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9 Newtonian-like Equations of Motion

9.1 The 3PN acceleration and energy

We present the acceleration of one of the particles, say the particle 1, at the 3PN order, as well
a3 the 3PN energy of the binary, which is conserved in the absence of radiation reaction. To get
this result we used essentially a “direct” post-Newtonian method (issued from Ref. [36]), which
consists of reducing the 3PN metric of an extended regular source, worked out in Eqs. (113),
to the case where the matter tensor is made of deita functions, and then curing the self-field
divergences by means of the Hadamard regularization technique. The equations of motion are
simply the gecdesic equations associated with the regularized metric (see Ref. f34] for a proof).
The Hadarnard ambiguity parameter A is computed from dimensional regularization in Section 8.3.
We also add the 3.5PN terms which are known from Refs. (133, 134, 138, 171, 145, 161].

Though the successive post-Newtconian approximations are really a consequence of general
relativity, the final equations of motion must be interpreted in a Newtonian-like fashion. That is,
once a convenient, general-relativistic (Cartesian) coordinate system is chosen, we should express
the results in terms of the coordinate positions, velocities, and accelerations of the bodies, and view
the trajectories of the particles as taking place in the absolute Euclidean space of Newton. But
because the equations of motion are actually relativistic, they must

(i) stay manifestly invariant — at least in harmonic coordinates — when we perform a global
post-Newtonian-expanded Lorentz transformation,

(i) possess the correct “perturbative” limit, given by the geodesics of the (post-Newtonian-
expanded) Schwarzschild metric, when one of the masses tends to zero, and

(i) be conservative, i.e. to admit a Lagrangian or Hamiltonizan formulation, when the gravita-
tional radiation reaction is turned off.

We denote by 715 = |y1{¢) - y2{t)] the harmonic-coordinate distance between the two particles,
with y1 = (y1) and y; = (i), by niy = (¥ — ¥4)/r1» the corresponding unit direction, and by
v} = dy/dt and af = dv}/dt the coordinate velocity and acceleration of the particle 1 {and idem
for 2). Sometimes we pose vi, = v} — v} for the relative velocity. The usual Euclidean scalar
product of vectors is denoted with parentheses, e.g., (n12v1) = my2 - vi and (vivs) = vy - vy. The
equations of the body 2 are obtained by exchanging all the particle labels 1 « 2 {(remembering
that ni, and v}, change sign in this operation): '
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(168)

The 25PN and 3.5PN terms are associated with gravitational radiation reaction. The 3PN
harmonic-coordinates equations of motion depend on two arbitrary length scales v} and Ty as-
sociated with the Jogarithms present at the 3PN order3!. Tt has been proved in Ref. [33] that T
and rj are merely linked with the choice of coordinates — we can refer to ry and r} as “gange
constants”. In our approach [32, 33], the harmonic coordinate systemn is not uniquely fixed by the
coordinate condition 8,A%* = 0. In fact there are infinitely many harmonic coordinate systems

*1 Notice also the dependence upon 2. Technically, the 72 terms arise from non-linear interactions involving some

integrals such as

lfdsx _ a2
T rfr% T
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where the Newtonian trace-free quadrupole moment is Qi = my (yiy] — %6‘5 v+ 1 ¢ 2. We refer
to Iyer and Will [133, 134] for the discussion of the energy balance equation at the next 3.5PN
order. As we can see, the 3.5PN equations of motion ({168) are highly relativistic when describing
the motion, but concerning the radiation they are in fact 1PN, because they contain merely the
radiation: reaction force at the 2.5PN+3.5PN orders.

