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The authors present a simplified model of helium synthesis in the early universe. The purpose of the mod-
el is to explain clearly the physical ideas relevant to the cosmological helium synthesis in a manner that
does not overlay these ideas with complex computer calculations. The model closely follows the standard
calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. The tempera-
ture difference between photons and neutrinos during the period in which neutrons and protons intercon-
vert is also neglected. These approximations permit the expression of neutron-proton conversion rates in
a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expres-
sions for the rates, the authors reduce the calculation of the neutron-proton ratio as a function of tempera-
ture to a simple numerical integral. They also estimate the effect of neutron decay on the helium abun-
dance. Their result for this quantity agrees well with precise computer calculations. Their semianalytic
formulas are used to determine how the predicted helium abundance varies with such parameters as the
neutron lifetime, the baryon-to-photon ratio, the number of neutrino species, and a possible electron-

neutrino chemical potential.
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I. INTRODUCTION

In the early 1950s George Gamow and his collabora-
tors, Ralph Alpher and Robert Herman, inaugurated the
study of physical processes in the early universe, includ-
ing the origin of light elements such as helium and deu-
terium. The essential idea was that, given an initial equi-
librium concentration of neutrons and protons, they

would fuse into deuterium as soon as the ambient tem-

perature of the universe dropped substantially below the
binding energy of the deuteron. Once deuterium was
formed it would rapidly enter into a chain of nuclear re-
actions that would ultimately produce the other ele-
ments. The original notion was to build up all the ele-
ments, light and heavy, by a series of captures and de-
cays. It was soon realized, however, that this scheme
would not work to produce the heavy elements, since
there is no stable mass-five nucleus and the Coulomb bar-
riers block element formation as the temperature falls.
Hence the emphasis became focused on increasingly de-
tailed calculations of light-element formation and, in par-
ticular, the formation of helium. The amount of deuteri-
um, and hence helium, formed was governed by the

*Permanent address.
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neutron-to-proton ratio at the time corresponding to the
capture temperature at which the deuterium could be
formed. Any neutrons available at that time would be
conscripted into this activity. The first attempt to calcu-
late the n /p ratio at the capture temperature was made
by Alpher and Herman (1950). In making this estimate
they assumed that the only effect causing the depletion of
neutrons was their instability against beta decay. This, as
we shall see, and as was first pointed out by Hayashi
(1950), is a relatively small effect. The major effect in the
interconversion of neutrons and protons in the inelastic
scattering of neutrinos from nucleons, reactions such as
v, +n-—e” +p. Hayashi found that the n /p ratio at the
capture temperature was about 0.25. This is to be com-
pared to the modern estimate, which we shall derive, of
about 0.12. In 1953 Alpher, Follin, and Herman redid
Hayashi’s calculation in greater detail. They analyzed
how the result depended on the neutron lifetime and
found answers that varied between 0.22 and 0.17, de-
pending on what they took for the lifetime. As we shall
explain in detail, the longer the lifetime, the larger the ra-
tio. This calculation was done prior to the development
of the modern theory of weak interactions, and Alpher
et al. took “for lack of a better estimate” unity for the
matrix element for the inelastic scattering. In the present
weak-interaction theories this constant, which is of order
unity, can be computed from the theory.! That was in

10ne feature of these early calculations was that they involved
Dirac neutrinos. This doubled the number of neutrino states.
This does not, however, affect the final answer, since the factor
of 2 is compensated in the relation between the effective weak
coupling constants and the neutron mean life.
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fact done by Hoyle and Tayler (1964), Peebles (1966), and
Wagoner, Fowler, and Hoyle (1967). We shall not dis-
cuss these results in detail here, except to note that since,
for helium production, these independent calculations
give nearly the same answers, we have, for convenience,
made our numerical comparisons to the results given by
Peebles (1966), after having corrected his results for
modern improvements in such experimental data as the
neutron lifetime and the number of neutrino types.

It is probably fair to say that this work, when it was
first done, was primarily of interest to a relatively small
community of dstrophysicists and cosmologists—then
also a relatively small community. What broadened the
interest was the gradual realization that the early
universe in general, and the helium production in partic-
ular, was such a good probe of some aspects of particle
physics. Of special interest to us is the use of the ob-
served helium abundance in the universe by weight, some
25%, to set limits on the number of neutrino types. The
fact that these limits seem to be confirmed in terrestrial
laboratories—notably by the study of the width of the Z°
boson—has made the theory of helium production in the
early universe of wide general concern to a large com-
munity of physicists.

The first suggestion that the presence of various exotic
particles in the early universe could change the amount
of primordial helium produced seems to be due to
Shvartsman (1969). He did not comment, however, on
the use of the observed production ratio to limit the num-
bers of such particles and to limit the number of neutrino
types in particular. That step was taken, at least qualita-
tively, by Peebles (1971). In the chapter of his book
Physical Cosmology devoted to early universe helium pro-
duction, Peebles observed that adding additional types of
neutrinos beyond the electron and muon neutrinos, the
only ones known at the time he wrote the book, would in-
crease the expansion rate of the universe and hence—as
we shall later explain in detail—the n/p ratio. He
remarked that ‘“extra classes of neutrinos could only
cause trouble for the model.” This qualitative observa-
tion was made quantitative in the paper of Steigman
et al. (1977). Given the uncertainties that then existed in
the observed helium abundance, these authors were only

able to set an upper limit of seven types. Since that time, .

a vast amount of work has gone into refining both the ex-
perimental and theoretical results. [See Cline et al.
(1987) for a recent review and for the connection between
these limits and the ones being derived from the Z° ex-
periments.] From these results one can conclude that at
most four flavors of neutrinos exist. This result is con-
sistent with the Z° experiments. 2

2The conclusion about the number of neutrino types assumes
that there is no significant lepton chemical potential. This
amounts to assuming that the difference between the number of
neutrinos and antineutrinos of any flavor is small compared to
their sum. The consequences of relaxing this assumption have
been discussed by various authors. See, e.g., Dimopoulos and
Feinberg (1979) and our later discussion.
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The work that we have described contains some of the
most quantitatively accurate results in all of cosmology.
As impressive as this work is, there is something about it
that a physicist finds somewhat unsatisfying. While it is
possible to give a simple equilibrium theory of helium
production [see Peebles (1971) or Weinberg (1972) for
nice presentations], this theory has only a very limited
accuracy, since the particles do not remain in thermal
equilibrium during the regime of interest. To go beyond
the equilibrium theory has required the use of elaborate
computer codes, giving the subject a kind of black box
character. This point was made by Weinberg (1972)
when he wrote, “Unfortunately, if we want to describe
the behavior of T'(¢) and R (¢) throughout the whole his-
tory of the universe, we have to do a numerical calcula-
tion.” It seems to us therefore useful and instructive to
present a version of the theory of helium production that
would be both substantially more accurate than the equi-
librium theory and would have an intuitive appeal to a
physicist. As the reader will learn, our results agree to
within a few percent with those generated by computer
code, indicating that we have managed to isolate the
essential physics; the details can be worked out using any
pocket calculator that can perform one-dimensional nu-
merical integrals.

