Minimalism in Modified Gravity

Shinji Mukohyama (YITP, Kyoto U)

Based on collaborations with Katsuki Aoki, Nadia Bolis, Antonio De Felice, Tomohiro Fujita, Sachiko Kuroyanagi, Francois Larrouturou, Chunshan Lin, Shuntaro Mizuno, Michele Oliosi

Why modified gravity theories?

A motivation for IR modification

- Gravity at long distances
 Flattening galaxy rotation curves
 extra gravity

 Dimming supernovae
 accelerating universe
- Usual explanation: new forms of matter (DARK MATTER) and energy (DARK ENERGY).

Dark component in the solar system?

Precession of perihelion observed in 1800's...

which people tried to explain with a "dark planet", Vulcan,

But the right answer wasn't "dark planet", it was "change gravity" from Newton to GR.

Why modified gravity?

Can we address mysteries in the universe?
 Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.

How to unify Quantum Theory with General Relativity?

How to unify Quantum Theory with General Relativity?

Probably we need to modify GR at short distances

Why modified gravity?

- Can we address mysteries in the universe? Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.
- Help constructing a theory of quantum gravity?
 Superstring, Horava-Lifshitz, etc.
- Do we really understand GR?
 One of the best ways to understand something may be to break (modify) it and then to reconstruct it.
- ullet

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ $\rightarrow \pi_N = 0$ & $\pi_i = 0$

ADM decomposition

• Lapse N, shift Nⁱ, 3d metric h_{ii}

 $ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$

Einstein-Hilbert action

$$\begin{split} I &= \frac{M_{\rm Pl}^2}{2} \int d^4 x \sqrt{-g} \,^{(4)} R \\ &= \frac{M_{\rm Pl}^2}{2} \int dt d^3 \vec{x} N \sqrt{h} \left[K^{ij} K_{ij} - K^2 + {}^{(3)} R \right] \end{split}$$

• Extrinsic curvature

$$K_{ij} = \frac{1}{2N} (\partial_t h_{ij} - D_i N_j - D_j N_i)$$

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ $\rightarrow \pi_N = 0$ & $\pi_i = 0$

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ $\rightarrow \pi_N = 0 \& \pi_i = 0$ All constraints are independent of N & Nⁱ $\rightarrow \pi_N \& \pi_i$ "commute with" all constraints $\rightarrow 1^{st}$ -class

1st-class vs 2nd-class

- 2nd-class constraint S
 {S, C_i} ≈ 0 for [∃]i
 Reduces 1 phase space dimension
- 1st-class constraint F
 { F , C_i } ≈ 0 for ∀i
 Reduces 2 phase space dimensions
 Generates a symmetry
 Equivalent to a pair of 2nd-class constraints

{ $C_i \mid i = 1,2,...$ } : complete set of independent constraints $A \approx B \longrightarrow A = B$ when all constraints are imposed (weak equality)

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ → π_N = 0 & π_i = 0 All constraints are independent of N & Nⁱ → π_N & π_i "commute with" all constraints → 1st-class
- 4 generators of 4d-diffeo: 1st-class constraints
- $20 (4+4) \ge 2 = 4 \rightarrow 4$ -dim physical phase space @ each point $\rightarrow 2$ local physical d.o.f.

Minimal # of d.o.f. in modified gravity = 2

of d.o.f. in general relativity

- 10 metric components → 20-dim phase space @ each point
- Einstein-Hilbert action does not contain time derivatives of N & Nⁱ → π_N = 0 & π_i = 0 All constraints are independent of N & Nⁱ → π_N & π_i "commute with" all constraints → 1st-class
- 4 generators of 4d-diffeo: 1st-class constraints
- $20 (4+4) \ge 2 = 4 \rightarrow 4$ -dim physical phase space @ each point $\rightarrow 2$ local physical d.o.f.

Minimal # of d.o.f. in modified gravity = 2

Can this be saturated?

Is general relativity unique?