9.2 Lagrangian and Hamiltonian formulations

The conservative part of the equations of motion in harmonic coordinates (168) is derivable from a
generalized Lagrangian, depending not only on the positions and velocities of the bodies, but also
on their accelerations: aj = duf/dt and a} = dvi/dt. As shown by Damour and Deruelle [86], the
accelerations in the harmonic-coordinates Lagrangian occur already from the 2PN order. This fact
is in accordance with a general result of Martin and Sanz [155] that N-body equations of motion
cannot be derived from an ordinary Lagrangian beyond the 1PN level, provided that the gauge
conditions preserve the Lorentz invariance. Note that we can always arrange for the dependence of
the Lagrangian upon the accelerations to be linear, at the price of adding some so-called “multi-
zero” terms to the Lagrangian, which do not modify the equations of motion (see, e.g., Ref. [96]).
At the 3PN level, we find that the Lagrangian also depends on accelerations. It is notable that
these accelerations are sufficient — there is no need to include derivatives of accelerations. Note also
that the Lagrangian is not unique because we can always add to it a total time derivative dF/dt,
where ¥ depends on the positions and velocities, without changing the dynamics. We find [3]
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We have
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This expression is that of a physical observable F; however, it depends on the choice of a coordi-
nate systemi, as it involves the post-Newtonian parameter v defined from the harmonic-coordinate
separation r12. But the numerical value of E should not depend on the choice of a coordinate
system, so E must admit a frame-invariant expression, the same in all coordinate systems. To find
it we re-express £ with the help of a frequency-related parameter z instead of the post-Newtonian

parameter «v. Posing
Gmw\*? 1
T = ( 3 ) =0 (-(;;) s (190)

we readily obtain from Eq. (188) the expression of + in terms of z at 3PN order,

- v 65 2
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that we substitute back into Eq. (189), making all appropriate post-Newtonian re-expansions. As
a result, we gladly discover that the logarithms together with their associated gauge constant rj
have cancelled ont. Therefore, our result is
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For circular orbits one can check that there are no terms of order 27/2 in Eq. (192), so our result
for E is actually valid up to the 3.5PN order.

9.5 The innermost circular orbit (ICO)

Having in hand the circular-orbit energy, we define the innermost circular orbit (ICO) as the
minimum, when it exists, of the energy function E(z). Notice that we do not define the ICO as
a point of dynamical general-relativistic unstability. Hence, we prefer to call this point the ICO
rather than, strictly speaking, an innermost stable circular orbit or ISCO. A study of the dynamical
stability of circular binary orbits in the post-Newtonian approximation of general relativity can be
found in Ref. [501.

The previous definition of the ICO is motivated by our comparison with the resuits of numerical
relativity. Indeed we shall confront the prediction of the standard (Taylor-based) post-Newtonian
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Figure 1: Results for the binding energy Frco versus wico in the equal-mass case (v = 1/4). The
asterisk marks the result calculated by numerical relativity. The points indicated by 1PN, 2PN
and 3PN are computed from the minimum of Eq. {192), and correspond to irrotational binaries.
The points denoted by 1PN 2PNt and 3PN come from the minimum of the sum of
Egs. (192} and (201), and describe corotational binaries.

74



where ry = |x — y3] and ry = [x - y3]. When n > —3 and p > —3, this integral is perfectly
well-defined (recall that the finite part FP deals with the bound at infinity). When n < -3 or
p < 3, our basic ansatz is that we apply the definition of the Hadamard partie finde provided
by Eq. (124). Two examples of closed-form formulas that we get, which do not necessitate the
Hadamard partie finie, are {quadrupole case | = 2)
Fia [ i o y

Yy = 2 [l el 0],

(216)

(~2,-1) 5 [16 T12 188 WE: T12 4 |2 Tia 2
v, =yl 160, (re) JI88] e a8 e 4] e [2 (e _ 2]
=N Ls n(ro a5 UV s A T 5y, ) T3

We denote for example yfij) = yl(iy? {and r13 = rly1 — y2l); the constant rq is the one pertaining

to the finite-part process (see Eq. (36)). One example where the integral diverges at the location

of the particle 1 is
(3.0) 3 16 {ij

e |2 (B bl P CH) 217

Y [ in (?‘o) + 15} Yy, (217)

where s; is the Hadamard-regularization constant introduced in Eq. (124)%7.