In rough outline, the formation of the primordial heli-
um occurs through the following series of events. At ear-
ly times when the temperature of the universe, T, was on
the order® of 100 MeV, the energy and number density
were dominated by relativistic and therefore effectively
massless particles: leptons (electrons, positrons, and neu-
trinos) and photons. At this early time, the smattering of
neutrons and protons (with number fraction ~1077)
contributed very little to the total energy density. All of
the particles were kept in thermal equilibrium by their
rapid collisions. The interactions of the neutrons and
protons with the leptons,

v,+tnepte” (1.1a)

et+nop+v,, (1.1b)
and

n<p+te +v,, (1.1c)

also kept these baryons in chemical equilibrium. It is
usually assumed that all of the leptons have a vanishing
chemical potential, which means that the total numbers
of particles and antiparticles were equal (except that the
electrons have a very small chemical potential, so that
they, together with the protons, maintain electrical
charge neutrality). Under this assumption, the ratio of

3At temperatures somewhat in excess of 100 MeV, there was,
presumably, a phase transition to a plasma of massless gluons
and essentially massless quarks. Recently there has been some
discussion of the effects on the primordial nucleosynthesis
brought about by fluctuations in the quark-gluon phase transi-
tion. See, for example, Alcock er al. (1987) and Applegate
et al. (1987). We do not consider such effects here.
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the neutron to proton number densities at such early
times is given by the simple Boltzmann factor

n,(T)
n,(T)

—Am
T

exp

_ (1.2)

where Am is the neutron-proton mass difference,
Am =m,—m,~1.29 MeV . (1.3)

At the initial temperature of 100 MeV, the neutron-
proton ratio is very close to unity. It proves convenient
to express the ratio as the number of neutrons to the total
number of baryons,

X(T)= 7 T) (1.4)
(D) +n,(T) '
So long as chemical equilibrium is maintained,
_ _ 1
X(T)—Xeq(T)—W . (1.5)

As we shall see in Sec. III, the helium production
occurs when the age of the universe, ¢, is about 180 sec.
Since this is a time that is short in comparison with the
mean life of the neutron 7=896+16 sec, it is a good first
approximation to neglect the neutron decay process (and
its reverse) displayed in Eq. (1.1c). This omission will be
corrected in Sec. III. Now, as the universe expands and
cools, the chemical equilibrium for the baryons is broken
because the neutrino interactions are too weak to enforce
it and, with the neglect of the neutron decay, the fraction
of neutrons to baryons approaches a constant and non-
vanishing value X (T ~0).

To see how this happens we first calculate the expan-
sion rate of the universe. During the epoch that concerns
us the curvature term in the expansion of the universe is
negligible. [See, for example, Weinberg (1972).] Taking
the cosmological constant to vanish, we find from the
Einstein equation that the scale factor of the universe
R (t) obeys
2

_ _8mp
My,

dR /dt
R

(1.6)

Here p is the energy density and Myp, is the Planck mass,
which, in the units which we shall use where 7i=c =1, is
simply related to Newton’s gravitational constant G by

Mp=G 12~1.22X10" GeV . (1.7

During the times that concern us, assuming that there
were no unknown massive species present in large num-
bers, the energy density is dominated by the massless par-
ticles, and we have

NI | (1.8)
P=V30" :
where N is the effective number of degrees of freedom.
The number N is the sum of 2 for the photon, 7 for the
electron-positron, and 7 for each of the three types of

Rev. Mod. Phys., Vol. 61, No. 1, January 1989

neutrino-antineutrinos, giving N =%, (This assumes that
the muon and tau neutrinos have a mass small compared
to the effective temperature, and that no other massless
species are present in equilibrium. If not, N will be
different.)

Now there comes a time #, or equivalently a tempera-
ture T, when the universal expansion rate (dR /dt)/R
exceeds the rate A at which the processes (1.1a) and
(1.1b) maintain the baryon chemical equilibrium. At
about this time the baryons become uncoupled from the
leptons and, as we later show, the neutron-to-baryon ra-
tio is frozen at the value

X(T=0)=X(TF) . (1.9)
The rate A(T) is roughly given by

AT)=~n (T){ov) s, (1.10)

where n,(T) is the electron-neutrino number density and
{ov )y is an average of the cross section o for the reac-
tions (1.1a) and (1.1b) times the relative velocity v. Since
n,~T?and o ~GET? where Gy is the Fermi constant of
the weak interactions, and v ~ 1, we have

A~GET? . (1.11)
Setting -

A~(dR /dt)/R , (1.12)
and recalling Eqgs. (1.6) and (1.8), one sees that

3 N2 (1.13)
GrMp

Since Gp~1X 1073 GeV ™2, we have

Tp~N'X1 MeV . (1.14)

Upon substituting this T into Egs. (1.5) and (1.9) with
Am ~1 MeV, we find that a significant fraction of neu-
trons are left at the freezing temperature Tr. We have
exhibited the dependence of the freeze-out temperature
Ty on the effective number of massless species N to indi-
cate how the number of neutrino types plays a role in
helium production, a point to which we return later.

At temperatures of order T, the light nuclei D, T,
3He, and “He are kept in thermal and chemical equilibri-
um by reactions such as

n+pD+y, (1.15a)

D+D-T+p , (1.15b)
and

T+D<*He+n . (1.15¢)

These equilibrium populations of D, T, and *He amount
to a very small fraction. However, as we shall discuss in
Sec. III, once the temperature 7 has fallen below about
5 of the deuteron binding energy e5,=2.23 MeV, a tem-
perature that is much smaller than the freeze-out temper-
ature T, the reactions shown in Egs. (1.15) proceed al-
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most entirely to the right. Because of the large binding
energy of *He, €y4,=28.3 MeV, nearly all of the original
neutrons present at the freeze-out temperature are, after
a short period of free neutron decay, captured in “He.
Thus, at the conclusion of this big-bang nucleosynthesis,
the ratio of the number of “He nuclei to the total number
of baryons is given by

X,=1X(T~0), (1.16a)

or, equivalently, the “He mass fraction of the total
baryonic mass is given by

Y,=2X(T=~0). (1.16b)

Thus the freeze-out ratio X(7T ~0) of the neutron-to-
total-baryon number determines the amount of primordi-
al “He production. In Sec. II we shall give a simple but
~accurate model that yields a detailed calculation of
X (T ~0). Then, in Sec. III, we shall discuss the period
following the freeze-out, including the small correction
brought about by neutron decay and the reason why the
temperature must be below about - of the deuteron
binding energy (the ‘““deuteron bottleneck”) before the nu-
cleosynthesis can proceed. In the Appendix we present
an accurate analytic formula that relates temperature
and time during this epoch. Finally, in Sec. IV we dis-
cuss the sensitivity of the helium abundance to variations
of the parameters on which it depends.

Before turning to the details, we pause to describe
briefly some of the scales of the universe during the
epoch that concerns us. Here we shall just quote some
numerical values whose justification can be found in vari-
ous formulas appearing throughout the text. First we
note that a temperature T7=1 MeV corresponds to the
age of the universe given by ¢ ~1 sec. Time and tempera-
ture are related by ¢ ~1/T2. Thus our initial tempera-
ture of T=100 MeV corresponds to a time ¢ ~107* sec.
At the temperature 7=1 MeV, there is a photon density
given by nq,glO“/cm3 and a baryon density given by
np~10%2/cm®. These densities vary as T°. Thus at our
initial temperature 7= 100 MeV there is a baryon density
ng ~10%/cm®  Although this is a large density by ordi-
nary standards (10* times that of water), it is yet very di-
lute in comparison to the nuclear matter density of
10%/cm?, and so the nucleons can be treated as an ideal
gas.

