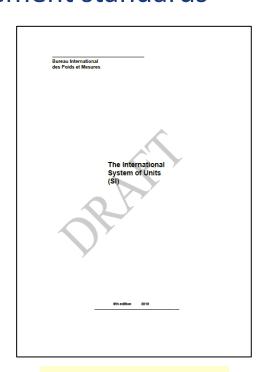
The updated International System of Units (SI)

METPO

Richard Davis rdavis@bipm.org

BIPM Consultant
(Former director of BIPM Mass Department)


International des Poids et Mesures

The BIPM and the SI

 BIPM: the intergovernmental organization through which Member States act together on matters related to measurement science and measurement standards

9th edition, 2019

The present SI is based on 7 reference values

- the unperturbed ground state hyperfine transition frequency of the caesium 133 atom Δv_{Cs} is 9 192 631 770 hertz, (1967) s⁻¹
- ◆ the speed of light in vacuum c is 299 792 458 metres per second, (1983) m s⁻¹
- the mass of the international prototype of the kilogram m_{χ} is 1 kilogram, (1889) kg
- the permeability of vacuum μ_0 is $4\pi \times 10^{-7}$ newton per ampere squared, (1948, 1954) kg m s⁻² A⁻²
- the thermodynamic temperature of the triple point of water T_{TPW} is 273.16 kelvin, (1954) K
- the molar mass of carbon 12, $M(^{12}C)$, is 0.012 kilogram per mole, (1971) kg mol⁻¹
- the luminous efficacy of monochromatic radiation of frequency 540 ×10¹² Hz, K_{cd} , is 683 lumens per watt. (1979) cd kg⁻¹ m⁻² s⁻³

Draft Resolution A (26th CGPM, November 2018)

The International System of Units, the SI, is the system of units in which

- the unperturbed ground state hyperfine transition frequency of the caesium 133 atom $\Delta \nu_{Cs}$ is 9 192 631 770 Hz, s^{-1}
- the speed of light in vacuum c is 299 792 458 m/s, $m s^{-1}$
- the Planck constant h is 6.626 070 15 \times 10⁻³⁴ J s, kg m² s⁻¹
- the elementary charge e is 1.602 176 634 \times 10⁻¹⁹ C, A S
- the Boltzmann constant k is 1.380 649 \times 10⁻²³ J/K, kg m² s⁻² K⁻¹
- the Avogadro constant N_A is 6.022 140 76 × 10²³ mol⁻¹,
- the luminous efficacy of monochromatic radiation of frequency 540×10^{12} hertz $K_{\rm cd}$ is 683 lm/W.

where the hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, lm, and W, respectively, are related to the units second, metre, kilogram, ampere, kelvin, mole, and candela, with unit symbols s, m, kg, A, K, mol, and cd, respectively, according to $Hz = s^{-1}$, $J = m^2 \text{ kg s}^{-2}$, C = A s, $lm = cd m^2 m^{-2} = cd \text{ sr}$, and $W = m^2 \text{ kg s}^{-3}$

https://www.bipm.org/utils/en/pdf/CGPM/Draft-Resolution-A-EN.pdf https://www.bipm.org/utils/fr/pdf/CGPM/Draft-Resolution-A-FR.pdf

4

A momentous change

in 2018/2019

1 kg = m_{χ} (at present)

1 kg = $1.475... \times 10^{40} \, h \, \Delta v_{Cs}/c^2$

- Definition of kilogram (1889) replaced by fixed value for the Planck constant, h
- Definition of ampere (1948, 1954) replaced by fixed value for the elementary charge, e
- Definition of kelvin (1954) replaced by fixed value for the Boltzmann constant, k
- Definition of mole (1971) replaced by fixed value for the Avogadro constant, N_A

No change to definitions of the **second** (Δv_{cs} , 1967) and the **metre** (c, 1983) [or the **candela** (1978)]

All definitions will be in 'explicit constant' form--Example

Definition of the metre since 1983:

"The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second."

