

New results on the VISHNIAC and RYU-VISHNIAC instabilities in

astrophysics and laboratory astrophysics

Serge BOUQUET serge.bouquet@cea.fr

Département de Physique Théorique et Appliquée (DPTA) – CEA and LUTH – Observatoire de Paris

Fine and intricated filaments attributed to a thin shock wave ...

Cygnus loop (dentelle du Cygne) ~ 8000 y.o, distance ~ 2000 l.y, size ~ 100 l.y

understand the physics of radiative blast waves such as these supernova remnants, and specifically the Vishniac overstability (instability) thought to produce the structures seen in these remnants

- **1. Shock waves and blast waves**
- 2. Vishniac instability in supernova remnants
- 3. New theoretical and numerical developments
- 4. Latest blast wave experiments
- 5. Conclusion

Shock waves (SW) vs. Blast waves (BW)

- ✓ The mass of the shocked material increases
- ✓ The dowstream flow might be steady (constant velocity V_{gas}) if the Shock Wave (SW) is sustained
- ✓ For a Blast Wave (BW) [un-sustained SW, the energy is released briefly], the velocity of the dowstream flow decays

Spherical blast wave (Sedov-Taylor blast wave: STBW)

$$\checkmark R_{BW}(t) \approx \left(\frac{E}{\rho_{ISM}}\right)^{1/5} \times t^{2/5}$$

E, ρ_{ISM} : physical ingredients [E] = M.L².T⁻²; [ρ_{ISM}] = M.L⁻³

 $[E / \rho_{ISM}] = L^5.T^{-2}$

SEDOV – TAYLOR blast wave (STBW)

Self-Similar Solution (SSS)

✓ Velocity of the BW front: $V_{BW}(t) = \frac{d}{dt} R_{BW}(t) \propto \frac{R_{BW}(t)}{t} \propto t^{-3/5}$ ✓ Pressure at the BW front: $P_{BW}(t) = (2/(\gamma+1))\rho_{ISM} (V_{BW})^2 \propto t^{-6/5} \propto R_{BW}^{-3}$ $P_{BW} \times (R_{BW})^3 \sim$ thermal energy $E_{thermal} \sim constant$ ✓ Kinetic energy is constant: $E_{kinetic} \sim M(t) \times (V_{BW})^2 \sim (R_{BW})^3 \times t^{-6/5} \sim constant$ No energy transfer between $E_{thermal}$ and $E_{kinetic}$

- $\rho_{BW} = \left(\frac{\gamma+1}{\gamma-1}\right)\rho_{ISM}$
- $P_{BW} = \left(\frac{2}{\gamma+1}\right) \rho_{ISM} (V_{BW})^2$

✓ Velocity: V(r) almost ~ r

but not strictly (**NOT** homologous)

✓ Pressure: P almost uniform

except close to the shock front

✓ Density: p

- 1. Almost empty bubble ($\rho_{bubble} \approx 0$)
- 2. Density **peak** ρ_{BW} at the BW front
- 3. Compression C (strong BW):

$$C \equiv \frac{\rho_{BW}}{\rho_{ISM}} = \frac{\gamma + 1}{\gamma - 1} \gamma$$
: adiab. constant

 γ decreases ($\gamma \rightarrow 1$), **C** increases

- Thickness x C ~ constant (mass conservation)
- $C \equiv (\gamma + 1) / (\gamma 1)$ (compression)

Small γ 's $(\gamma \rightarrow 1)$ imitate radiative cooling

BW in supernova remnants (SNR)

Tycho (1572, Cass. B, 3 kpc)

Simeis 147 (~30 000 y.o., Taurus, 1 kpc)

 $R_{BW}(t) \propto t^{2/5} \quad (t \sim < 10\ 000\ \text{yrs})$ $R_{BW}(t) \propto t^{1/4} \quad (t > 10\ 000\ \text{yrs})$

Nébuleuse du Spaghetti

Diameter of SNR's: from a few to several pc (1 parsec $\approx 3 \times 10^{18}$ cm)

Radius of the SNR: $R_{BW}(t)$, 3 self-similar solutions (SSS's)

- ✓ Ballistic (ejecta dominated) stage: $R_{BW}(t) \propto t$ (*t* ~ < 1 000 yrs)
- ✓ Sedov-Taylor stage:
- ✓ Isothermal (or radiative) stage:

1/4 ? (2/7 ?)

