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Fluctuations and dissipations

Brownian movement theory and stochastic diffusion

Fluctuation-Dissipation Theorem

Diffusion

rate

> Power-spectrum

<€
€ > of the fluctuations

Stars in galaxies undergo the same process.

But, gravity is a long-range interacting force
+ To diffuse, stars have to resonate, otherwise they follow the mean field.
+ All fluctuations are amplified by collective effects.

How can one describe orbital distortions on cosmic timescales ?
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1 Mpc

redshift 1.2

1. Context

Gravity structures matter on all scales

. dark matter

External perturbations and cosmic environment
+ Near-Field cosmology
+ Cusp-transition
+ Dynamical friction

Evolution of galactic discs and the Milky Way

+ Galactic Archeology
+ Radial Migration

+ Metallicity gradients
+ Thickening

GAIA

Evolution of galactic centers and SgrA*

+ Stellar capture rates

+ Measure of the BH spin .
P Gravity

+ Gravitational waves sources

+ Tests of general relativity
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Evolution on cosmic timescales

External
Oth perturbations
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Quasi-periodic

motion
Galaxies are:
+ Inhomogeneous (complex trajectories) : Angle-action coordinates
+ Relaxed (equilibrium states) | Quasi-stationary states
+ Resonant (orbital frequencies) | Fast timescale vs. cosmic timescale
+ Degenerate (in some regions) 1 Frequency commensurability
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Inhomogeneous systems

+ Label orbits with integrals of motion

P J
c |
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+ Angle-Action coordinates + Frequencies’ commensurablllty n- ﬂ J =0
02
0(t) = 6y +t2(J) on 2”/
J(t) = cst.
Trajectories become
straight lines
+ Relaxation
¢ OO > 01 OO 6’1
(few) tcross> F = F(J,t) Non-Resonant “” Resonant
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Evolution on cosmic timescales

External
erturbations
Other P
population
(e.g., GMCs)
— [ ]
Gravitational /. < —
wake —
Test
star ./
./ Field
stars
Quasi-periodic
motion
Galaxies are:
+ Inhomogeneous (complex trajectories) Angle-action coordinates
+ Relaxed (equilibrium states) Quasi-stationary states
+ Resonant (orbital frequencies) Fast timescale vs. cosmic timescale
+ Degenerate (in some regions) Frequency commensurability
+ Self-gravitating (amplification of perturbations) | Linear response theory
+ Discrete (finite-N effects) T
. Nature vs. Nurture
+ Perturbed (effects of the environment) 1
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Collective effects and perturbations

Self-gravitating ampilification

Collective effects
Syt Boltzmann ST Secular Evolution
(or linear instability) /
/ dv
(hpself 5 pself
Poisson

Gravitational polarisation essential to
+ Cause dynamical instabilities

+ Induce dynamical friction and mass segregation

+ Accelerate/Slow down secular evolution
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Collective effects and perturbations

Self-gravitating ampilification

i E;te::ﬂ ) Collective effects
OoKKer-rFianc
5 Bath X ) .
P , §yext Boltzmann Secular Evolution
(or linear instability) /

[do

self

&psel%— 5 0
Poisson

Gravitational polarisation essential to
+ Cause dynamical instabilities

+ Induce dynamical friction and mass segregation

+ Accelerate/Slow down secular evolution
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Typical fate of a self-gravitating system

External
FP

Phase mixing Perturbations Linear
/\ instability

Initial Relaxation | Quasi-stationary Secular evolution

>
/ /

conditions ~ Tdyn states Tsec > Tayn

Equilibrium

Violent relaxation

Self-gravity

Objective : Describe the long-term dynamics of self-gravitating systems (e.g. galactic centers)

Method : New quasi-linear approaches, coming from kinetic theory
+ Self-consistent equation accounting for the roles of self-gravity and resonances
+ Offers new physical insights (phase transitions, equilibrium states)

+ Complementary to numerical simulations

1
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The case of galactic centers

What is the diet of a supermassive black hole?