Il. NEUTRON-PROTON RATIO
IN THE EXPANDING UNIVERSE

We now describe our simple model that provides an
accurate account of the neutron abundance as the
universe evolves. We denote by A,,(?) the rate for the
weak processes to convert protons into neutrons and by
A,p(2) the rate for the reverse processes that convert neu-
trons into protons. These rates are time dependent be-
cause they depend on temperature, which in turn is a
function of time. Thus the basic rate equation for the ra-
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tio X (¢) of the number of neutrons to the total number of
baryons reads

dX(t

GELD — h (1= X (D] =R (DX (1) @.1)
This rate equation has the solution

X (0= [ a1 (6,00, () +1(11)X (1), 22)

0

where the integrating factor is given by

I(t,t")=exp [— [ lar e ] , 2.3)

v

with

A(B)=A,, () +4,,(2) . (2.4)

As we shall soon see, the rates A, () and A,,,(¢) are very
large at early times ¢ when the temperature 7T is on the
order of 100 MeV. Hence, if the initial time ¢, in Eq.
(2.2) is such an early time, the integration factor I(t,¢,)
will be very small in a short time t~1/A(¢,) later.
Therefore the initial value X (¢y) [which must lie in the
interval (0,1)] is unimportant in Eq. (2.2), and it can be
omitted. We see that for times ¢ somewhere later than ¢z,
the fast reaction processes wash out the initial value.
Moreover, because the initial interaction rates are large,
the integral in Eq. (2.2) is not sensitive to the value of ¢,
and we may simplify the expression by setting ¢, =0; the
integral from ¢'=0 to t' =1t is negligible. We now have

X(0)= [T, (1) . (2.5)

To show that the neutron population is in equilibrium
until fairly late times and also to exhibit the onset of the
breaking of this equilibrium, we note that

1 _d

I(t,t')= A dt,I(t,t ), (2.6)
so that one may integrate by parts to obtain
A (1) ' d | A"
—_pn _ ' n_@- pn . ki
X (1)=—g0 fodtI(t,t)dt, T ] .7

In the regime where the total reaction rate A(¢) is large
in comparison with the rate of time variation of the rates,
the last term in Eq. (2.7) gives a small correction. This
correction is shown by again performing an integration
by parts to obtain

Apn(2) 1 d

X~ " A dr

(2.8)

Apu (1)
At) |~

where terms involving (dA/dt)* and d*\A/dt? have been
dropped. Now with the leptons kept in tight thermal
equilibrium by scattering processes among themselves
and photons, the principle of detailed balance requires
that

_Am

Apn(t)=exp T

Aup(D) 2.9)
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a result we derive below. Thus

A (1)
pn L — 1 =X,
AlD) 14 edm/T q

(7, (2.10)
and so, to our present level of accuracy, we can take Eq.
(2.8) to be the Taylor expansion of

1

T A1)

t—

] . (2.11)

X () =Xq

We see that, to this first approximation, the population
has an equilibrium value, but at an earlier time, a time re-
tarded by the reaction time 1/A(¢). To put this result in
another form, we note that the conservation of entropy
for the (relativistic) leptons is equivalent to the statement
that their quantum wavelengths expand with the general
expansion of the universe or that

R ()T (t)=const . (2.12)
Thus 7/T = —R /R and we may write
X(T) =X o(Teg(t)) (2.13)
in which
1 dR /dt
T, =|1+——— . .
() xR T(t) (2.14)

We see that the neutron-to-baryon ratio X (¢) follows its
equilibrium ratio at the temperature T of the universe un-
til a time at which R /R ~A. This is just the condition
described in the Introduction [see Eq. (1.12)]. When
R /AR becomes of order unity, the ratio X (¢) becomes an
equilibrium ratio X (T.) with an effective temperature
T.4(¢) that is higher than the temperature of the universe
giving a population X (T ) that is larger than X (7).
[Since X,(T) is a decreasing function of 7, it follows that
at these times X (7) will exceed X (T).] This effect is
the onset of the freezing in of the neutron and proton
numbers. However, the result of Eq. (2.14) is not quanti-
tatively correct when R/AR ~ 1, and so we must extend
the analysis in this case.

To do this we need an explicit form for the rate A, ().
This rate is the sum of the rates for the individual pro-
cesses proceeding to the right in Egs. (1.1),

Ap=Mv+n—p+e )+Ae+n—p+)
+Mn—p+vte ). (2.15)

These individual weak-interaction rates are given by [see,
for example, Weinberg (1972)]:

Myv+n—p+e )=4 fowdpvpf,peEe(l—fe )fy > (2.162)

MeT+n—p +V)=Afowdpepezvav(l—f,,)fe, (2.16b)
and

_ Po
Mn—p +v+e )=Afo dp.p2p E,(1—f )(1—f,) .

(2.16¢)

Rev. Mod. Phys., Vol. 61,.No. 1, January 1989

Here A is an overall effective coupling constant that we
shall later eliminate in favor of the free-neutron decay
rate, so that its precise value need not concern us. The
magnitudes of the neutrino and electron momenta in the
various processes are denoted by p, and p,, with corre-
sponding energies E,=p, and E,=(p2+m2)!/2. In the
relatively low temperature or equivalently low-energy
domain that concerns us, the recoil of the nucleons can
be neglected. Thus the electron momentum p, in Eq.
(2.16a) is determined by the energy conservation condi-
tion E,=E -+ Am, and the neutrino energy in Eq. (2.16b)
is determined by E,=E,+Am. The neutrino energy in
Eq. (2.16c) is determined by E,=Am —E, >0, which
gives the upper limit on the integration range of
po=(Am%—m2)!/2, The p’dp factors are, of course, just
the usual phase space, while the remaining factors of pE
arise from the square of the transition matrix element.
The lepton phase-space density functions are given by
their equilibrium values

1
o= (2.17a)
P
and
1
L S— (2.17b)
© B e

The factors f, and f, in Eqgs. (2.16a) and (2.16b) corre-
spond to the density of the incident flux of particles. The
remaining factors of (1—f,) and (1—f,) in Egs. (2.16)
are “blocking factors” that represent the Pauli exclusion
principle. ,

Here we have noted that, in general, the electron and
neutrino temperatures, 7, and 7,, may differ. The
reason for this is that towards the end of the freezing-out
period of the neutrons, the temperature drops somewhat
below m, and the electrons and positrons annihilate,
heating the photons but not the neutrinos, which are now
decoupled. The reaction e~ +y—e ™ +¥ occurs rapidly
in comparison with R /R, so that electrons maintain
thermal equilibrium with the photons, T, =T,. In addi-
tion, the reaction e " +e ~«>2y occurs rapidly in compar-
ison with R /R during almost all of the freeze-out period,
so that the overall entropy of the system is conserved.
Using the conservation of entropy, one finds, however,
that T, and T, differ by at most 10% during the freeze-
out period that we are about to consider. (We shall dis-
cuss this point in some detail in Sec. III.) Our first ap-
proximation is then to set 7', =7,=T,=T. Within this
approximation, the rates for reverse reactions such as
e~ +p—n +v, which have forms similar to those of Egs.
(2.16), obey the principle of detailed balance, and we
have, for example,

Ale” +p—n +v)=exp T

Myv+n—p+e ).

(2.18)

To see this, we first note that the rate for the reaction
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which is the reverse of that presented in Eq. (2.16a) is
given by

Me™+p—n+v)=4 [ “dp.plp,E,(1=f,)f. . (2.19)
0

Using p,dp,=E,dE, and energy conservation (with the
neglect of nucleon recoil energy) so that dE, =dE, =dp,,
we have

Me +p—n+v)=4 fowdpvpf,peEe(l—fv)fe )
(2.19b)

It follows from Egs. (2.17) that l—fv=eE"/va and

f.=(1—f,)e “E/T Using these substitutions in Eq.
(2.19b), the energy relation E, —E, = Am, and comparing
with Eq. (2.16a), we verify the detailed balance statement
(2.18). Adding up all the processes yields the detailed
balance statement (2.9) that we have already used.