- Lovelock theorem says "yes" if we assume:
 (i) 4-dimensions; (ii) diffeo invariance; (iii) metric only; (iv) up to 2nd-order eom's of the form E_{ab}=0.
- Effective field theory (derivative expansion) says "yes" at low energy if we assume: (i) 4-dimensions; (ii) diffeo invariance; (iii) metric only.
- However, cosmological backgrounds break 4d-diffeo while keeping 3d-diffeo.
- A metric theory with 3d-diffeo but with broken 4d-diffeo typically has 3 local physical d.o.f. (e.g. scalar-tensor theory, EFT of inflation/dark energy, Horava-Lifshitz gravity)

Example: simple scalar-tensor theory

Covariant action

$$I = \frac{1}{2} \int d^4x \sqrt{-g} \left[\Omega^2(\phi)^{(4)} R + P(X,\phi) \right] \qquad X \equiv -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

 $g^{\mu\nu} =$

Unitary gauge

$$\phi = t \quad \Longrightarrow \quad X = \frac{1}{2} \frac{1}{N^2}$$

This is a good gauge iff derivative of ϕ is timelike.

 $\begin{array}{ccc} -\overline{N^2} & \overline{N^2} \ -\overline{N^2} & h^{ij} - rac{N^i N^j}{N^2} \end{array}$

• Action in unitary gauge

$$I = \int dt d^3 \vec{x} N \sqrt{h} \left\{ f_1(t) \left[K^{ij} K_{ij} - K^2 + {}^{(3)} R \right] + \frac{2}{N} \dot{f}_1(t) K + f_2(N, t) \right\}$$
$$\Omega^2(\phi) = f_1(t) \qquad P(X, \phi) = f_2(N, t)$$

Is general relativity unique?

- Lovelock theorem says "yes" if we assume:
 (i) 4-dimensions; (ii) diffeo invariance; (iii) metric only; (iv) up to 2nd-order eom's of the form E_{ab}=0.
- Effective field theory (derivative expansion) says "yes" at low energy if we assume: (i) 4-dimensions; (ii) diffeo invariance; (iii) metric only.
- However, cosmological backgrounds break 4d-diffeo while keeping 3d-diffeo.
- A metric theory with 3d-diffeo but with broken 4d-diffeo typically has 3 local physical d.o.f. (e.g. scalar-tensor theory, EFT of inflation/dark energy, Horava-Lifshitz gravity)
- Is GR unique when we assume: (i) 4-dimensions; (ii) 3ddiffeo invariance; (iii) metric only; (iv) 2 local physical d.o.f. (= 2 polarizations of TT gravitational waves)?

A class of minimally modified gravity

Chushan Lin and SM, JCAP1710 (2017), 033

- 4d theories invariant under 3d-diffeo: $x^i \rightarrow x^i + \xi^i(t, \mathbf{x})$
- ADM decomposition

 $ds^{2} = -N^{2}dt^{2} + h_{ij} (dx^{i}+N^{i}dt) (dx^{i}+N^{i}dt)$

• Ansatz: actions linear in the lapse function N

$$S = \int dt d^3x \sqrt{h} NF\left(K_{ij}, R_{ij}, \nabla_i, h^{ij}, t\right)$$

$$K_{ij} = \left(\partial_t h_{ij} - \nabla_i N_j - \nabla_j N_j\right)/(2N)$$

- For simplicity, exclude mixed-derivative terms, i.e. those that contain spatial derivatives acted on K_{ij}
- Relation between K_{ij} and π^{ij} (momenta conjugate to h_{ij}) assumed to be invertible $\det\left(\frac{\partial^2 F}{\partial K_{ij}\partial K_{kl}}\right) \neq 0$
- Seek theories with 2 local physical d.o.f.!

What we expect/need

- 10 metric components → 20-dim phase space @ each point
- $\pi_N = 0 \& \pi_i = 0 : 1^{st}$ -class constraints
- 3 generators of 3d spatial diffeo : 1st-class constraints
- If there is no other constraint then
 20 (4+3) x 2 = 6 → 6-dim physical phase space @ each point → 3 local physical d.o.f.
- We thus need a 1st-class constraint or a pair of 2nd-class constraints to find theories with 2 local physical d.o.f.

What we found

- The necessary and sufficient condition under which a theory in this class has 2 or less local physical degrees of freedom.
- Simple examples with 2 local physical degrees of freedom

An example of MMG: square-root gravity

Action

$$S = \int d^4x \sqrt{h} N \left[\xi M(t)^4 \sqrt{\left(1 + \frac{c_1(t)}{M(t)^2} \mathcal{K} \right) \left(1 + \frac{c_2(t)}{M(t)^2} R \right)} - \Lambda(t) \right]$$

$$\mathcal{K} = K_{ij} K^{ij} - K^2, \ K = K^i_{\ i}, \ \xi = \pm 1$$

• In the weak gravity limit,

$$S \simeq \int d^4x \sqrt{h} N \left[\xi M^4 - \Lambda + rac{\xi}{2} M^2 (c_1 \mathcal{K} + c_2 R) + ...
ight]$$

GR with $M_p^2 = \xi c_1 M^2$, $c_g^2 = rac{c_2}{c_1}$, $\Lambda_{ ext{eff}} = rac{\Lambda - \xi M^4}{\xi c_1 M^2}$ is recovered.

