1

Resonant Relaxation of Stars around a supermassive BH

Jean-Baptiste Fouvry, IAP fouvry@iap.fr

> Obs. Meudon January 2020

In collaboration with B. Bar-Or, P.-H. Chavanis, C. Pichon, J. Magorrian

Fluctuations and dissipations

Brownian movement theory and stochastic diffusion

Fluctuation-Dissipation Theorem

Stars in galaxies undergo the same process.

But, gravity is a long-range interacting force

- + To diffuse, stars have to **resonate**, otherwise they follow the **mean field**.
- + All fluctuations are amplified by **collective effects.**

How can one describe orbital distortions on cosmic timescales ?

Gravity structures matter on all scales

External perturbations and **cosmic environment**

- + Near-Field cosmology
- + Cusp-transition
- + Dynamical friction

Gravity structures matter on all scales

10 kpc

External perturbations and **cosmic environment**

- + Near-Field cosmology
- + Cusp-transition
- + Dynamical friction

Evolution of galactic discs and the Milky Way		
+ Galactic Archeology -	Т	
+ Radial Migration		
+ Metallicity gradients	GAIA	
+ Thickening		

Gravity structures matter on all scales

10 kpc

External perturbations and **cosmic environment** + Near-Field cosmology

- + Cusp-transition
- + Dynamical friction

Evolution of galactic discs and the Milky Way		
+ Galactic Archeology -	Т	
+ Radial Migration		
+ Metallicity gradients	GAIA	
+ Thickening		

1 pc

Evolution of **galactic centers** and SgrA*

- + Stellar capture rates
- + Measure of the BH spin
- + Gravitational waves sources
- + Tests of general relativity

Evolution on cosmic timescales

Galaxies are:

- + Inhomogeneous (complex trajectories)
- + Relaxed (equilibrium states)
- + **Resonant** (orbital frequencies)
- + **Degenerate** (in some regions)

Angle-action coordinates Quasi-stationary states Fast timescale vs. cosmic timescale Frequency commensurability

Inhomogeneous systems

+ Label orbits with integrals of motion

Evolution on cosmic timescales

Galaxies are:

- + Inhomogeneous (complex trajectories)
- + Relaxed (equilibrium states)
- + Resonant (orbital frequencies)
- + **Degenerate** (in some regions)
- + **Self-gravitating** (amplification of perturbations)
- + **Discrete** (finite-N effects)
- + **Perturbed** (effects of the environment)

Collective effects and perturbations

Self-gravitating amplification

Gravitational polarisation essential to

- + Cause dynamical instabilities
- + Induce dynamical friction and mass segregation
- + Accelerate/Slow down secular evolution

Collective effects and perturbations

Self-gravitating amplification

Gravitational polarisation essential to

- + Cause dynamical instabilities
- + Induce dynamical friction and mass segregation
- + Accelerate/Slow down secular evolution

Typical fate of a self-gravitating system

Objective : Describe the long-term dynamics of self-gravitating systems (e.g. galactic centers)

Method : New quasi-linear approaches, coming from kinetic theory

- + Self-consistent equation accounting for the roles of **self-gravity** and **resonances**
- + Offers new physical insights (phase transitions, equilibrium states)
- + Complementary to numerical simulations

The case of galactic centers

S-Cluster of **SgrA* Densest** stellar system of the galaxy Dynamics dominated by the **central black hole**

What is the diet of a **supermassive black hole**?

Stellar diffusion in galactic centers

- + Origin and structure of SgrA*
- + Relaxation in **eccentricity**, **orientation**

Sources of gravitational waves

- + BHs-binary mergers
- + TDE, EMRIs

Tidal Disruption Event

Extreme Mass Ratio Inspiral

What is the long-term dynamics of stars in these very dense systems?

Galactic centers are extremely dense

VLT observations

N-body simulations (B. Bar-Or)

Perfect "lab" to investigate the **statistical physics** of a stellar system

Galactic centers are degenerate

Potential dominated by the SMBH:

+ Keplerian orbits are **closed**

$$\varepsilon = M_{\star}/M_{\bullet} \ll 1$$

$$\forall \mathbf{J}, \mathbf{n} \cdot \mathbf{\Omega}_{\mathrm{Kep}}(\mathbf{J}) = 0$$

KECK observations

N-body simulations (B. Bar-Or)

Orbit-average: stars are replaced by Keplerian wires

Describing Keplerian wires

Natural Angle-Action coordinates: Delaunay Variables, i.e. orbital elements

Wires described by five numbers

+ Shape	(a, e)
+ Phase	ω
+ Orientation	Ĺ

Wires dynamics

Orbit Average

 $J_{\text{fast}} = I(a)$ adiabatically conserved

Wires may **precess constructively**:

+ In-plane precessions

- Spherical cluster mass
- 1PN relativistic Schwarzschild precession

$$\dot{\omega} = \Omega_{\text{prec}}$$
; $\hat{\mathbf{L}} = \operatorname{cst}$.