In symbols, $1 \text{ m} = c \cdot (s/299792458)$

Definition expected in 2019:

"The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299 792 458 when expressed in the unit m s⁻¹, where the second is defined in terms of the caesium frequency $\Delta \nu_{\rm Cs}$."

In symbols,
$$c$$
 = 299 792 458 m s⁻¹ \rightarrow 1 m = (c /299 792 458) s
or 1 m = 30.663 318... c / $\Delta \nu_{cs}$

6

Before the SI, electrical units were problematic

◆ 1941 Table of Physical Constants (*Rev. Sci. Instrum.*)

234

RAYMOND T. BIRGE

Table a. Principal Constants and Ratios.*

SECTIO	N N
A	Velocity of light
В	Gravitation constant $G = (6.670 \pm 0.005) \times 10^{-8} \text{ dyne} \cdot \text{cm}^2 \cdot \text{g}^{-2}$
C	Liter (= 1000 ml)
D	Volume of ideal gas (0°C, A_0)
D	Volume of ideal gas (0°C, A_{45})
E E	International ohm $(=p \text{ abs-ohm})$
F	Atomic weights (see Table a')
G G	Standard atmosphere $A_0 = (1.013246 \pm 0.000004) \times 10^6 \text{ dyne} \cdot \text{cm}^{-2} \cdot \text{atmosphere}$ 45° atmosphere $A_{45} = (1.013195 \pm 0.000004) \times 10^6 \text{ dyne} \cdot \text{cm}^{-2} \cdot \text{atmosphere}$
H	Ice-point (absolute scale)
I I	Joule equivalent. $J_{1\delta} = 4.1855 \pm 0.0004$ abs-joule \cdot cal _{1δ} ⁻¹ Joule equivalent (electrical) $J_{1\delta}' = 4.1847 \pm 0.0003$ int-joule \cdot cal _{1δ} ⁻¹
J	Faraday constant (1) Chemical scale
	$F = 96501.2 \pm 10 \text{ int-coul} \cdot \text{g-equiv}^{-1}$
	= 96487.7 ± 10 abs-coul·g-equiv ⁻¹
	= $9648.7_7 \pm 1.0$ abs. e.m.u ·g-equiv ⁻¹ $F' = Fc = (2.89247 \pm 0.00030) \times 10^{14}$ abs. e.s.u ·g-equiv ⁻¹
	(2) Physical scale
	$F = 96514.0 \pm 10 \text{ abs-coul} \cdot \text{g-equiv}^{-1}$
	$= 9651.4_0 \pm 1.0 \text{ abs. e.m.u \cdot g-equiv}^{-1}$ $F' = Fc = (2.89326 \pm 0.00030) \times 10^{14} \text{ abs. e.s.u \cdot g-equiv}^{-1}$
K	Avogadro number (chemical scale)
K	
K	Electronic charge $e = F/N_0 = 1.60203_2 \pm 0.00034) \times 10^{-20}$ abs. e.m.u. $e' = ec = (4.8025_1 \pm 0.0010) \times 10^{-10}$ abs. e.s.u.
L	Specific electronic charge $e/m = (1.7592 \pm 0.0005) \times 10^7$ abs. e.m.u·g ⁻¹ $e'/m = ec/m = (5.2736_6 \pm 0.0015) \times 10^{17}$ abs. e.s.u·g ⁻¹
M	Planck constant

International versus Absolute electrical units

International electrical units used by engineers

Absolute electrical units used by physicists

"It surely would be a great misfortune to the whole scientific world if in taking up a standard ohm coil...20 years hence, it should be necessary to ask whether it was standardized for physicists or for electrotechnicians."
-- Arthur Kennelly, 1935

Impact on science due to earlier changes to the SI - 2

Cohen and Taylor 1973 J. Phys. Chem. Ref. Data

TABLE 32.1. Our best set of WQED constants based on adjustment No. 21 of table 29.3. $\chi^2 = 8.75$ for 18 - 5 = degrees of freedom; $R_B = 0.82.$ ³

