

Institut Henri Poincaré

The Gravity Probe B Relativity Mission

John Mester Stanford University

- Marshall Space Flight Center Tony Lyons PM, Rex Geveden
- Stanford University C.W.F. Everitt PI, GP-B team
- Lockheed Martin GP-B team
- Science Advisory Committee *Clifford Will chair*
- Harvard Smithsonian Irwin Shapiro
- JPL John Anderson
- York University Norbert Bartell
- Purdue University Steve Collicot
- San Francisco State Jim Lockhart
- National University of Ireland Susan M.P. McKenna-Lawlor
- University of Aberdeen Mike Player

GP-B Collaboration

NASA Center Management

Development, Science Instrument, Management Mission Operations, Data Analysis Probe, Dewar, Satellite, Flight Software

Guide Star and Star Proper Motion Studies

Independent Science Analysis

Guide Star and Star Proper Motion Studies

Helium Ullage Behaviour

Gyroscope Read-out Topics

Proton Monitor

High Precision Homogeneity Measurement of Quartz

STANFORD UNIVERSITY

Launch: April 20, 2004 – 09:57:24

univer Boeing & Luck -- A Near Perfect Orbit

One Month of orbit trim operations planned, none needed

Page 5

The Overall Space Vehicle

STANFORD

UNIVERSITY

- Redundant spacecraft processors, transponders.
- ▲ 16 Helium gas thrusters, 0-10 mN ea, for fine 6 DOF control.
- ♠ Roll star sensors for fine pointing.
- Magnetometers for coarse attitude determination.
- Tertiary sun sensors for very coarse attitude determination.
- Magnetic torque rods for coarse orientation control.
- Mass trim to tune moments of inertia.
- Dual transponders for TDRSS and ground station communications.
- Stanford-modified GPS receiver for precise orbit information.
- ♦ 70 A-Hr batteries, solar arrays operating perfectly.

Fundamental GP-B Requirement

Gyro Newtonian Drift Rates ≤ GR Effects Under Test

GR effects manifest w/o modeling or subtraction of Gyro Newtonian effects

Achieved by controlling "near zeros"

STANFORD UNIVERSITY

- rotor inhomogeneities
- "drag-free" 2)
- 3) rotor asphericity
- 4) magnetic field
 - 5) pressure
- 6) electric charge

GP-B: The Main Systems

Gyroscope

Telescope

Science Instrument

GP-B Experimental Design I

 Gyro suspension system keeps the gyro at the center of the housing by servo-controlled electrostatic forces applied to a set of 6 electrodes

STANFORD

INIVERSITY

- Gyro is spun up to ~80 Hz with helium gas
- London magnetic moment is aligned with gyro spin axis and measured by superconducting quantum interference device
- Science instrument assembly is placed in a non-magnetic vacuum probe, which is then placed in a dewar filled with superfluid helium

 Spin axes of four gyros are initially aligned with a guide star, IM Pegasi a reference in inertial space

STANFORD

INIVERSITY

- A telescope keeps tracking the guide star
- Long term drift in the spin axis orientation of the gyros is measured relative to inertial space
- GP-B spacecraft rolls at a period of 77.5 s and runs in a near-polar, near-circular orbit at an altitude of ~640 km

STANFORD UNIVERSITY

Probe during assembly

Dewar and Probe

- Dewar boiloff gas used for attitude and translation control of vehicle
 - ATC back pressure controls dewar temperature.
 - Porous plus phase separator allows Helium gas to flow from dewar.
- Dewar temperature of 1.82 K keeps science instrument temperature stable.
- Lifetime 17.3 months, 16 month requirement

• Largest flight dewar: 2524 liters.

The Science Gyroscopes

Material: Fused quartz, homogeneous to a few parts in 10⁷

- Coated with Niobium
- ▶ Diameter: 38 mm.
- Electrostatically suspended.
- Spherical to 10 nm minimizes suspension torques.
- Mass unbalance: 10 nm minimizes forcing torques.
- All four units operational on orbit.

Demonstrated performance:

- Spin speed: 60 80 Hz.
- 1 µHz/hr spin-down.

If a GP-B rotor was scaled to the size of the Earth, the largest peak-to-valley elevation change would be only 2 meters!