+ Out-of-plane precessions

- Triaxial cluster mass
- 1.5PN relativistic Lense-Thirring precession

$$\dot{\hat{\mathbf{L}}} = \mathbf{\Omega}_{\text{prec}}$$
; $L = \text{cst}$.

Wires may also **jitter stochastically**

$$\dot{\hat{\mathbf{L}}} = \boldsymbol{\eta}(t)$$

Long-term dynamics of wires

In-plane precessions (L, ω)

Constructive mean field motion

$$\Omega^{\rm prec} = \Omega^{\rm prec}_{\rm self} + \Omega^{\rm prec}_{\rm rel} + \Omega^{\rm prec}_{\rm ext}$$

Long-term diffusion of L = L(e)

Scalar Resonant Relaxation

Out-of-plane precessions L

No mean field motion

 $\langle \Omega^{\rm prec} \rangle = 0$

Random walk on the sphere of **L**

Vector Resonant Relaxation

Non-Resonant Relaxation

Orbital distortions sourced by instantaneous kicks and deflections

+ Local, uncorrelated and non-resonant encounters, i.e. slowest dynamics

+ Immune to orbit-average and adiabatic invariance: $\dot{a} = \eta(t)$

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

 $\mathrm{d}M$ $= \Omega_{\mathrm{Kep}}$ d*t*

2. Precession time In-plane precession (mass + relativity)

> dω $- = \Omega_{\rm prec}$ d*t*

3. Vector Resonant Relaxation Non-spherical torque coupling

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

Non-local resonances

The (degenerate) Balescu-Lenard equation

The master equation of scalar resonant relaxation

$$\frac{\partial F(L,a,t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial L} \left[L \frac{D_{LL}(L,a)}{\partial L} \frac{\partial}{\partial L} \frac{F(L,a,t)}{L} \right]$$

Anisotropic diffusion coefficients

$$egin{split} D_{LL}(L,a) \propto rac{1}{N_{\star}} \sum_{n,n'} n^2 \int \mathrm{d}L' \mathrm{d}a' \, \delta_{\mathrm{D}}(n\Omega^{\mathrm{prec}}(L,a) - n'\Omega^{\mathrm{prec}}(L',a')) \ imes \left|A_{nn'}(L,a,L',a')
ight|^2 \, F^{\mathrm{Cluster}}(L',a',t) \end{split}$$

Some properties

D

$$F(L,a,t)$$
 Orbital distortion

$$\partial/\partial L$$
 Adiabatic invariance

$$_{LL}(L,a)$$
 Anisotropic diffusion

Finite-N effects

n Resonance numbers

$$\int dL'da' \quad \text{Scan of orbital space}$$

$$\delta_{\rm D}(n\Omega^{\rm prec} - n'\Omega^{\rm prec}') \quad \text{Resonance condition}$$

$$\left|A_{nn'}(L, a, L', a')\right|^2 \quad \text{Coupling coefficients}$$

26

condition

Scalar Resonant Relaxation in Galactic Nuclei

The diffusion coefficients of eccentricity

Non-local resonances $\delta_{\rm D}(n\Omega_{\rm prec}(L) - n'\Omega_{\rm prec}(L'))$

Scalar Resonant Relaxation in Galactic Nuclei

Scalar Resonant Relaxation in Galactic Nuclei

Monte-Carlo realisation of the diffusion coefficients

Scalar Resonant Relaxation can affect the S-stars

Do these stars have had the time to relax in eccentricities?

More constraints from S2

Vector Resonant Relaxation

The dynamics of **Keplerian wires**

Since $T_{\rm prec} \ll T_{\rm VRR}$, we can perform a second orbit-average
Orbit average: Wire \Rightarrow Annuli

What is the dynamics of a set of **long-range coupled annuli**?