Quantity	Sh1	Value	Uncer-	Units	
Quantity	Symbol	Yanuc	tainty (ppm)	SI	cgs ^b
Speed of light in vacuum	С	299792458(1.2)	0.004	m·s ⁻¹	10 ² cm·s ⁻¹
Fine-structure constant, $[\mu_0 c^2/4\pi](e^2/\hbar c)$	$\frac{\alpha}{\alpha^{-1}}$	7.2973461(81) 137.03612(15)	1.1 1.1	10 ⁻³	10 ⁻³
Elementary charge	e	1.6021876(50) 4.803238(15)	3.1 3.1	10 ⁻¹⁹ C	10 ⁻²⁰ emu 10 ⁻¹⁰ esu
Planck constant	$h = h/2\pi$	6.626167(38) 1.0545872(60)	5.7 5.7	10 ⁻³⁴ J·s 10 ⁻³⁴ J·s	10 ⁻²⁷ erg·s 10 ⁻²⁷ erg·s
Avogadro constant	$N_{\mathbf{A}}$	6.022046(31)	5.2	10 ²³ mol ⁻¹	10 ²³ mol ⁻¹
Electron rest mass	m_e	9.109533(47) 5.4858026(21)	5.1 0.38	10 ⁻³¹ kg 10 ⁻⁴ u	10 ⁻²⁸ g 10 ⁻⁴ u
Proton rest mass	$m_{ ho}$	1.6726483(86) 1.007276470(11)	5.2 0.011	10 ⁻²⁷ kg u	10 ⁻²⁴ g u
Ratio of proton mass to electron mass	m_p/m_e	1836.15152(70)	0.38		
Neutron rest mass	m,,	1.6749541(86) 1.008665012(37)	5.2 0.037	10 ⁻²⁷ kg u	10 ⁻²⁴ g u
Josephson frequency-voltage ratio	2e/h	4.835941(13)	2.7	10 ¹⁴ Hz·V ⁻¹	

9

Impact on science due to earlier changes to the SI - 3

• Mohr et al., **2014 values**, Rev. Mod. Phys. (2016)

TABLE XXXIII. The CODATA recommended values of the fundamental constants of physics and chemistry based on the 2014 adjustment.

Quantity	Symbol	Numerical value	Unit	Relative std. uncert. u_r
	UNI	VERSAL		
Speed of light in vacuum	c, c_0	299 792 458	${\rm m}{\rm s}^{-1}$	Exact -
Magnetic constant	μ_0	$4\pi \times 10^{-7}$	NA^{-2}	
		$= 12.566370614 \times 10^{-7}$	NA^{-2}	Exact X
Electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817 \times 10^{-12}$	Fm^{-1}	Exact X
Characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730313461	Ω	Exact X
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	4.7×10^{-5}
	$G/\hbar c$	$6.70861(31) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	4.7×10^{-5}
Planck constant	h	$6.626070040(81) \times 10^{-34}$	J s	1.2×10^{-8}
		$4.135667662(25) \times 10^{-15}$	eV s	6.1×10^{-9}
$h/2\pi$	ħ	$1.054571800(13) \times 10^{-34}$	J s	1.2×10^{-8}
		$6.582119514(40) \times 10^{-16}$	eV s	6.1×10^{-9}
	$\hbar c$	197.326 9788(12)	MeV fm	6.1×10^{-9}
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.176470(51) \times 10^{-8}$	kg	2.3×10^{-5}
energy equivalent	$m_{\rm P}c^2$	$1.220910(29) \times 10^{19}$	GeV	2.3×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416808(33) \times 10^{32}$	K	2.3×10^{-5}
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$l_{ m p}$	$1.616229(38) \times 10^{-35}$	m	2.3×10^{-5}
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39116(13) \times 10^{-44}$	S	2.3×10^{-5}
	ELECTRO	OMAGNETIC		
Elementary charge	e	$1.6021766208(98) \times 10^{-19}$	C	6.1×10^{-9}
	e/h	$2.417989262(15) \times 10^{14}$	AJ^{-1}	6.1×10^{-9}
Magnetic flux quantum $h/2e$	Φ_0	$2.067833831(13)\times10^{-15}$	Wb	6.1×10^{-9}
Conductance quantum $2e^2/h$	G_0	$7.7480917310(18) \times 10^{-5}$	S	2.3×10^{-10}
inverse of conductance quantum	G_0^{-1}	12 906.403 7278(29)	Ω	2.3×10^{-10}
osephson constant ^a 2e/h	$K_{\rm J}^{\rm o}$	$483597.8525(30) \times 10^9$	$Hz V^{-1}$	6.1×10^{-9}
yon Klitzing constant ^b $h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25 812.807 4555(59)	Ω	2.3×10^{-10}