‘The crucial input of the computation of the flux at the 3PN order is the mass quadrupole
moment I;;, since this moment necessitates the full 3PN precision. The result of Ref. [37] for this
moment (in the case of circular orbits) is

3 2,2
g 43 G*m*v 1
Lj=p (A%) B a i b I(Wj)) +0 (gf) , (218)

where we pose z; = 2° = y}; and v; = v* = o},. The third term is the 2.5PN radiation-reaction
term, which does not contribute to the energy flux for circular orbits. The two important coeffi-
clents are A and B, whose expressions through 3PN order are
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These expressions are valid in harmonic coordinates via the post-Newtonian parameter -y given by
Eq. {186). As we see, there are two types of logarithms in the moment: One type invoives the length
scale rg related by Fq. (183) to the two gauge constants | and 7% present in the 3PN equations

3TWhen computing the gravitational wave flux in Ref. [37) we preferred to call the Hadamard-regularization
constants u; and us, in order to distinguish them from the constants s; and s7 that were used in our previous
computation of the equations of motion in Ref. [33]. Indeed these regularization constants need not neccessarily to
be the same when employed in different contexts. .
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Let us give the two basic technical formulas needed when carrying out this reduction:

+oo 1
/ d'rln*re””x—;(C’—ﬁ-lna))
’ (226)

+co o 1 'JT?‘ .
[ dfrln‘fe_”=g F—F(C’-&-lnrf)‘ ,
5]

where 0 € C and € = 0.577- - denotes the Euler constant [122]. The tail integrals are evaluated
thanks to these formulas for a fired (non-decaying) circular orbit. Indeed it can be shown [42] that
the “remote-past” contribution to the tail integrals is negligible; the errors due to the fact that the
orbit actually spirals in by gravitational radiation do not affect the signal before the 4PN order.
We then find, for the quadratic tail term stricto sensu, the 1.5PN, 2.5PN and 3.5PN amounts®®

5
32c {4mg - ( 25663 125 )mf’ /oy (90205 505747 12809V2) T2

e 672 8 576 512 © " 756

+O (Cis)} . (227)

For the sum of squared tails and cubic tails of tails at 3PN, we get

32¢% ¢ . 116761 16 1712 172 T12 856
Empseaean = 7 { (g + 50 ge + g (72) - g w6

+0 (Elg)} : ' (228)

By comparing Eqs. (223) and {228) we observe that the constants rq cleanly cancel out. Adding
together all these contributions we obtain
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The gauge constant rj has not yet disappeared because the post-Newtonian expansion is still
parametrized by v instead of the frequency-related parameter z defined by Eq. (190) - just as for
E when it was given by Eq. (189). After substituting the expression «y(z) given by Eq. (191), we
find that ry does cancel as well. Because the relation (x) is issued from the equations of motion,

¢ the latter cancellation represents an interesting test of the consistency of the two computations, in

harmonic coordinates, of the 3PN multipole moments and the 3PN equations of motion. At long
last we obtain our end result:

gag‘FN —> = gs{hf(_l?ﬂ 35)w+4w i (44711+?—231y+65 )zz

5G 336 12 9072 ' 504 18

¥ All formulas incorporate the changes in some equations following the published Errata {2005) to the works [17,
20, 37, 35, 5.

84



8191 583 \ .

N ( 672 24 ”) e
6643739510 16 , 1712 , 856
60854400 © 3 105~ 105

(_134543 41 ) 94403 , 7751}3} 3

n{16 )

_"

16285 | 214745 193385 ,\ 1. 1
— — 1. 2
+( co1 T 725 T om v)?rx + O 3 (230)

7176 48" )Y 7 3024 Y T 334

In the test-mass limit » — O for one of the bodies, we recover exactly the result following from
linear black-hole perturbations obtained by Tagoshi and Sasaki [202]. In particular, the rational
fraction 6643739519/69854400 comes out exactly the same as in black-hole periurbations. On the
other hand, the ambiguity parameters A and # are part of the rational fraction —134543/7776,
belonging to the coefficient of the term at 3PN order proportional to v (hence this coefficient
cannot be computed by linear black hole perturbations)?°.