The next approximation that we shall make follows
from the observation that during the freeze-out period
the temperature T is low in comparison with the typical
energies E that contribute in the integrals for the rates.
Hence we may replace the Fermi-Dirac distributions by
the Boltzmann weights '

e,v

T

Sfey=€Xp , (2.20a)

and correspondingly neglect the effects of the Pauli
blocking,

1=f,,~1,

since the Boltzmann weights are small in this dilute gas
limit. Accordingly, we now have

(2.200b)

AMv+n—pte )=A4 fowdp,,pipeEee—E”/T , (2.21a)
MeT+n—p+v)=4 fowdpepezvave—E"/T, (2.21b)
and
Pg
Mn—p +V+e_)=Af0 dp,p2p,E, . 2.21¢)

Our final approximation is to neglect the electron mass
in Egs. (2.21a) and (2.21b) in comparison to the energies
E ,E,, which give the main contributions to these in-
tegrals. In this approximation these two rates becomie
identical. Placing p,=E,=Am +E, (and p,=E,) in
Eq. (2.21a), we obtain

AMv+n—p+te )= ATHHNT*+2X3ITAm +21Am?)

=Met+n—p+7) . 2.22)

The effect of setting m,=0 in Egs. (2.21) is to neglect
terms of order m2/T? in Eq. (2.22). Even when T ~m,,
these terms produce only 15% corrections to the rates.
Although this approximation breaks down when the tem-

perature T falls below the electron mass m,, in this re-

gime the rates themselves are very small and their effects
are not significant. Equation (2.21c) is just the decay rate
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1/7 for a free neutron. In that equation we cannot
neglect ‘m,. Setting E,=Am —E, and recalling that
Po=(Am?*—m2)!/? we find that several elementary in-

tegrations yield

%=Mn —p+v+eT)

=%(Amz——mez)l/2(%Am4——%Am2m3—-§—m:>)
+ —Iim:Am cosh ™! Am . (2.23)
4 m,
Using the numerical values Am=129 MeV and
m,=0.511 Mev, we obtain
—71j=0.0157AAm5. (2.24)

We shall use this last result to provide the scale for the
rates in terms of the directly observable mean life of the
neutron. Thus we write

44 =—‘;—Am“5, (2.252)
in which a is the pure number
a=255. (2.25b)

As was discussed in the Introduction, we are neglecting
the free-neutron decay process in this section, and so the
value for the total rate A,,(¢) that we use is just twice
that given in Eq. (2.22). It is convenient to introduce the
dimensionless temperature variable,

y=Am/T , (2.26)
and express this rate as
Ap(t)= | = l<12+6y +y2) . (2.27)
v

The inclusion of neutron decay and the elimination of
other simplifying assumptions would add extra terms to
Eq. (2.27). These extra terms do not change A,,
significantly for y<5. We should note that for T'>1
MeV or y<1, this rate is 3 orders of magnitude larger
than the free-neutron decay rate. The two become com-
parable at y ~10, T~0.13 MeV. The rate A,, given by
Eq. (2.27) agrees with the precise calculation of Peebles
to within 15% (see Table I), when we correct for the
difference in the weak coupling constant that he used.

We can now evaluate Eq. (2.7) for the neutron abun-
dance. Changing variables from the time 7 to the scaled
inverse temperature y, we have

A (¥) d
—_pn . y ’ ’
— fo dy I(y,y 2y

Aly)

Ropn ()

X(y) AG)

l . (2.28)

The detailed balance relation (2.9) gives
Apn(y)=e YA, (y) (2.29)

and
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TABLE 1. Comparison of interaction rates and neutron-proton ratio calculated with our Egs. (2.27)
and (2.38) with the computer calculation of Peebles (1966). To facilitate the comparison, we have used
the same weak coupling constants as Peebles, which correspond to a neutron mean life of 1013 sec and,
with the two neutrino types used by Peebles, to a value of our constant given by 5=0.243. The num-

bers for the rates AQ are in sec™ .

y Ay [Eq. (2.27)] » (Peebles) X [Eq. (2.38)] X (Peebles)
0.25 3.5X10° 32X 10° 0.438 0.438
0.50 1.2 10? 1.1x10? 0.380 0.380
0.75 1.8Xx 10! 1.6 X 10! 0.330 0.331
1.5 7.7X107! 6.8X107! 0.239 0.241
2.5 8.6X 1072 7.1X1072 0.192 0.197
5.0 54X1073 3.4X1073 0.165 0.172
3 0 0 0.155 0.164
Ay)=(1+e A, (y), (2.30) It is a simple matter to numerically compute the integral
. . . that appears here for a range of y values. Using the nu-
while the integrating factor (2.3) now becomes merical values that we have given before for the various
y dt" parameters that enter into the dimensionless constant
Iyy=exp | — [“dy” | <00 [AG™) | @31) 0.823
y Y b=""222=0.251 (2.39)
VN

To evaluate the Jacobian dt”’ /dy'’ we recall that the con-
servation of entropy (2.12) gives T /T =—R /R. There-
fore the universal expansion equation (1.6), together with
the energy density formula (1.8), may be expressed as

dar _ ”

473
T3,
dt

45M%,

N (2.32)

with, we recall, N =4 Using this result and Egs. (2.27)
and (2.30), we see that the integrating factor (2.31) has
the form

.

I(y,y")=exp[K(y)—K(y")],
with

(2.33)

=—bfd| +—+—](1+e N, (234
y

where b is the pure number
172
My,

TAm

45

b=a
473N

= (2.35)

It is quite remarkable that the numerical coefficients in-
side the integration are such as to give a simple closed
form

TQUIET S S AR S ) R A o P )
y y y y
as one can check by differentiation.
Introducing
Ay, (¥) 1
X ) =—F—"= , 37
eq y A(y) 1+e? (2.37)

the neutron abundance ratio now reads
X(y)=X y)+f dy’ eyXeq "exp[K (y)—K (y")] .
(2.38)
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we obtain the curve for X (y) shown in Fig. 1. The curve
asymptotes to

X(y=00)=0.151 . (2.40)

At the end of our paper (Sec. IV), we assess the sensi-
tivity of the helium abundance to the parameters upon
which it depends. We pause here to derive some results
that will be needed for this later discussion.

First we consider the dependence on the number of
neutrino types. To do this, we note that a variation of N
gives

8b 1 8N

b =“ET . (2.41)

Such a variation alters the scale of K (y) and, according

T T T l T T T r“ T T l T T T
r 1 1
04— —
% 4
02 _
0 TP S T R T .| ...... R e ST T IS SO Tt
o 2 4 6 8
y
FIG. 1. Neutron-to-total-baryon ratio X(y) as a function of

y =Am /T (solid line). The dotted line gives the thermal equi-
librium abundance X.(y), while the dashed line gives the
correction due to the integral in Eq (2.38), the ‘“freeze-out”
correctlon
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to Eq. (2.38), produces
BX(y=w) __ .8b
X(y=w) b’
where

C=X(y=0)"'[“dye?X, (y') K (y)exp[—K (y')] .
0 q

(2.42)

(2.43)

It is an easy task to evaluate this integral numerically,
which gives

C=0.52 . (2.44)

Since N =% for three neutrino types and the addition of
"one more type entails the change 8N =1, we see that
such a change produces a fractional increase in the neu-

tron population given by

SX(y =)

=0.042 .
X(y=o)

(2.45)
The sign of this result is easy to understand. Increasing
the number of neutrinos increases the energy density of
the universe and speeds up its expansion. Therefore the
neutron .comes out of equilibrium sooner at a higher tem-
perature and with a larger population.