(Table continued)

quantum transducer:

potential difference → frequency

Josephson effect (c)

According to theory,

Nobel Prize 1973

Brian Josephson

$$\frac{V_n}{f} = n \left(\frac{h}{2e}\right) = n / K_{\rm J}$$

 V_n : "voltage" of the nth step

f: frequency of e-m radiation shining on the J-junction

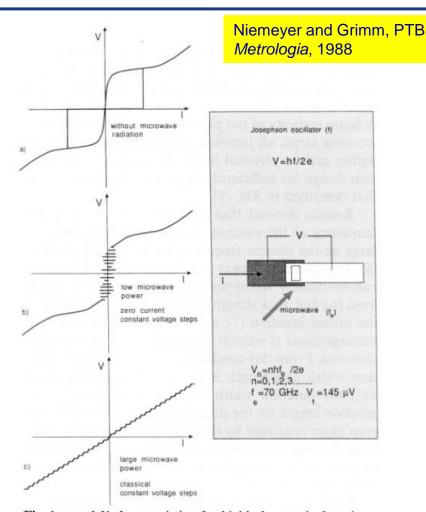
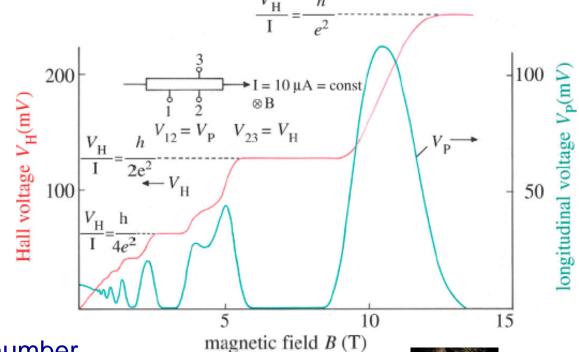


Fig. 1a-c. I-V characteristic of a highly hysteretic Josephson tunnel junction. a without microwave radiation; b with low-power microwave radiation; c with high-power microwave radiation

h/e^2 , a quantum resistor of $\sim 26 \text{ k}\Omega$

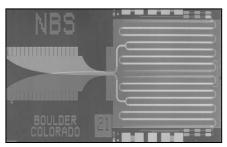

Resistance via the quantum-Hall effect

From von Klitzing, Phil. Trans. R. Soc. A (2005)

According to theory,

$$R_{\rm H}(i) = \frac{1}{i} \left(\frac{h}{e^2}\right) = \frac{R_{\rm K}}{i}$$

$$\approx \frac{26 \text{ k}\Omega}{i}$$

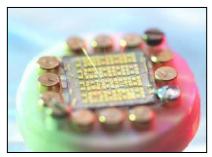

where i is the plateau number

Nobel Prize 1985

Klaus V. Klitzing

Realization of quantum electrical devices

Josephson effect


NIST / Wikimedia Commons

$$V_{\rm n} = n \frac{f}{K_{\rm J}}, \quad K_{\rm J} = \frac{2e}{h}$$

(universality tests at 10⁻¹⁶)

 $K_{\rm J} = 483\ 597.8525(30)\ {\rm GHz/V}$ (CODATA 2014)

quantum-Hall effect

Graphene(!) qu-Hall device NPL BIPM Chalmers Univ. Linköping Univ. Lancaster Univ.