• Flat FLRW with a canonical scalar $\xi = 1$

 $(\Lambda + \rho_m)^2$

 M^2

 $6c_{1}^{2}$

What we found

- The necessary and sufficient condition under which a theory in this class has 2 or less local physical degrees of freedom.
- Simple examples with 2 local physical degrees of freedom
- However, it was not clear how to couple matter to gravity in a consistent way...

Matter coupling in scalar tensor theory

• Jordan (or matter) frame

$$\begin{split} I &= rac{1}{2} \int d^4x \sqrt{-g^{
m J}} \left[\Omega^2(\phi) \, R[g^{
m J}] + \cdots
ight] + I_{
m matter}[g^{
m J}_{\mu
u}; {
m matter}] \ {
m Einstein-frame} \qquad g^{
m E}_{\mu
u} &= \Omega^2(\phi) g^{
m J}_{\mu
u} \qquad {
m K.Maeda\,(1989)} \end{split}$$

 $I = \frac{1}{2} \int d^4x \sqrt{-g^{\rm E}} \left[R[g^{\rm E}] + \cdots \right] + I_{\rm matter} [\Omega^{-2}(\phi) g_{\mu\nu}^{\rm E}; \text{matter}]$ • Do we call this GR? No. This is a modified gravity

- Do we call this GR? No. This is a modified gravity because of non-trivial matter coupling → <u>type-I</u>
- There are more general scalar tensor theories where there is no Einstein frame → type-II

Type-I & type-II modified gravity

• <u>Type-I:</u>

There exists an Einstein frame Can be recast as GR + extra d.o.f. + matter, which couple(s) non-trivially, by change of variables

- <u>Type-II:</u>
 - No Einstein frame

Cannot be recast as GR + extra d.o.f. + matter by change of variables

Type-I minimally modified gravity (MMG)

Katsuki Aoki, Chunshan Lin and SM, arXiv:1804.03902, to appear in PRD

- # of local physical d.o.f. = 2
- There exists an Einstein frame
- Can be recast as GR + matter, which couple(s) non-trivially, by change of variables
- The most general change of variables = canonical tr.
- Matter coupling just after canonical tr. → breaks diffeo → 1st-class constraint downgraded to 2nd-class → leads to extra d.o.f. in phase space → inconsistent
- Gauge-fixing after canonical tr. → splits 1st-class constraint into pair of 2nd-class constraints
- Matter coupling after canonical tr. + gauge-fixing → a pair of 2nd-class constraints remain → consistent

Simple example of type-I MMG

Katsuki Aoki, Chunshan Lin and SM, arXiv:1804.03902, to appear in PRD

- Start with the Hamiltonian of GR phase space: (N, Nⁱ, Γ_{ij}) & (π_N , π_i , Π^{ij})
- Simple canonical tr. (Γ_{ij} , Π^{ij}) \rightarrow (γ_{ij} , π^{ij}) $\Gamma_{ij} = -\frac{\delta F}{\delta \Pi^{ij}}$ $\pi^{ij} = -\frac{\delta F}{\delta \gamma_{ij}}$ $F = -\int d^3x \sqrt{\gamma} f(\tilde{\Pi})$ $\tilde{\Pi} := \Pi^{ij} \gamma_{ij} / \sqrt{\gamma}$ • Gauge-fixing $\mathcal{G} \approx 0$
 - $\{\mathcal{G}, \mathscr{H}_0\} \not\approx 0 \qquad \{\mathcal{G}, \pi_N\} \approx 0 \quad \{\mathcal{G}, \pi_i\} \approx 0 \quad \{\mathcal{G}, \mathscr{H}_i\} \approx 0$
- Lagrangian for $g^{J}_{\mu\nu} = (N, N^{i}, \gamma_{ij})$ $\sqrt{-g^{J}}\mathcal{L} = \dot{\gamma}_{ij}\pi^{ij} - \mathcal{H}_{tot}^{GF}$

 $\mathcal{H}_{\mathrm{tot}}^{\mathrm{GF}}$: gauge-fixed total Hamiltonian density

Adding matter

$$I_{\mathrm{matter}}[g^{\mathrm{J}}_{\mu
u};\mathrm{matter}]$$

c.f. Carballo-Rubio, Di Filippo & Liberati (2018) argued that the square-root gravity should be of type-I but did not find a consistent matter coupling.