10.3 Orbital phase evolution

We shall now deduce the laws of variation with time of the orbital frequency and phase of an
inspiralling compact binary from the energy balance equation (214). The center-of-mass energy E
is given by Eq. (192) and the total flux £ by Eq. {230}. For convenience we adopt the dimensionless

time variable®!

v

so e — 1), (231)

where t. denotes the instant of coalescence, at which the frequency $ends to infinity (evidently, the
post-Newtonian method breaks down well before this point). We transform the balance equation
into an ordinary differential equation for the parameter =, which is immediately integrated with
the result
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- - ) 232
- ( 133520640 _ 143360 3870720 ) T O3 (232)

The orbital phase is defined as the angle ¢, oriented in the sense of the motion, between the
separation of the two bodies and the direction of the ascending node A within the plane of the
sky, namely the point on the orbit at which the bodies cross the plane of the sky moving toward

“Generalizing the Aux formula {230) fo point masses moving on quasi elliptic orbits dates back from the work
of Peters and Mathews [175] at Newtonian order. The result was obtained in [214, 41} at 1PN order, and then
further extended by Gopakumar and Iyer {119] up to 2PN order using an explicit quasi-Keplerian representation of
the metion [97, 194]. No complete result at 3PN order is vet available.

41Notice the “strange” post-Newtonian order of this time variable: @ = O(c+8).



the detector. We have d¢/dt = w, which translates, with our notastion, into d¢/d© = —5/v - £/,
from which we determine
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where O is a constant of integration that can be fixed by the initial conditions when the wave
frequency enters the detector’s bandwidth. Finally we want also to dispose of the important
expression of the phase in terms of the frequency z. For this we get
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where zo is another constant of integration. With the formula (234) the orbital phase is complete
up to the 3.5PN order. The effects due to the spins of the particles, i.e. the spin-orbit {SO)
coupling arising at the 1.5PN order for maximally rotating compact bodies and the spin-spin (SS)
coupling at the 2PN order, can be added if necessary; they are known up to the 2.5PN order
included {143, 141, 165, 201, 109, 24]. On the other hand, the contribution of the quadrupole
moments of the compact objects, which are induced by tidal effects, is expected to come only at
the 58PN order [see Eq. (8)].

As a rough estimate of the relative importance of the various post-Newtonian terms, let us give
in Table 2 their contributions to the accumulated number of gravitational-wave cycles N in the
bandwidth of the LIGO and VIRGO detectors (see also Table I in Ref. [30] for the contributions
of the SO and SS effects). Note that such an estimate is only indicative, because a full treatment
would require the knowledge of the detector’s power spectral density of noise, and a complete
simulation of the parameter estimation using matched filtering [80, 181, 149]. We define A by

N = %[d)ESCO - qbseismic] . (235)

The frequency of the signal at the entrance of the bandwidth is the seismic cut-off frequency foeismic
of ground-based detectors; the terminal frequency fisco is assumed for simplicity’s sake to be given
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|| 2% 1.4Mg | 10Mg -+ 1.4Mg | 2 x 10Mg .