13

$$R_{\mathrm{H}}(i) = \frac{R_{\mathrm{K}}}{i}, \quad R_{\mathrm{K}} = \frac{h}{e^2}$$

(universality: Si-MOSFET;

GaAs; graphene)

 $R_{\rm K}$ = 25 812.807 4555(59) Ω

(CODATA 2014)

Deriving the definitions of the base units: s, m, kg, A, K, mol, cd

The SI units of the 7 defining constants

Any SI unit can be written as the product of powers of the 7 base units:

$$s^\alpha \ m^\beta \ kg^\gamma \ A^\delta \ K^\epsilon \ mol^\zeta \ cd^\eta$$

	S	m	kg	A	K	mol	cd
$\Delta u_{ m Cs}$	-1	0	0	0	0	0	0
c	-1	1	0	0	0	0	0
h	-1	2	1	0	0	0	0
e	1	0	0	1	0	0	0
k	-2	2	1	0	-1	0	0
$N_{ m A}$	0	0	0	0	0	-1	0
K_{cd}	3	-2	-1	0	0	0	1

e.g. unit of h is $J s = kg m^2 s^{-1} = s^{-1} m^2 kg$

Invert the matrix of exponents, transpose the labels...

...to see the product of powers of the defining constants, whose unit is an SI base unit:

$$\Delta v_{\rm Cs}^{\alpha'} c^{\beta'} h^{\gamma'} e^{\delta'} k^{\varepsilon'} N_{\rm A}^{\zeta'} K_{\rm cd}^{\eta'}$$

	$\Delta \nu_{\rm Cs}$	c	h	e	k	$N_{ m A}$	K _{cd}
S	-1						
m	-1	1					
kg	1	-2	1				
A	1			1			
K	1		1		-1		
mol						-1	
cd	2		1				1

e.g., the kilogram row (kg):

$$\Delta v_{\text{Cs}}^{1} c^{-2} h^{1} e^{0} k^{0} N_{\text{A}}^{0} K_{\text{cd}}^{0} = \Delta v_{\text{Cs}} c^{-2} h = \frac{h \Delta v_{\text{Cs}}}{c^{2}}$$

From the Draft Resolution A (2018)...

$$\frac{h\Delta v_{\text{Cs}}}{c^2} = \frac{\left(6.626\,070\,15\times10^{-34}\right)\left(9\,192\,631\,770\right)}{\left(299\,792\,458\right)^2}\,\text{kg}$$

$$1 \text{ kg} = \frac{\left(299792458\right)^2}{\left(6.62607015 \times 10^{-34}\right) \left(9192631770\right)} \frac{h\Delta v_{\text{Cs}}}{c^2} = 1.4755213997... \times 10^{40} \frac{h\Delta v_{\text{Cs}}}{c^2}$$

See: Section 2.3.1 in Draft 9th Edition, SI Brochure (slide 2) and Davis, Rapport BIPM-2018/02

We can do the same analysis for the present SI

- the unperturbed ground state hyperfine transition frequency of the caesium 133 atom Δv_{Cs} is 9 192 631 770 hertz, (1967) s⁻¹
- the speed of light in vacuum c is 299 792 458 metres per second, (1983) m s⁻¹
- the mass of the international prototype of the kilogram m_{χ} is 1 kilogram, (1889) kg
- the permeability of vacuum μ_0 is $4\pi \times 10^{-7}$ newton per ampere squared, (1948, 1954) kg m s⁻² A⁻²
- the thermodynamic temperature of the triple point of water T_{TPW} is 273.16 kelvin, (1954) K
- the molar mass of carbon 12, $M(^{12}C)$, is 0.012 kilogram per mole, (1971) kg mol⁻¹
- the luminous efficacy of monochromatic radiation of frequency 540 ×10¹² Hz, K_{cd} , is 683 lumens per watt. (1979) cd kg⁻¹ m⁻² s⁻³