1

Cooling ⇒ Formation of a thin shell

$$V_{shell} = \left(\frac{2}{\gamma_{shell} + 1}\right) V_{BW}$$

Thin \rightarrow dense $\gamma_{shell} \approx 1$

✓ Equation of motion of the shell:

$$\frac{d}{dt} \left(M_{shell}(t) \times V_{shell}(t) \right) = 4\pi (R_{BW})^2 P_{gas}(t)$$

$$\frac{\rho_{ISM}R_{BW}}{3}\frac{d}{dt}V_{BW} = \left(\frac{\gamma_{shell}+1}{2}\right)P_{gas} - \rho_{ISM}(V_{BW})^2$$

$$P_{gas} \sim \left(R_{BW}\right)^{-3\gamma_{gas}} \text{ and } R_{BW}(t) \propto t^{2/(3\gamma_{gas}+2)}$$

$$\gamma_{gas} = 5/3 \quad R_{BW}(t) \propto t^{2/7} \text{ McKee \& Ostriker (ApJ, 1977)}$$

✓ Momentum conservation:

$$M_{shell}(t) \times V_{shell}(t) \sim (R_{BW})^{3} \times (dR_{BW} / dt) \sim constant$$
$$R_{BW}(t) \propto t^{1/4}$$
Spitzer

- 1. Shock waves and blast waves in astrophysics
- 2. Vishniac instability in supernova remnants
- 3. New theoretical and numerical developments
- 4. Latest blast wave experiments
- 5. Conclusion

Complex structure of old SNR

Tycho (1572, Cass. B, 3 kpc)

Simeis 147 (~30 000 y.o., Taurus, 1 kpc)

Nébuleuse du Spaghetti

Diameter of SNR's: from a few to several pc (1 parsec $\approx 3 \times 10^{18}$ cm)

- $\checkmark\,$ Strong deformations, filaments, messy structures are observed
- ✓ Stability of BW is a key issue: so-called Vishniac instability (ApJ, 1983)

Overstability (V83) :

Oscillation with growing amplitude

Ethan T. Vishniac (ApJ, 1983)

Disruption of the shell

Oscillations with growing amplitude: Overstability

Dispersion relation for Vishniac instability (V83)

Ethan T. Vishniac (ApJ, 1983)

Single mode perturbation: λ_{pert} Amplitude: $\Delta R_{BW} \propto Y_{l,m}(\theta, \phi) \times t^{S}$ S: complex « growth rate » $S = S_r + i \times S_i$ • $S_r > 0$: perturbation grows: UNSTABLE \rightarrow shell disruption • S_i : oscillations $t^{i.s_i} \sim \cos[s_i \times \ln(t/t_0)]$

Dispersion relation:

$$D(s, \ell, ...) = (s+1)(5s+6)(25s^2+55s+12)+36\ell(\ell+1)/5 = 0 \quad s(\ell) \propto \sqrt{\ell}$$

$$\ell = 2\pi R_{BW} / \lambda_{pert} = \text{mode number}$$

Rayleigh-Taylor

$$D(\mathbf{s}, \ell, ...) = (\mathbf{s}+1)(5\mathbf{s}+6)(25\mathbf{s}^2+55\mathbf{s}+12)+36\ell(\ell+1)/5 = 0$$

19 octobre 2017

Serge Bouquet, LUTH, Observatoire de Paris, France

- 1. Shock waves and blast waves in astrophysics
- 2. Vishniac instability in supernova remnants
- 3. New theoretical and numerical developments
- 4. Latest blast wave experiments
- 5. Conclusion

New dispersion relation for $\gamma \ge 1$

Sanz, Bouquet, Michaut & Minière (Phys. of Plasmas, 2016)

• Until now, no numerical proof of the V.I.