Finally, we consider the effect of a possible chemical
potential for the electron neutrino. In this case the densi-
ty functions for the neutrinos and antineutrinos differ,
with

fi= .
v exp(—a+E,/T)+1

(2.46a)

and

a !

T explatE,/D+1

(2.46b)

Here we use the parameter a=u /T rather than the usual
chemical potential u, because a remains constant for the
freely streaming neutrino gas in the expanding universe.
These distributions are solutions of the collisionless
Boltzmann equation in the expanding universe,

8 R,

ot R 3E f(t,E)ZO s

(2.47)

with constant a and with T'(z) obeying Eq. (2.12). With
such a nonvanishing chemical potential, the detailed bal-
ance statement (2.9) is altered to read

Am
———ca

Apn(t)=exp T (2.48)

Aup(D)

as one can readily check by writing down the rate formu-
las analogous to Egs. (2.16) and the corresponding formu-
las for the reverse processes. Hence the equilibrium
neutron-to-baryon ratio is now given by

1

(a) —
X W= ety

, (2.49)
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which is to say that for large y the population is multi-
plied by the factor e ~*. (With a> 0 the neutron popula-
tion is reduced, since there are more neutrinos than an-
tineutrons and the n-—p reactions are favored.) The
asymptotic neutron abundance is given by a simple
modification of Eq. (2.38):

s
: sexp[ —K'“(y)] .

X(a)( — — °°d___,,_____
y=w)=[ Y o) :

(2.50)

To agree with the presently accepted values of the heli-
um abundance, these a corrections must be small.
Therefore we need compute only to first order in a. Re-
placing the previous neutrino distribution by the
Boltzmann limits of Egs. (2.46), we see that to this order

K@p=p|1+2 ||+ 3241
2 oy
+ -2 ALl s
2]y "

[The neutrino energy density has no first-order correction
in a; hence the Jacobian factor dt'’/dy’ in Eq. (2.31) is
not altered to this order.] Pulling out the factor e ~“ that
appears in the numerator in Eq. (2.50) and then expand-
ing the remainder to first order in a gives

XNy=w)=e *X(y =w)—aX, , (2.52)
where
X1=fowdy eyXeq(y)zG(y)exp[—K(y)] R (2.53)
in which
Gp=2 |2y L2021
20y’ y* oy 2 0y° vy
- . (2.54)
1+e”

The simple one-dimensional integral (2.53) is readily per-
formed numerically. Using the value 5=0.25, one finds a
very small correction,

X,=9.0X1074=6.0X1073X(y =) . (2.55)

We thus find rather remarkably that, to within an accu-
racy of better than 1%, the presence of a small chemical
potential for the electron neutrino alters the asymptotic
neutron abundance by the same factor e~ * that changes
the equilibrium abundance.

I1l. NEUTRON DECAY CORRECTION

Thus far we have solved for the evolution of the neu-
tron abundance with the neglect of neutron decay. Let
us change notation by using an overbar to denote the re-
sult already obtained, X (y)—X(y). Including the effect
of the neutron decay (with mean life 7) in the rate equa-
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tion (2.1), we now have

X()=e " X(y(2), (3.1)

because X(y) does not vary much during the period in
which neutrons decay.

As was discussed in the Introduction, when the tem-
perature drops somewhat below the deuteron binding en-
ergy €p, the neutrons are captured in deuterons, and the
deuterons collide to place essentially all of the neutrons
present at this time ¢, into *He. For the sake of com-
pleteness, we present here an approximate evaluation of
the capture time ¢.. Inserting this time into Eq. (3.1) and
using the asymptotic value of X(y) determined in the pre-
vious section yields the relative neutron abundance at the
time of the helium formation and thus the mass fraction
Y, of helium that is produced in the early universe.
Since the effect of the neutron decay provides only a
small correction, an approximate computation of ¢, will
provide a reasonably accurate number for Y.

As we shall soon see, at the capture time ¢, the temper-
ature of the universe is well below the electron mass m,.

At such low temperatures the electrons and positrons

have annihilated into photons, heating the photon gas
but not altering the neutrino distribution. Thus at times
in the vicinity of ¢, the photon temperature T, differs
from the neutrino temperature T,. Since we shall need
the connection between TY and T, we pause to review
briefly this well-known relationship.

At early times, the collision rates are rapid in compar-
ison with the expansion rate R /R of the universe, and
the temperatures of all of the effectively massless gas
components are equal, T,=T,=T,=T. As we have dis-
cussed before [Eq. (2.12)], the conservation of entropy re-
quires that R (#)T(¢) be constant. At later times and
lower temperatures, the collision rates for the neutrinos
become less than the expansion rate R /R. (This happens
when the temperature is roughly on the order of 1 MeV.)
The neutrinos are now in a decoupled, freely expanding
massless gas with a number density proportional to
T,(¢)%. Since neutrinos can no longer be created or des-
‘troyed, their number in a comoving volume R (¢)? is fixed
and so for all times we have

R ()T ,(¢t)=const . (3.2)
We should note that this temperature constraint is such
as to ensure that the thermal, Fermi-Dirac neutrino dis-
tribution at the time-dependent temperature T',(¢) obeys
the collisionless Boltzmann equation in the expanding
universe, so that a thermal distribution of neutrinos is al-
ways maintained.

The rapid Compton scattering of the photons on the
electrons, together with electron-positron annihilation
that changes the photon number, always keeps the e-y
system in thermal equilibrium with 7,(#)=T,(¢). Hence
the entropy of this subsystem in a comoving volume,
S, (1R (t)%, remains constant. In view of Eq. (3.2), we
can write this constraint as
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e, (2)
T, (1)

v

=const . (3.3)

When the temperature is much higher than the electron
mass, the electron-photon subsystem is described as a
massless gas with an entropy density given by
Sey=3pey /T, =4N,,(7*/30)T;, where N,,=1+2. At
these high temperatures T\, =T,. When the temperature
is much lower than the electron mass, the electrons have
disappeared and the electron-photon subsystem is a sim-
ple photon gas, so that now s,=%p,/T,
=-§'—NY(172/30)T3, where N, =2. Therefore, with T, ()
and T ,(¢) denoting the late-time temperatures, the entro-
py constraint (3.3) requires that

N, =N 410 3.4)
ey Y Tv(t)S ? °
giving the well-known result
T,(0)=(1)'T,(2) . (3.5)

The conservation of entropy (3.3) can be used to relate
Ty(t) and T ,(¢) at intermediate times, but this requires
the numerical evaluation of the entropy density for the
Fermi-Dirac distribution of semirelativistic, massive elec-
trons. Here we only need to note that T, departs sub-
stantially from T, (halfway towards its final value) at the
rather low temperature T ,~m,/4 [see Peebles (1966)].
This departure corresponds to a value of the variable
used in the previous section, y =Am /T, given by y ~ 10.
This is much larger than the value y ~5 at which the
neutron fraction X(y) has reached its asymptotic limit,
Jjustifying our previous approximation of setting T, =T,
in the rate equations.