Comparison of updated SI with present SI

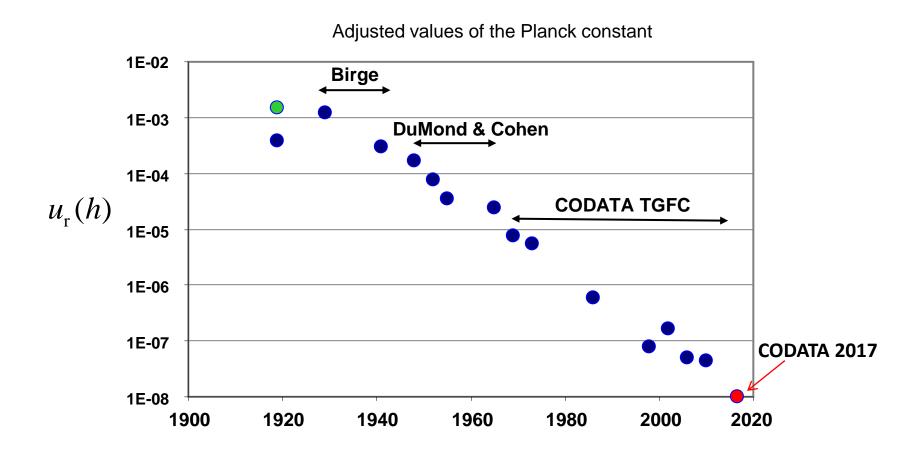
updated (2019)		Δu_{Cs}	c	h	e	k	$N_{ m A}$	K_{cd}
	s	-1						
	m	-1	1					
	kg	1	-2	1				
	A	1			1			
	K	1		1		-1		
	mol						-1	
	cd	2		1				1

at	present	$\Delta u_{ m Cs}$	c	$m_{\mathcal{K}}$	μ_0	$T_{ m TPW}$	$M(^{12}C)$	K_{cd}
	s	-1						
	m	-1	1					
	kg			1				
	A	1/2	1/2	1/2	-1/2			
	K					1		
	mol			1			-1	
	cd	1	2	1				1

Continuity condition (similar for all redefined units)

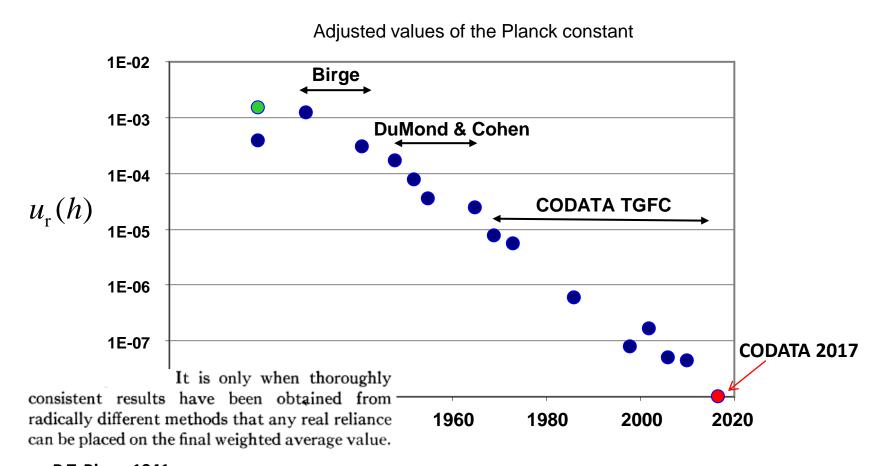
$$1 \text{ kg} = m_{\kappa}$$
 (at present)

1 kg = 1.475 521 3997...×
$$10^{40} h \Delta v_{cs}/c^2$$


SI value of *h* fixed to be consistent with:

$$m_{\kappa} \doteq 1.4755213997... \times 10^{40} \frac{h\Delta v_{\text{Cs}}}{c^2}$$

in practice, uncertainty will be imperceptible


Newell et al. (2018); Mohr et al. (2018)

What took so long?

After a graph originally created in 2012 by Estefanía de Mirandés, BIPM

What took so long?

--R.T. Birge, 1941

After a graph originally created in 2012 by Estefanía de Mirandés, BIPM

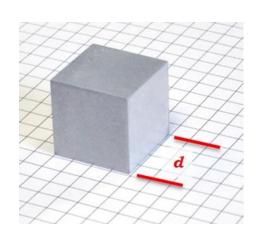
Two radically different methods to consider

Kibble balance (watt balance)

An electromagnetic balance weighs a mass $m \sim 1$ kg to determine $h/m = Q_{\rm wh}$; quantum electrical devices are used.