More general example of type-I MMG & phenomenology

Katsuki Aoki, Antonio De Felice, Chunshan Lin, SM and Michele Oliosi, arXiv: 1810.01047

- Original phase space: (M, Nⁱ, Γ_{ij}) & (Π_{M} , π_{i} , Π^{ij})
- Canonical tr. ($\mathcal{N}, \Gamma_{ij}, \Pi_{\mathcal{N}}, \Pi^{ij}$) \rightarrow (N, $\gamma_{ij}, \pi_N, \pi^{ij}$)

$$\mathcal{N} = -\frac{\delta F}{\delta \Pi_{\mathcal{N}}} \quad \Gamma_{ij} = -\frac{\delta F}{\delta \Pi^{ij}} \quad \pi_{N} = -\frac{\delta F}{\delta N} \quad \pi^{ij} = -\frac{\delta F}{\delta \gamma_{ij}}$$

$$F = -\int d^{3}x (M^{2}\sqrt{\gamma}f(\tilde{\Pi},\tilde{\mathcal{H}}) + N^{i}\Pi_{i}) \qquad \tilde{\Pi} = \frac{1}{M^{2}\sqrt{\gamma}}\Pi^{ij}\gamma_{ij}$$

$$f(\phi,\psi) = f_{0}(\phi) + f_{1}(\phi)\psi + \mathcal{O}(\psi^{2}) \qquad \tilde{\mathcal{H}} = \frac{1}{M^{2}\sqrt{\gamma}}\Pi_{\mathcal{N}}N$$
Some sign for $\mathcal{N}(\mathcal{R}, \mathbb{N}, \Gamma, \mathcal{R}, \omega) \rightarrow f > 0$ f > 0

- Same sign for \mathcal{N} & N, Γ_{ij} & $\gamma_{ij} \rightarrow f_0 > 0$, $f_1 > 0$
- $c_T^2 = f_1^2/f_0' \rightarrow f_0' = f_1^2$
- w_{DE} ≠ -1 in general (without dynamical DE)
- $G_{eff}/G = 1/f_0' \neq 1$ in general while $\Psi/\Phi = 1$

Example with $w_{DE} \neq -1 \& G_{eff}/G \neq 1$

- $\Lambda \neq 0$ before canonical tr.
- $c_T^2 = f_1^2/f_0' \rightarrow f_0' = f_1^2$
- A choice of f_0 $f_0' = \frac{(M_*/M_{\rm pl})^2 + (\phi/\phi_c)^2}{1 + (\phi/\phi_c)^2}$

Type-II minimally modified gravity (MMG)

- # of local physical d.o.f. = 2
- No Einstein frame
- Cannot be recast as GR + matter by change of variables
- Is there such a theory? Yes!
- Example: Minimal theory of massive gravity
 [Antonio De Felice and SM, PLB752 (2016) 302; JCAP1604 (2016) 028; PRL118 (2017) 091104]
- Another example? : Ghost-free nonlocal gravity (if extended to nonlinear level?)

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Fierz-Pauli theory (1939) Unique linear theory without instabilities (ghosts)

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Fierz-Pauli theory (1939)

Unique linear theory without instabilities (ghosts) van Dam-Veltman-Zhakharov discontinuity (1970) Massless limit ≠ General Relativity

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Vainshtein mechanism (1972) Nonlinearity → Massless limit = General Relativity

Fierz-Pauli theory (1939) Unique linear theory

without instabilities (ghosts) Boulware-Deser ghost (1972) 6th d.o.f.@Nonlinear level → Instability (ghost)

van Dam-Veltman-Zhakharov discontinuity (1970) Massless limit ≠ General Relativity

Simple question: Can graviton have mass? May lead to acceleration without dark energy

Good?

D'Amico, et.al. (2011) Non-existence of flat FLRW (homogeneous isotropic) universe!

Open universes with selfacceleration GLM (2011a) D'Amico, et.al. (2011) Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama

More general fiducial metric f_{μυ} closed/flat/open FLRW universes allowed GLM (2011b)

Open universes with selfacceleration GLM (2011a) D'Amico, et.al. (2011) Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama

More general fiducial metric f_{μυ} closed/flat/open FLRW universes allowed GLM (2011b)

Open universes with self acceleration GLM (2011a) NEW Nonlinear instability of FLRW solutions DGM (2012)

D'Amico, et.al. (2011) Non-existence of flat FLRW (homogeneous isotropic) universe!