Newtonian order 16031 3576 602
1PN 441 213 59
1.5PN (dominant tail} ~211 —181 —51
2PN 9.9 9.8 41
2.5PN -11.7 -20.0 —7.1
3PN 2.6 2.3 2.2
35PN -90.9 -1.8 —0.8

Table 2: Contributions of post-Newtonian orders to the accumulated number of gravitational-wave
cycles A [defined by (235)] in the bandwidth of VIRGO and LIGO detectors. Neuiron stars have
mass 1.4My, and black holes 10 M. The entry frequency is feeismic = 10 Hz, and the terminal
frequency is fisco = ¢2/(6%%x Gm).

by the Schwarzschild innermost stable circular orbit. Here f = % = 2 is the signal frequency at
the dominant harmonics (twice the orbital frequency). As we see in Table 2, with the 3PN or
3.59PN approximations we reach an acceptable level of, say, a few cycles, that roughly corresponds
to the demand which was made by data-analysists in ihe case of neutron-star binaries [78, 79, 80,
180, 59, 60]. Indeed, the above estimation suggests that the neglected 4PN terms will yield some
systematic errors that are, at most, of the same order of magnitude, i.e. a few cycles, and perhaps
much less {see also the discussion in Section 9.6).

10.4 The two polarization wave-forms

The theoretical templates of the compact binary inspiral follow from insertion of the previous
solutions for the 3.5PN-accurate orbital frequency and phase into the binary’s two polarization
wave-forms hy and h,. We shall include in ko and k. zll the harmonics, besides the dominant one
at twice the orbital frequency, up to the 2.5PN order, as they have been calculated in Refs. {38, 5].
The polarization wave-forms are defined with respect to two polarization vectors p = (p;) and
q = (g):

TT

hy = z(pip; — qigz )by

(SRR

(236)
1
ho = 5 (pigy + pig)hy

where p and g are chosen to lie along the major and minor axis, respectively, of the projection
onto the plane of the sky of the circular orbit, with p oriented toward the ascending node &, To
the 2PN order we have

2G T
X T TR

. . . : 1
(B0 4 202 o) 4 2 s 2 a2 0 (5))
(237)

The post-Newtonian terms are ordered by means of the frequency-related variable z. They depend
on the binary’s 3.5PN-accurate phase ¢ through the auxiliary phase variable

W= QGI:I(" In (ﬁ) ; (238)
[

=]
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where M = m [1 —vy/2+ O (1/c*}] is the ADM mass [cf. Eq. (225)], and where wy is a constant
frequency that can conveniently be chosen to be the entry frequency of a laser-interferometric
detector (say wg/m = 10Hz). For the plus polarization we have®?

Hio} = —(1 + ¢) cos 29,

HY? = ﬁ%%m [(5 +¢) costb — 9(1 + c7) cos Sw} )
HE) — é [19 +9¢2 - 2ct — (19 — 11¢? — ﬁcf)} cos 2 — §sf(1 +e2)(1 — 3v) cos 4,

(3/2)  5i bm 2 _ 90040 — 1262 — o
oy __192m{{57-+~60cz c; — 2v(49 c; —¢;)lcosy

- 322 [73 +40cf — 9c} — 2w(25 - 8¢} - 903)] cos 3¢

2
+ §—5(1 —20)s3{1 + 2) cos 5@:’)} —27(1 + ¢2) cos 24,

120 [22 +396¢; + 145¢f — 5 + §V{7O6 — 216c; ~ 251c! + 15c8)

—502(98 — 108¢? + 7ct + 50?)} cos 24

125 {59 +35¢7 — 8¢t — gv(l?)l + 59¢7 — 24¢f) + 507(21 — 3¢2 — 8c¢H)| cos 4y
81 i

f@(l ~ 5+ Br?)st{1 4 ¢2) cos by

+;—66—m{ {11 +7e +10(5 + ) In 2] sing — 5m(5 + ¢} cos

- 27 [7 — 10111(3/2)] (14 ¢f)sin 3¢ + 1357(1 + %) cos 31,1:}. {239)

For the cross polarization,

H(O) —2¢; 8in 249,

)
Hilm = “gSiC«;"g [siny — 3sin 3y},

, » 8
HY = % 17— def = v(13 = 126}) | sin 29 ~ (4 — 3v)eis sin d),

“2We neglect the non-linear memory (DC) term present in the Newtonian plus polarization H(D) See Wiseman
and Wili [219] and Arun e al. 5] for the computation of this term.
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