 $Q_{\rm wb}$ combines auxiliary measurements of two frequencies, one velocity, the local gravitational acceleration, and dimensionless scaling factors. m is traceable to m_{K} .

• X-ray crystal density (**XRCD**), also known as '**Avogadro**' method Determines the atomic mass of $^{28}\mathrm{Si}$, $m_\mathrm{a}(^{28}\mathrm{Si})$, by determining the number N of atoms in a perfect crystal of mass $m \sim 1$ kg. m is traceable to m_K ; $m_\mathrm{a}(^{28}\mathrm{Si}) = m/N$.

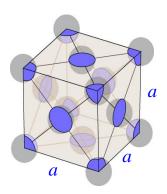

 $hN/m = Q_e \cdot (m_e/m_a(^{28}\text{Si}))$, already known to 0.45 parts in 10⁹.

atomic mass of 27 Al, $m_{\rm a}(^{27}$ Al) traceable to the mass of \mathcal{K} by the X-ray crystal density method (XRCD).

Make a 20-g cube of high-purity aluminium, with side d and mass m.

measured: d = 19.54 mm; m = 20.05 g.

If there are N atoms in the cube,



$$m = N \cdot m_{a}(Al)$$

$$N = 4\frac{d^3}{a^3} = 4\left(\frac{d}{a}\right)^3$$

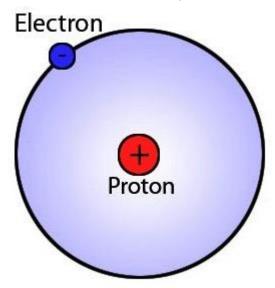
$$m_{\rm a}({\rm Al}) = \frac{m}{N} = \frac{m}{4} \left(\frac{a}{d}\right)^3$$

$$\frac{m}{d^3} = \frac{4 \cdot m_{\rm a}(A1)}{a^3}$$

Al unit cell has 4 atoms. $a = 405 \times 10^{-12} \text{ m}$

The Planck constant h from XRCD : one possibility

The Bohr model of the hydrogen atom relates the Planck constant, h, to the electron mass, $m_{\rm e}$. As written today:


$$h \cdot (cR_{\infty}) = \frac{1}{2} m_{\rm e} \cdot (\alpha c)^2$$

In this equation, proton

is a point with infinite mass.

 R_{∞} includes corrections for infinite mass,

Special Relativity, and the multitude other deficiencies of the Bohr model.

The Planck constant h from XRCD

The Bohr result as now written:

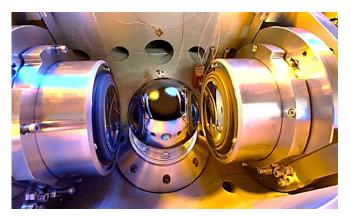
$$h = \left[\frac{\alpha^2 c}{2R_{\odot}}\right] m_{\rm e} \longrightarrow h = Q_{\rm e} m_{\rm e}$$

: fine structure constant (a pure number)

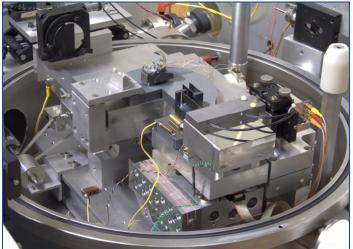
c : fine structure constant (a pure nc : speed of light in vacuum (in m/s)

Rydberg constant (in 1/m)

