and conclusions

The most important result of the present paper is that the total
energy release, associated with a strong first-order phase tran-
sition at the center of a rotating neutron star, depends only on
the overpressure at the center of the metastable configuration
and is nearly independent of the star rotation rate. This result
holds even for fast stellar rotation, when the star shape devi-
ates significantly from sphericity, and for overpressures as high
as (10–20)%. This property is of great practical importance. It
implies that the calculation of the energy release for a given
overpressure, requiring very high precision 2D calculations to
guarantee Mb = M�b , can be replaced by a simple calculation
of non-rotating spherical stars. The independence of the energy
release of the rotation should be treated as a result of numeri-
cal calculations and is subject to the numerical accuracy of the
stellar parameter determination. Strictly speaking our numerical
results indicate that, if the energy release depends on the rota-
tion, this dependence is extremely weak and the maximum de-
viation from the nonrotating value for a given overpressure is of
the order of 1%.

We studied the stability of configurations with a central pres-
sure below that for the equilibrium phase transition. If the initial
state of the neutron star is excited, e.g. it is pulsating, then the
formation of a large dense phase core is possible, but it requires
climbing over the energy barrier associated with formation of
a small core. The excitation energy has to be greater than the
height of the energy barrier. Additionally, if a phase transition is
connected with the change of strangeness per baryon, then the
temperature has to be high enough to make strangeness produc-
tion sufficiently rapid. Such conditions might be realized in the
cores of newly born neutron stars.

Note that the energy release Erel ∼ 1051−1052 erg is an ab-
solute upper bound on the energy that can be released as a result
of a phase transition at the star center. The energy ∆E can be
shared between, e.g., stellar pulsations, gravitational radiation,
heating of the stellar interior, X-ray emission from the neutron
star surface, and even a gamma-ray burst.
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