Asphericity: Near Zero – Making

• Self-aligning laps

STANFORD UNIVERSITY

- Uniform rotation-rate, pressure
- 6 combinations of directions, reversed
 2 & 2 every 6 seconds
- Continuous-feed lapping compound
- Controlled pH
- Interested, skilled operators!

stane yro Asphericity Ground Verification

-Y PROJECTION +Y PROJECTION × × 71.cof: 11/15/94. All L, 2=< L =< 16. -0.18mi -0.09mi 0.01mi -0.27mi 0.10mi 0.18mi 0.29mi 0.38mi -0.36 microinches Max: 0.38 microinches

Talyrond sphericity measurement resolution ~1 nm

GP-B Gyro On-Orbit Initial Liftoff

Initial Gyro Levitation and De-levitation using analog backup system

STANFORD

UNIVERSITY

Page 16

UNIVERSITY Position Measurement Performance

Representative gyro position trace showing non dragfree gravity gradient effects in Science Mission Mode

Measurement noise 0.45 nm rms

Noise floor

Near-Zero: Ultra-low Pressure (after spoiling with helium)

Gyro spin-up: He gas at 7K thru channel)

Final spin speeds

Gyro1	79.4 Hz
Gyro2	61.8 Hz
Gyro3	82.1 Hz
Gyro4	64.9 Hz

Gyro spindown periods on-orbit (years)

	before bakeout	after
Gyro1	~ 50	15,800
Gyro2	~ 40	13,400
Gyro3	~ 40	7,000
Gyro4	~ 40	25,700

The Cryopump: 230 m² area

Demonstrated performance: Pressure < 2 x 10⁻⁹ Pa (1.5 x 10⁻¹¹ Torr)

2300 yr requirement

Establishing Initial Conditions: Spin Axis Alignment

STANFORD UNIVERSITY

Demonstrated performance: final alignment to within 10 arc-sec of goal.

- Residual suspension torques on rotor shape used to effect alignment.
- Provides an early calibration of a primary error source – found to be 20% of pre-launch predicts!

- Rotor charge controlled via UV excited electron exchange with dedicated electrode.
- Charge rates ~ 0.1 mV/day
- Continuous measurement at the 0.1 mV level; control requirement: 15 mV

Discharge of Gyro1

Ti Steering Electrode

UV Lamp Assembly

GP-B Drag-Free & Attitude Control: A 9 degree of freedom problem

Satellite actively controls 9 interacting DOF:

3 in attitude of spacecraft to track guide star & maintain roll phase3 in translation: drag-free about geometric center of gyro housing3 in translation of gyroscope with respect to housing

Dynamics coupling is complex

STANFORD

UNIVERSITY

STANFORD UNIVERSITY

Flight Proportional Thruster Design

Propellant: Helium Dewar Boiloff Supply: 5 to 17.5 torr

Re ~10 – Laminar flow!

- Thrust: 0 10 mN
- I_{SP}: 130 sec
- Mdot: 6-7 mg·s⁻¹
- Noise: 25 µN·Hz^{-1/2}
- Operates under choked flow conditions
- Pressure FB makes thrust independent of temperature

Location of thrusters on Space Vehicle

Drags Free Control: Near Zero Acceleration Environment

On Orbit Performance -

Cross track drag free performance better than $4x10^{-12}$ g 0.01mHz to 0.1 Hz

The London Moment Readout

- Centering stability < 50 nm ٠
- DC trapped flux 10^{-6} gauss AC shielding > 10^{12} 1marcsec ~ 10^{-13} gauss ٠

STANFORD UNIVERSITY

$$M_L = -\frac{2mc}{c}\omega_s = -1.14 \times 10^{-7}\omega_s \quad \text{(Gauss)}$$

Page 24

STANFORD Near Zero: Ultra-low Magnetic Field

- Magnetic fields are kept from gyroscopes and SQUIDs using a superconducting lead (Pb) bag
 - Mag flux = field x area.
 - Successive expansions of four folded superconducting bags give stable field levels at ~ 10⁻⁷ G.
- AC shielding at 10⁻¹² [=120 dB!] from a combination of cryoperm, lead bag, local superconducting shields & symmetry.

ead bag in Dewar

On Orbit Performance Met Requirements Trapped field: Gyro 1 3.0 MicroGauss Gyro 2 1.3 MicroGauss Gyro 3 0.8 MicroGauss Gyro 4 0.2 MicroGauss

Guide Star & Telescope

Selection Proper Motion Measurement Telescope Design Tracking Verification

Guide Star Selection

Palomar star map

Criteria:

- Sufficiently close to equatorial plane for maximum frame dragging signal
- Optically bright enough to meet the pointing requirement.
- Be a radio star to allow VLBI proper motion measurement