Mac Low & Norman (ApJ, 1993) : ZEUS-2D, growth stops Strickland & Blondin (ApJ, 1995) : 2D perturbed steady state ≠ BW Blondin & Marks (New Astron. 1996) : 2 shock bounded slab Blondin, Wright, Borkowski, Reynolds (ApJ, 1998) : 2D + cooling

• **Code HADES-2D:** LUTH, C. Michaut Michaut, Di-Menza, Nguyen, Bouquet, Mancini (HEDP, 2017) Radiation hydrodynamics

HPC (144 cores on MesoPSL, 1472 max), high resolution (30x10⁶ meshes)

• PhD thesis:

C. Cavet (2010) C. Nguyen (2011) J. Minière (2014) O. Saincir (en cours) A. Gintrand (en cours)

Initial conditions for the numerical simulations

Thèse C. Cavet

DE LA RECHERCHE À L'INDUSTRIE

Linear and nonlinear evolution of the shell

Variation with the mode number ℓ

The shell does not break. The perturbation is smoothed out ...

Simulations of the STBW

And longer runs: up to 200 000 years

• Oscillations are clearly evidenced, but no growth is observed! • Increase C ($C \equiv \rho_{\scriptscriptstyle BW} / \rho_{\scriptscriptstyle ISM}$)? Additional physics • Cooling

The V.I. appears for twice smaller angular sectors

- ✓ Vanishing structures t ≥ 80 kyrs
- Not in agreement with density maps (twice smaller structures appear)
- ✓ Subdivision of the angular sectors by 2 (twice more sectors)
- ✓ The new mode is $\ell' = 2\ell = 48$ For $\gamma = 1.1$, $\ell_{max} \approx 40$, $s_r \approx 0.5$
- ✓ Growth rate: $s_r \approx 0.3$

Deceleration rate for
$$\gamma = 5 / 3$$
, $\Lambda_0 = 0.1 \, W/kg$

Serge Bouquet, LUTH, Observatoire de Paris, France

- 1. Shock waves and blast waves in astrophysics
- 2. Vishniac instability in supernova remnants
- 3. New theoretical and numerical developments
- 4. Latest blast wave experiments
- 5. Conclusion

DE LA RECHERCHE À L'INDUSTRIE

Experimental Set-up on the Z-Beamlet laser (ZBL) @ Sandia

19 octobre 2017

Trajectory (radius) of the BW's

Nathan Riley & John Porter (Sandia, 2015)

• Neon: Sedov-Taylor BW with $R_{BW}(t) \sim t^{\frac{2}{2}}$

- Xenon: Decelerated Sedov-Taylor BW with R_{BW}(t) ~ tⁿ (n≈0.348) due to cooling
 - Numerical simulations with HADES by J. Minière (Minière, PhD thesis, Nov. 2014): Radiative cooling $\Lambda \propto \rho^2$, $R_{BW}(t) \propto t^{0.3}$
 - Theory for late regime (Momentum Conservation Snowplow regime): $R_{BW}(t) \propto t^{1/4}$

Spatial modes show maximum growth in region predicted by Vishniac

- ✓ Theory of the Vishniac instability (V.I.) revisited
- ✓ Role of cooling: $\gamma_{e\!f\!f} \to 1$
- ✓ Simulations with HADES over 200 kyrs : mode doubling
- ✓ 2D: $Y_{\ell,m}(\theta, \varphi)$ versus $\cos \theta$
- ✓ Rayleigh-Taylor instability: Contact discontinuity ≠ Surface disc.
- ✓ Analytical stability analysis with cooling Antoine Gintrand
- ✓ Ionisation: γ_{eff} → 1 AG
- ✓ Simulations in the comoving frame
 AG
- ✓ Experiments
- ✓ Comparisons Theory/Simulations/Experiments