GLM = Gumrukcuoglu-Lin-Mukohyama DGM = DeFelice-Gumrukcuoglu-Mukohyama

GLM = Gumrukcuoglu-Lin-Mukohyama DGM = DeFelice-Gumrukcuoglu-Mukohyama

DGHM = DeFelice-Gumrukcuoglu-Heisenberg-Mukohyama

Minimal theory of massive gravity (MTMG) De Felice & Mukohyama, PLB752 (2016) 302; JCAP1604 (2016) 028

- 2 physical dof only = massive gravitational waves
- exactly same FLRW background as in dRGT
- no BD ghost, no Higuchi ghost, no nonlinear ghost
- positivity bound does not apply

Three steps to the Minimal Theory

- 1. Fix local Lorentz to realize ADM vielbein in dRGT
- 2. Switch to Hamiltonian
- 3. Add 2 additional constraints

(It is easy to go back to Lagrangian after 3.)

Lorentz-violation due to graviton loops is suppressed by m^2/M_{Pl}^2 and thus consistent with all constraints for $m = O(H_0)$

Cosmology of MTMG I

• Constraint $C_0 \approx 0$ $X \doteq \tilde{a}/a$ $(c_3 + 2c_2X + c_1X^2)(\dot{X} + NHX - MH) = 0$

Self-accelerating branch

$$X = X_{\pm} \doteq \frac{-c_2 \pm \sqrt{c_2^2 - c_1 c_3}}{c_1} \qquad \lambda = 0$$
$$3M_{\rm P}^2 H^2 = \frac{m^2 M_{\rm P}^2}{2} \left(c_4 + 3c_3 X + 3c_2 X^2 + c_1 X^3\right) + \rho$$

 Λ_{eff} from graviton mass term (even with c₄=0) Scalar/vector parts are the same as Λ CDM Time-dependent mass for gravity waves

Cosmology of MTMG II

- Constraint $C_0 \approx 0$ $X \doteq \tilde{a}/a$ $(c_3 + 2c_2X + c_1X^2)(\dot{X} + NHX - MH) = 0$
- "Normal" branch $H = XH_{f} \qquad \lambda = \frac{4(H_{f}X - H)N}{m^{2}(c_{1}X^{2} + 2c_{2}X + c_{3})M}$ $3M_{\rm P}^2 H^2 = \frac{m^2 M_{\rm P}^2}{2} \left(c_4 + 3c_3 X + 3c_2 X^2 + c_1 X^3\right) + \rho$ Dark component without extra dof Scalar part recovers GR in UV ($L \ll m^{-1}$) but deviates from GR in IR (L \gg m⁻¹) Vector part is the same as GR Non-zero mass for gravity waves

BH and Stars in MTMG

De Felice, Larrouturou, Mukohyama, Oliosi, PRD98, 104031 (2018)

- Any solution of GR that can be rendered spatially flat by a coordinate change is also a solution of the self-accelerating branch of MTMG, with or without matter.
- Schwarzschild sol \rightarrow BH, star exterior
- Spherical GR sol with matter → gravitational collapse, star interior
- No strong coupling
- No singularities except for those in GR

Blue-tilted & amplified primordial GW from MTMG Fujita, Kuroyanagi, Mizuno, Mukohyama, arxiv: 1808.02381

- Simple extension: $c_i \rightarrow c_i(\phi)$ with $\phi = \phi(t)$
- m large until $t_m (t_{reh} < t_m < t_{BBN})$ but small after t_m cf. no Higuchi bound in MTMG
- Suppression of GW in IR due to large m \rightarrow <u>blue spectrum</u>

Summary

- Minimal # of d.o.f. in modified gravity = 2 can be saturated → minimally modified gravity (MMG)
- Type-I MMG: ³ Einstein frame Type-II MMG: no Einstein frame
- Example of type-I MMG GR + canonical tr. + gauge-fixing + adding matter Rich phenomenology: w_{DE}, G_{eff}, etc.
- Example of type-II MMG Minimal theory of massive gravity (MTMG) Cosmology: self-accelerating branch & normal branch BHs and stars: no strong coupling, no new singularity Stochastic GWs: blue-tilted & largely amplified