Star Tracker Concept

Some dimensions

0.22 m

Physical longth

BASE SUPPORT TUBE	BEAM SPLITTER ASSEMBLY	Focal lengthApertureAt focal planImage dia.0.1 marc-s	0.33 m 3.81 m <u>0.14 m</u> <u>ne</u> 50 μm 0.18 nm
QUARTZ BLOCK INTERFACE	SECONDARY CORRECTOR PLATE		

Page 29

Star Tracking Telescope

Detector Package

- Field of View: ±60 arc-sec.
- Measurement noise: ~ 34 marc-s/ \sqrt{Hz}
- All-quartz construction.
- Cryogenic temperatures make a very stable mechanical system.

Physical length	0.33 m	<u>At focal plane:</u>	
Focal length	3.81 m	Image diameter	50 µm
Aperture	0.14 m	0.1 marc-s =	0.18 nm

Telescope in Probe

Acquiring Star Drive-in time ~ 110 s RMS pointing ~ 90 marc-s

Page 33

Guide Star Verification

Acquisition of proper star verified by:

- Neighbor star visits
- Photometry comparisons with ground based measurements

Over 1 year of observations, IM Peg has become one of the most observed stars in the heavens

Comparison of ground and flight photometry

IM Peg (HR 8703) Guide Star Identification UNIVERSITY

STANFORD

NhS1 (acquired)

HR Peg (acquired

Guide Star

- Optical & radio binary star
- Magnitude 5.7 (variable)
- Declination 16.84 deg
- Proper motion measured by SÁO using VLBI

Very Large Array, Socorro, New Mexico

On-Orbit: GP-B Mission Operations

Anomaly Room

Mission Operations Center

GP-B Communications, Commands, and Telemetry

GP-B science signal 12.9 mHz

• TDRSS Network

- 20-40 minutes/contact
- ~ 12 contacts per day
- 1-2 Kbits/sec data rate

• Ground Stations

- 10-12 minutes/contact
- 4 contacts per day
- 32 Kbits/sec data rate

• 1.5 Tbytes/year

TDRSS Satellite

GP-B Satellite

Ground Station

STANFORD UNIVERSITY Dither & Aberration: Two Useful Tools Dither -- Slow 30 marc-s oscillations injected into pointing system scale factors matched for accurate subtraction <u>Aberration (Bradley 1729)</u> -- Nature's calibrating signal for gyro readout Orbital motion > varying apparent position of star $(V_{orbit}/C + special relativity correction)$ Earth around Sun -- 20.4958 arc-s @ 1 year period rth-South Aberration (arcsec) S/V around Earth -- 5.1856 arc-s @ 97.5 min period Continuous accurate calibration of GP-B experiment

Fast_West Aberration

Built-In Checks

- Structure of Data
 - Predicted GR results:
 - Orbital aberration:
 - Annual aberration:
 - Gravitational deflection of light:
 - Parallax:
- Scaling Verifications
 - Magnitudes & planar relations of effects known
- Robustness further confirmed by agreement with
 - Multiple data analysis approaches.
 - Gyro-to-gyro direct comparisons.

6614.4 marc-sec Geodetic 40.9 marc-sec Frame-dragging

5185.6 marc-sec 20495.8 marc-sec 21.12 marc-sec peak (11 Mar 2005) ~ 10 marc-sec

Closest approach 16 degrees

The GP-B Mission Timeline

- A. Initial orbit checkout (121 days) Completed Aug. 2004
 - ATC setup
 - Gyro spin-up
 - Re-verification of ground calibrations [scale factors, tempco's etc.]
 - Disturbance measurements on gyros at low spin speed
 - ~10000 separate commands, virtual 24 hour contact thru GSN and TDRSS
- B. Science Phase (350 days) Completed Aug. 2005
 - Exploiting the built-in checks
 - Completed approximately July 2005
- C. Post-experiment tests (56 days) Completed Sept. 29 2005
 - Refined calibrations through deliberate enhancement of disturbances, etc.

stanfore he Final Phase of the GP-B Mission

- Data Ground Analysis
 - Anticipated completion April 2007
 - ~ 1.5 Terabyte sof data
 - ~ 700 sensors
 - ~ 10,000 monitors
 - Nominal data rate: 0.1-1 Hz
 - Snapshots: 220-2200 Hz
 - > 99% data recovery

Data release on COBE/WMAP model

 All data released to public coinciding with publication of refereed papers