To compute the capture time #,, we shall need to
translate temperature into time. To do this, we use Eqgs.
(1.6) and (3.2) to obtain

1 dT(0) [ gmp |'? 3.6
T, (¢) dt | 3m3, ’ ’
which gives
L dT, [3m3 |7 4
r, T, | 8mp

As we have seen, the functional form of the energy densi-
ty changes from the high-temperature form
p=N (7?/30)T%, where N =42, to the low-temperature
form

2 2 2
— T~ 4 T 4 T~ 4
po=N, 35 T3+ N, 3Ty =Neg=5 T3 (3.8)
where
Ng=N,+N, (1L)*3=24+2(11)*3~13.0. (3.9

It is the later, low-temperature form that is relevant at
the temperature of the neutron capture and also for
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somewhat higher temperatures. On the other hand, since
N.s/N ~1.2, and it is the square root of the energy that
enters into the universe age formula (3.7), one should be
able to get a reasonable accurate if approximate evalua-
tion of the time ¢ in the vicinity of the time of neutron
capture. To do this, we note that we can use the low-
temperature form (3.8) of the energy density to solve Eq.
(3.6) in terms of an additional integration constant:

o 45 12 Mp,
t= 3 5 Tt
167N ¢ T2
2/3
[ oas )7 | My
il s e— T —2+t0 (3.10)
1677' Neff TV

The integration constant ¢, can be estimated by perform-
ing a perturbation analysis of the exact result (3.7) about
po- This is done to first order in the small quantity p—p,
in the Appendix. We find that to first order

to=~2 sec . (3.11)

We may now turn to determine the time 7, at which
the neutrons are captured. First we recall that in equilib-
rium the neutrons, protons, and deuterons behave as free
nonrelativistic gases with number densities

_ —ug+my/T, ¢ d  —pam,T,
Ma " 8al (27)?
) 3/2
_ —(ua+ma)/TY maT'y (3.12)
a 277' .

Here g, is the statistical spin weight g, =g, =2, gp =3,

and pu,,m, are the chemical potentials and masses of the

particles. At early times, these gases are in chemical
equilibrium, so that

Up=H, i, . (3.13)
Therefore
n,n m,m R T 32
I i R e A R R VY
where
ep=m,tm, —mp (3.15)

is the deuteron binding energy. This is the Saha equa-
tion. )

As we shall soon see, the Saha formula (3.14) gives a
very small fraction of deuterons until the temperature T,
is well below the deuteron binding energy €. This is the

“deuteron bottleneck” that inhibits the formation of *He -

through reaction sequences such as

n+p—-D+y, (3.16a)
D+D—T+p , (3.16b)
D+T—*He+n . (3.16¢)

(These are all of the most important reactions except for
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the two involving He that we omit to simplify the dis-
cussion.) Since we are now discussing the epoch when

other elements are formed, it is convenient to use number

abundance fractions X, normalized to the total baryon
number density ny, which also counts the number of nu-
cleons in D, T, “He, and so forth. Thus X,=n,/ng and
we have X,+X,+2Xp+3X1r+4X,, + - =1 It is
also convenient to introduce the photon number density
n,= 2 (23) T, (3.17)
A

where £(3)~1.202 is the Riemann zeta function, and the
baryon-photon number ratio )

m=ng/n, (3.18)
to rewrite the Saha formula in the form
X, X,
X, =G, » (3.19)
where
3/2
1/2
T 1 (M, —ep/T
G, =———— |— L 3.20
v 1263) 7 | T, (3.20)

Since* 7=~5X10"'%, one finds, for T\, 20.1 MeV, that
G,, is a very large number. For example, at T, ~0.1
MeV one has G,,~ 10°. Therefore for temperatures
above 0.1 MeV the deuteron fraction is less than 1074
(since X, ~0.1), and there is an insufficient populatioh of
deuterium to produce much “He by the reactions (3.16b)
and (3.16c).

To quantitatively determine the neutron capture time
t., we need to examine the rate equations that reflect the
reaction sequence of Egs. (3.16). It is convenient to write
the rate equations in terms of the scaled temperature
variable :

€p

Z="—,
T?’

(3.21)

so that they involve scaled rate parameters of the form

R=—d~;(ov)TnB , (3.22)

d

where {ov ) ; denotes the thermal average of the relevant

4The value of the 1 parameter is rather uncertain. It is ob-
tained in part by studying the mass-to-light ratios for a large
number of galaxies. (See, for example, Faber and Gallagher,
1979.) This gives the mass-to-light ratio for visible baryons.
The (visible) baryonic mass density is then obtained from the
average luminosity density of the universe. (See, for example,
Efstathiou, Ellis, and Paterson, 1988.) The result scales as the
square of the Hubble constant H, which is the present value of
R /R. Since this number has an error on the order of 50%,
there is a factor 2 uncertainty in 7. Further uncertainty arises
from the possibility of the presence of baryons in nonluminous
material.
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cross section times relative velocity. Using Eq. (3.10) to

compute dt /dz and using Egs. (3.17) and (3.18) to write"

the baryon number density ny in terms of the baryon-
photon number ratio 77, we have

172 2/3
45

7' N off

11
4

.

22

E3)epMp{ov ) . (3.23)

First we note that the neutron and proton populations
are governed by

ax,
o —R,,(X,X,—G,,Xp)+ - (3.24a)
and
dx,
e =—R,,(X,X,—G,,Xp)+ " (3.24b)

The Saha factor G,, must appear in the reverse reaction

so as to give the proper equilibrium expressions for X, '

and X,,. The ellipsis represents processes [such as the re-
verse of (3.16c)] which feed (or deplete) the neutron or
proton populations but which are not important for our
discussion. Since the neutron-proton capture process is
exothermic, the product o ,,v is constant at the low ener-

p

gies that concern us. With the value o,,v =4.55X 1072

~cm®/sec [see, e.g., Peebles (1966)], we compute from Eq.
(3.23) that

R, ~5 2| | L], (3.25)
z Mo
where
Ne=5X10"10 (3.26)

is the nominal value for the photon-baryon ratio that we
are using. As we shall see, for times prior to the neutron
capture, z <29, and the rate constant is reasonably large,
R,,®5. Therefore, if the deuteron population is not de-
pleted by other reactions such as (3.16b) and (3.16c), the
protons, neutrons, and deuterons are kept in equilibrium
with X, +X,+2Xp=1 and with X, =G,,'X,X,. Since
G,,;‘ is very small, the deuteron population will be very
small, and we can write the first approximation as

x§=6,,'x9x, (3.27)

where X% and X\© are the unperturbed populations that
obey X, 1§°’+X ®=1, Using this first approximation we
now have

X, +X,~1-2G' X% . (3.28)

Recalling Eq. (3.20), one sees that for the z values that
will concern us (z ~30), the major z dependence of G,,;l
is controlled by the factor e”’. Hence we find that to first
order

d —13(0)y(0)
X, +X,)~ =26, ' XX .