Random walk of the stars' orientations

Pairwise coupling between two annuli

Self-consistency requirement

Characterising the bath noise $\hat{C}_{\text{bath}} = \left\langle \eta(\hat{\mathbf{L}}, t) \eta(\hat{\mathbf{L}}', t') \right\rangle$

+ The state of the bath is fully characterised by

$$\varphi_{\text{bath}}(\hat{\mathbf{L}}, t) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\text{D}}(\hat{\mathbf{L}} - \hat{\mathbf{L}}_{i}(t))$$

+ System's (quadratic) evolution equation

$$\frac{\partial \varphi_{\text{bath}}(t)}{\partial t} = Q \,\varphi_{\text{bath}}(t) \,\varphi_{\text{bath}}(t)$$

+ Good news

- At t=0, particles are **statistically decorrelated**

- Very constraining **spherical symmetries**

+ Initial time statistics

$$\left\langle \hat{C}_{\text{bath}}(t=0) \right\rangle$$

Initial amplitude

+ (Natural) Gaussian Ansatz

$$\left\langle \frac{\mathrm{d}^2 \hat{C}_{\mathrm{bath}}}{\mathrm{d}t^2} \bigg|_{t=0} \right\rangle$$

Coherence time

$$\hat{C}_{\text{bath}}(t) = \hat{C}_0 \,\mathrm{e}^{-(t/T_{\rm c})^2}$$

Characterising the random walk $\hat{C}_{test} = \left\langle \hat{L}_{test}(t) \cdot \hat{L}_{test}(0) \right\rangle$

+ Location of the **test particle** characterised by

$$\varphi_{\text{test}}(\hat{\mathbf{L}}, t) = \delta_{\text{D}}(\hat{\mathbf{L}} - \hat{\mathbf{L}}_{\text{test}}(t))$$

+ (Linear) time-dependent evolution equation

$$\frac{\partial \varphi_{\text{test}}(t)}{\partial t} = \eta_{\text{bath}}(t) \, \varphi_{\text{test}}(t)$$

- + Good news
 - Noise is treated as external
 - Very constraining **spherical symmetry**
- + Motion solved using **Magnus series**

$$\varphi_{\text{test}}(t) = e^{\Omega(t)} \varphi_{\text{test}}(0)$$
 with $\Omega(t) = \int_0^t dt' \eta_{\text{bath}}(t')$

+ Explicit expression of the time correlation

$$\hat{C}_{\text{test}}(t) = \exp\left[-\int_0^t dt_1 \int_0^t dt_2 \,\hat{C}_{\text{bath}}(t_1 - t_2)\right]$$

Characterising the random walk $\hat{C}_{test} = \left\langle \hat{\mathbf{L}}_{test}(t) \cdot \hat{\mathbf{L}}_{test}(0) \right\rangle$

Mimicking the random walk

Full N-body problem of $\mathcal{O}(N^2)$ complexity

Effective model

Vector Resonant Relaxation can affect the disc-stars

How long should these stars stay "neighbors"? Are they young enough?

Vector Resonant Relaxation can randomize disc stars

+ How "neighbors" get separated
$$\frac{d\hat{\mathbf{L}}_i}{dt} = \eta(\hat{\mathbf{L}}_i, t)$$

+ Evolution sourced by a **shared**, **spatially-extended** and **time-correlated** noise

$$\left\langle \eta(a_i, \hat{\mathbf{L}}_i, t) \eta(a_j, \hat{\mathbf{L}}_j, t') \right\rangle$$

= $C(a_i, a_j, \hat{\mathbf{L}}_i \cdot \hat{\mathbf{L}}_j, t - t')$

+ Two joint sources of **separation**

- Parametric separation

 $a_i \neq a_j$

- Angular separation

$$\hat{\mathbf{L}}_i \neq \hat{\mathbf{L}}_j$$

Resonant Relaxation in Galactic Nuclei

Context

How to aliment a **supermassive black hole**?

Stellar diffusion in galactic centers

- + Origin and structure of SgrA*
- + Relaxation in eccentricity, orientation

Sources of gravitational waves

- + BHs-binary mergers
- + TDEs, EMRIs

Novelties

+ New kinetic equations written and implemented

- + Confronted to **astrophysical observations**
- + Theory in a regime inaccessible to simulations

Next steps

Galactic centers

Stellar capture rates Gravitational waves sources

Galactic discs

Galactic Archeology Radial Migration/Thickening **Globular clusters**

Effect of velocity anisotropy Effect of rotation

Dark Matter halo

Cusp-Core transition Environmental forcing