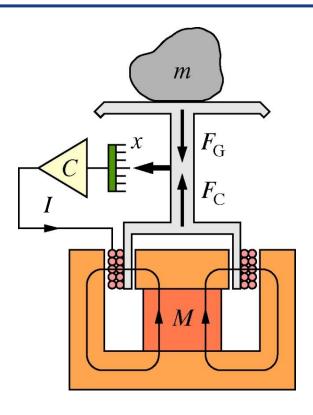
relative uncertainty of Q_e is 0.45 parts in 10 9 (CODATA 2014)



$$h = \left[Q_{e}\left(\frac{m_{e}}{m_{a}(Al)}\right)\frac{a^{3}}{4d^{3}}\right]m$$


$$h = \left[Q_{e} \left(\frac{m_{e}}{m_{a} (Al)} \right) \frac{a^{3}}{4d^{3}} \right] m \qquad h = \left[Q_{e} \left(\frac{m_{e}}{m_{a} \binom{28}{Si}} \right) \frac{a_{Si}^{3}}{8 \binom{\pi}{6} d^{3}} \right] \cdot m = Q_{SiXRCD} \cdot m$$

Some key features of the silicon XRCD experiment


optical interferometer to measure $V_{\text{sphere}} = (\pi/6)d^3$

X-ray interferometer to determine a_{Si}

The Planck constant h from a Kibble balance – Step 1

from Mettler-Toledo documentation describing servocontrol of an analytical balance.

Gravitational force

$$F_{\rm G} = mg$$

Electromagnetic force

$$F_{\rm C} = I(BL)$$

$$mg = I(BL)$$

An analytical balance is calibrated by an internal or external mass standard ultimately traceable to $m_{\rm K}$

watt balance – Step 2

- Move the coil of wire (length L) vertically through the magnetic field (B) at a controlled velocity (v).
- ◆ A potential difference *V* appears across the ends of the wire:

$$V = V(BL)$$

$$mg = rac{V'}{R}(BL)$$
 (from previous slide)

Combining equations, mechanical power = electrical power

$$mgv = V \frac{V'}{R}$$

Quantum electrical effects revisited

$$h = \frac{4}{K_{\rm J}^2 R_{\rm K}}$$

The **Josephson effect** relates a d.c. potential difference, V, to a microwave frequency, f, through the Josephson constant $K_{\rm J}$;

$$V = X_V \frac{f}{K_I} = X_V \left(\frac{h}{2e}\right) f$$

The quantum Hall effect relates a resistance, R, to the von Klitzing constant $R_{\rm K}$;

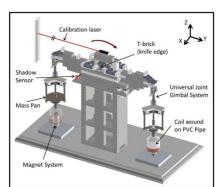
$$R = X_R R_K = X_R \frac{h}{e^2}$$

 X_V and X_R are dimensionless experimental scaling factors .

Kibble balance – the link to the Planck constant

◆ Measure *V*, *V* ′ and *R* with **quantum electrical devices**, first discovered in the last century and now widely used:

$$mgv = V\frac{V'}{R} \longrightarrow h = \left[\frac{4b\frac{gv}{f \cdot f'}}{f \cdot f'}\right] \cdot m = Q_{wb} \cdot m$$


f and f' are **microwave frequencies** associated with the voltage

measurements;

b is a product of integers and dimensionless scaling factors;

$$Q_{\rm wb} = \left[4b \frac{g \mathbf{v}}{f' \cdot f} \right]$$

Kibble balance made of Lego bricks https://doi.org/10.1119/1.4929898

From remarks of M. André Danjon, President, Comité International des Poids et Mesures

...Seule des trois grandeurs fondamentales de la mécanique, la masse conservera un étalon artificiel, le Kilogramme en platine iridié du Pavillon de Breteuil...

[I]I faut bien avouer que son invariabilité tient un peu du miracle. En pratique, on ne l'utilise que rarement, de peur de l'altérer. Il y a là une faiblesse du Système Métrique à laquelle les métrologistes devront tôt ou tard porter remède.

Mais ils ont d'autres tâches plus urgentes...

Compte rendu de la onzième réunion de la CGPM (1960), page 23

	$\Delta \nu_{\rm Cs}$	c	h	e	k	$N_{ m A}$	K _{cd}
S	-1						
m	-1	1					
kg	1	-2	1				
A	1			1			
K	1		1		-1		
mol						-1	
cd	2		1				1

Bureau

International des

Poids et

Mesures