Adding Egs. (3.24) and remembering Eq. (3,.27) we find

(3.29)
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that to a first approximation

R,,(X, X, —G,,Xp)=Xp . (3.30)

We have just described the situation when the deute-
ron population is not depleted by other reactions. The
first in the chain of these is that of Eq. (3.16b), giving

dXp
dz

=+R,,(X,X,—G,,Xp)

—Rpp[2Xy —Gpp XX, 1+ -+ . (3.31)

Here Rpp is the scaled rate for the reaction (3.16b) and
Gpp is the Saha factor which gives the equilibrium value
for the ratio X /XX, »- The same argument that led to
Eq. (3.20) gives

° m2 132
—B/T

Gpp == 2 e T, (3.32)
4 meP

where B is the energy release of the reaction,

B=2mp—m,—my=~402 MeV.
Gpp is always a small number
The rate Rpp involves the cross section opp for the
process D+D-—T++p. This process is inhibited by the
Coulomb barrier between the two incident charged
deuterons, which is accounted for at the relevant low
energies by the Coulomb penetration factor
(2ma /v)exp[ —(27ma /v)], where v is the relative velocity
of the two deuterons and a ~ % is the fine-structure con-
stant. The basic size scale of the cross section is roughly
the deuteron radius ~(1/m, ep)!/2. The reaction is exo-

In contrast to G,,p,

thermic and so the cross section must contain a factor of -

1/v, which we may write in terms of the dimensionless
parameter (eD/mpvz)” 2, These remarks lead to a phe-
nomenological fit to the cross section given by

172
_ 0.87

€p 27ra 2ma
m,ep

opD , <XP , (3.33)

m‘,v2
where we have obtained the numerical constant 0.87 by
referring to the fit given by Peebles (1966). We need the
thermal average of oppv. To obtain this we write the
Boltzmann factors for the deuterons f(v;)f(v,)
~exp[ —1mp(v3+v3)] in terms of the relative velocity
v=v,—v, and center-of-mass velocity V' =21(v;+v,) to

obtain
3/2

2
mpv

2T

27T

<UDDU>T= »

f (d3v)o ppv exp

(3.34)
where we have approximated the deuteron mass mp by
twice the proton mass m,. Using Eq. (3.33) for the cross
section in this average, one finds that the integrand is a
sharply peaked function. Hence it may be evaluated by
the method of steepest descent to obtain the good ap-
proximation

4ravg

€
(3epm, TH'?

3ra

(oppv ) 7=0.87 , (3.35)

Vs
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in which
2maT

mp

(3.36)

Ug

Placing this result in the rate formula (3.23) and evaluat-
ing the numbers gives

n
7o

— 1/3
z 4/3e 1.44z .

Rpp=2.4X107 (3.37)

When the supply of deuterons begins to decrease, the
number of neutrons is no longer maintained by the pho-
todisintegration of the deuterons, and the chain of reac-
tions is initiated that rapidly converts almost all of the
neutrons into helium. We may therefore identify the
temperature T, . at which the neutrons are captured, or

equivalently z. =¢ep /T, ., by the condition that
dX
21 ~o0. (3.38)
dz z=z

(4

As we shall soon see, z, =30, and so the factor Gpp, is of
order e %, a completely negligible number. Hence the
condition (3.38) in conjunction with Egs. (3.27) and (3.30)

and the approximation Xp ~ X}’ gives

2XPRpp~1. (3.39)

The result of the previous section gave X\ ~0.15, and so
X\X\"~0.13. Thus, using Egs. (3.27) for X{}’ together
with Egs. (3.20) and (3.37), and putting in the numbers,
we find that the capture condition reduces to

2
1/3
—17/6 _1.442(_, Z
z; e

.
7o

2.9%x107°¢ e‘~1. (3.40)

Taking =17, we have z, =26 and

T, .=ep/26=0.086 MeV .

(3.41)

Clearly our argument has yielded only an approximate
condition, which we have indicated by the symbol ~.
Nonetheless, it does provide a good determination of
T, ., since the condition entails the large and rapidly
varying factor exp(z, ).

Placing now T,=T, .=0.086 MeV in the formula

(3.10), we find that the neutron capture time is given by
t,=180 sec . (3.42)

At the temperature T, . the neutron population X(y) in
the absence of decay has reached its asymptotic value.

Therefore the neutron fraction available for capture into

deuterium and ultimately into *He is given by

X (180 sec)=exp(— 20X (y =)

896

=0.818X0.151=0.123 . (3.43)

We conclude that the helium abundance by weight is
given by

Y,=2X (180 sec)=0.247 . (3.44)
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IV. DISCUSSION

We have just presented an approximate and semi-
analytical calculation of the helium abundance produced
in the early universe. Our aim has been to provide a
treatment that illustrates clearly the physical principles
at work in this helium production. We have been careful
to get the essential physics right so that our result is ac-
curate to within a few percent. Clearly the extensive
computer computations that exist in the literature are
needed for a more accurate evaluation and to compute
the formation of other light elements such as deuterium,
helium three, and lithium seven. However, a great ad-
vantage of having a semianalytical model for the helium
production is that its variation with respect to the pa-
rameters on which it depends is easily computed. More-
over, the physical origins of these variations can be ex-
plicitly traced. We conclude our work with a discussion
of this topic.

The cosmological helium production depends upon
four essential parameters. They are W,, the number of
neutrino types; 71, the baryon-to-photon ratio; 7, the
neutron’s mean life; and «, a possible chemical potential
for the electron neutrino. A chemical potential for the
other neutrinos would be relevant if it were large, since
then it would affect the energy density p. We will limit
our discussion to small chemical potentials’ that give no
first-order change in p. We shall first present our final re-
sult for the change in the helium abundance AY, brought
about by changes in the parameters and then discuss its
origin in some detail. It is given by

AY,=—0.25a+0.014AN,,+0. 18~A;T—
+0.0091n |-L |, 4.1)
"o

where AW, and A7 are the variations of the number of
neutrinos and neutron’s mean. lifetime about the values
that we have employed, AN, =N ,—3, A7=(7—896) sec.
We again denote the nominal value of the baryon-photon
ratio by 7, with 7,=5X107",

The variation with an electron-neutrino chemical po-
tential a follows immediately from the result [Eq. (2.52)]
given in Sec. II together with the unaltered helium abun-

5Tt is interesting to note that a small value of  can lead to a
large neutrino-antineutrino number density difference n; rela-
tive to the baryon number density ng. Using

f(z A

a short calculation gives

2

o o
L= 12¢03)

ng .

Since 7 is so very small, n; /ny can be large even for small a.
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dance Y,=0.25 given at the end of the previous section.
The variation of Y, with respect to the number of neutri-
no types N, has two sources. The first we have already
discussed at the end of Sec. II [Eq. (2.45)], where we
showed that adding an additional neutrino type produces
a fractional increase in the neutron population given by

8X(y =)

— =0.042 . 4.2)
X(y =)

The second source of the variation of Y, with WV, comes
about because the capture time ¢, depends on the neutri-
no density according to Eq. (3.10), with

At, 1 AN
- .

= 4.3
2 N, (4.3)

c

Recalling that [Eq. (3.9)] Ng=7N,/4+2(11)*3~13 for
three neutrino types, we see that
At, '

=" T8
tC

(4.4)

This alteration of the decay factor exp(—¢,/7) from its
value at ¢, /7=0.20, together with the first source of vari-
ation (4.2), gives

AY,=Y,(0.042+0.014)AN,, . (4.5)

[In obtaining this result we have omitted the variation of
the capture temperature T, . with neutrino number
which is negligible since T, . is governed by the large
and rapidly varying factor exp(z.) in Eq. (3.40).] We
have already commented in Sec. II that increasing the
number of neutrinos speeds up the evolution of the
universe, which accounts for the positive sign of the first
term in parentheses in Eq. (4.5). It is for this same reason
that the second term in the parentheses also has a posi-
tive sign. Using Y,=0.25 in Eq. (4.5) yields the
coefficient of AN, shown in Eq. (4.1).

The variation of Y, with respect to the neutron mean
life 7 also has two sources. According to Eq. (2.35), the
parameter b that controls the lepton-nucleon interaction
rates has the dependence b ~1/7, and so the change AT
gives

Ab_ _Ar | 4.6)
b T
In view of Egs. (2.42) and (2.44), this produces a neutron
population change

AX(y =) _ 55 AT @.7)
X(y =) T

The second source involves the obvious change in the de-
cay factor exp(—¢, /7) about the value ¢,/7=0.20.
Therefore a change in the neutron lifetime gives

AY4=Y4(0.52+0.20)—ATL- 4.8)

and yields the coefficient of Ar/7 shown in Eq. (4.1).
Note that the signs of the two contributions to AY, given
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in Eq. (4.8) are rather obvious. Increasing the neutron
lifetime decreases the leptonic collision rate and causes
the neutrons to freeze out sooner at a larger population
and there is less decay before the neutrons are captured
into helium.

Finally we note that the dependence of the helium
abundance Y, on the baryon-photon ratio 7 comes about
because of the dependence of the capture time #, in the
decay factor on-7. This, in turn, arises from the condi-
tion (3.40), which determines the capture temperature
T, . in terms of  and the connection between time and
temperature given in Eq. (3.10). The variation of the de-
cay factor exp(—t, /7) entails

t, Az,

AY4=—Y4'°T_ ¢

4.9)
c

To compute At /t., we recall that 1. ~T 2 while the
variation in T, . is determined by the constraint (3.40).
Taking the logarithm of Eq. (3.40) and then examining its

variation about =1, and z, =26, one finds that

s
Mo

2In +0.84Az, =0 . (4.10)

Therefore changing the baryon-photon ratio from 7, to n
changes the capture temperature from T, . to T, ., with

L -1 l1—0.0921 |1 .11)
Ty,c Ty,c Mo
This gives
t
$=—-0.181n |-L |, 4.12)
c Mo
and, with ¢, /7=0.20,
AY,=0.036Y,ln 7;L 4.13)
0

which yields the coefficient of In(n/7,) shown in Eq.
(4.1). The sign of this correction is understood easily.
Increasing 7 is equivalent to decreasing the photon num-
ber relative to the number of baryons. Thus the photo-
disintegration of the deuteron becomes less effective, and
helium is formed sooner when fewer neutrons have de-
cayed.

To compare our results for the dependence of Y, on
these parameters with the results of computer calcula-
tions, we consider an interpolation formula given in
Boesgaard and Steigman (1985). This formula represents
the computer calculations of Y, in the region
1.5 <7 X 10 < 10 to +0.001:

Y% =0.230+0.013(N,—3)+0.014(7, —10.6)
+0.0111n(n X 10'°) , (4.14)

where 7, is the neutron half-life in minutes.
We may compare three of these terms directly to Eq.
(4.1). There is no term in (4.14) for the dependence of Y,
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on an electron chemical potential a, and to our
knowledge no such expression that goes beyond one ob-
tained from the equilibrium neutron population appears
in the literature. The coefficients of the first and second
terms in (4.1) are about the same as those terms in (4.14)
when one converts from mean life to half-life. Our
coefficient for the last term in (4.1) is 20% smaller than
* that inferred from (4.14).

We can compare our answer for Y, with that of Boes-
gaard and Steigman by inserting their central values, i.e.,
those that yield 0.230 in Eq. (4.14), into our Eq. (4.1).
When this is done, we obtain 0.23, which means that the
helium abundances that we obtain with our semianalytic
methods are within a few percent of what the computer
codes give.

Finally, our calculation of Y, can be compared with
observation. The most precise empirical value for Y,
seems to be that of Kunth and Sargent (1983), who mea-
sure the helium abundance in metal-poor galaxies. They
give

Y,=0.245+0.003 . (4.15)

To the extent that this represents the true cosmological .

number, an empirical limit on W, can be obtained by
comparing Eq. (4.1) to this number. It may be seen that
any value of V,, > 4 does not fit the data, unless one of the
other parameters, such as 7 or «, is changed. Further-
more, if N, is kept at the presently observed value of 3,
"then |a| is constrained to be less than about .
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APPENDIX

Here we shall derive the approximate result given in
Eq. (3.11) for the integration constant ¢, that appears in
Eq. (3.10) of the text. This we shall do by expanding the
exact energy density p in the time formula (3.7) about the
low-temperature form p, given by Eq. (3.8). With p=p,,
Eq. (3.7) yields the first term in Eq. (3.10). Expanding
Eq. (3.7) to first order in the small quantity p—p, thus
provides the first order value for the integration constant
t, appearing in Eq. (3.10), and we have
M3, 172

87

_ 1

thy= 2

»dT, p—po
NI,

(A1)

Here
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2
—pa=p  — 4737 _ 4
P~ Po pey 2(%) 30 Tv ’ (A2)
where p,, is the energy density of the electron-photon
subsystem. To reduce the integral in Eq. (A1), we note
that since po~ T4, one has

1 1 1.d -sp
) - 7 Po

T, 0 6dT,

Hence we may integrate by parts to obtain

172

[T

(A3)

3IM3,

8

1
=T

d
daT,
There are no end-point contributions in this partial in-
tegration, since the upper limit involves the vanishing
quantity T2 while at the lower limit p=p,,

We may now make use of the thermodynamic relation

(p—po) . (A4)

d dsey
——p., =T (T,) , (AS5)
ar,Per aT,,
where s, is the entropy density of the ey subsystem and

T (T,) is the photon temperature when the neutrinos

are at the temperature T',. As was discussed in the text
[cf. Eq. (3.3)], sc,,//T’v3 is a constant. Therefore

d —_ ’ I»A

WdT' Pey=3T,T

se,’/
T3

v

(A6)

v

The constant (s,,/ T?) may be evaluated in the low-
temperature limit where s, =s, =4p, /T, =( 812 /90)T?,
and T3 =1T3 Thus

diT,Vpe,:*lgiT'yT;2 , (A7)
and using Eq. (A2) we have
, 173
T (p—po)z%T:? -?,—7 ]— —Ll ] . (A8)
Finally, using Eq. (3.8) we write
_ d |1 ar? o -
T ps 3/2=—d—T,V 7 [Ner3g T, *|, (A9)

insert Egs. (A8) and (A9) into Eq. (A4) and integrate by

parts yet once again, to obtain

172 LdT, 4
T, T:? dT,,

45M3%,
1673

T,(T,)
T,

111
6 N

Iy

(A10)

We define the neutrino temperature T, o at which the

neutrino temperature departs from the photon tempera-
ture by the condition

wdT, q |[T,(T))
T, T'?2 dT!, T,
1 w. ., d | T,T,)
= dT —— (A11)
T2, f T, VdT, T,
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Clearly, T, , is approximately the value of the neutrino

temperature at the point where 7, /T, is most rapidly

varying. The integral remaining is simply

T.T,)
Tl

v

=1—(H"7. (A12)

w d
dT\,———
f T, " VdT,
We may now write the additional integration constant

as
11

to= 6Neﬁ[(%)1/3—1]t1 , (A13)
where
= |—2 My . (A14)
167N T,

This decomposition is illuminating because ¢, is (to first
approximation) the time at which the neutrino and pho-
ton temperatures depart, while Eq. (A13) shows that the
integration constant z; is only a small fraction of this
time. Although the precise evaluation of T, , would en-
tail a numerical computation, it suffices to use the esti-

mate T,,~m,/4 discussed in the text. This gives
t; ~42 sec, and in turn
ty=0.056¢; ~2 sec . (A15)

This is the result (3.11) quoted in the text. Since this is
such a short time in comparison with the capture time
t, ~ 180 sec, we see that our crude estimate for T, , does
indeed suffice even though ¢, is a somewhat rapidly vary-
ing function of T, o. The point to be made is that the ad-
ditional integration constant ¢, differs from the time ¢, at
which the neutrino and photon temperatures depart by
the very small factor displayed in Egs. (A13) and (A15), a
‘factor which we have derived in this appendix.
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