Stellar diffusion in galactic centers
+ Origin and structure of SgrA*
+ Relaxation in eccentricity, orientation

Sources of gravitational waves

+ BHs-binary mergers
+ TDE, EMRIs

s,

S0-17 A" "M\:“Nl
(JG‘ZU \\.', By N /;”,
s0-5 ® N ;/\
.\ ///\é / /

Keck/UCLA Galactic 2N\

Center Group e ”
. * C. Sopuerta

S-Cluster of SgrA | Gullonchor
Densest stellar system of the galaxy
, . Tidal Disruption Event Extreme Mass Ratio Inspiral
Dynamics dominated by the central black hole

What is the long-term dynamics of stars in these very dense systems?
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Galactic centers are extremely dense

VLT observations N-body simulations (8. Bar-Or)

Perfect “lab” to investigate the statistical physics of a stellar system
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Galactic centers are degenerate

Potential dominated by the SMBH:
+ Keplerian orbits are closed e =M,/M, <1

Dynamical degeneracy: VJ, n-Qke,(J) =0

S0-17
O S0-20
s0-5 ®

Keck/UCLA Galactic
Center Group

KECK observations N-body simulations (8. Bar-Or)

Orbit-average: stars are replaced by Keplerian wires
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Describing Keplerian wires

Natural Angle-Action coordinates: Delaunay Variables, i.e. orbital elements

7

Dec (')

0.4 0.2 0. —0.2 —0.4

Degenerate coor;i’”re::;:: - Wires described by five numbers
J=U,L, LZ) + Shape (a,e)
0=M,w,Q + Phase W
Q= (QKep , 0, O) + Orientation ﬁ
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Wires dynamics
Orbit Average

Jfast = [(a) adiabatically conserved ﬂ
Wires may precess constructively:
+ In-plane precessions %

- Spherical cluster mass

- 1PN relativistic Schwarzschild precession

A\

@ = Qprec - L = cst.
+ Out-of-plane precessions
- Triaxial cluster mass ﬂ
- 1.5PN relativistic Lense-Thirring precession %
L=Q . ' L=cst.
Wires may also jitter stochastically

- Finite-N effects t — I](I)
16
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Long-term dynamics of wires
In-plane precessions (L, ®)

Constructive mean field motion

()prec _ Qs;‘lefc 4 Qprec 4 Qprec

rel ext

Long-term diffusion of 'L = L(e)

Scalar Resonant Relaxation

A

Out-of-plane precessions L.

No mean field motion

<Qprec> — 0

A\

Random walk on the sphere of | L

Vector Resonant Relaxation
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Non-Resonant Relaxation

Orbital distortions sourced by instantaneous kicks and deflections

Chandrasekhar, 1946

B. Bar-Or

+ Local, uncorrelated and non-resonant encounters, i.e. slowest dynamics

+ Immune to orbit-average and adiabatic invariance: a = n(f)
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Timescales are highly hierarchical

1. Dynamical time l
Fast orbital motion induced by the BH
dM O
. T °°K
dr P
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Timescales are highly hierarchical

1. Dynamical time l l
Fast orbital motion induced by the BH
dM O
. T °°K
dr P

2. Precession time
In-plane precession (mass + relativity)
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Timescales are highly hierarchical

1. Dynamical time l l
Fast orbital motion induced by the BH
dM O
. T °°K
dr P

2. Precession time
In-plane precession (mass + relativity)

3. Vector Resonant Relaxation
Non-spherical torque coupling

df’— (L, 1)
dr
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Timescales are highly hierarchical

1. Dynamical time
Fast orbital motion induced by the BH
dM O
ds — =“Kep
2. Precession time
In-plane precession (mass + relativity)
dw o
E — S%prec l
3. Vector Resonant Relaxation
Non-spherical torque coupling
dL (L, ?) \
_ = ;/] ,
dr
4. Scalar Resonant Relaxation
Resonant coupling on precessions
=L Ll
=17 ;
dr
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Timescales are highly hierarchical

1. Dynamical time
Fast orbital motion induced by the BH

M _
ds — ==Kep

2. Precession time
In-plane precession (mass + relativity)

E — Qprec l

3. Vector Resonant Relaxation
Non-spherical torque coupling

dL (L, 1) \

—_— ;/] .

d¢
4. Scalar Resonant Relaxation
Resonant coupling on precessions

d|L|
ds 5] v
5. Non-Resonant Relaxation — Q>
Local two-body encounters g
i@ '
dr
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Timescales are highly hierarchical

4. Scalar Resonant Relaxation
esonant coupling on precessions

LI
T ’
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Non-local resonances

Q Non-local resonances
between wires

<>=> giig
St e

- Poisson fluctuation
~ \i& TS and its wake
C

Semi-major
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The (degenerate) Balescu-Lenard equation

The master equation of scalar resonant relaxation

OF(L,a,t) 1 O

_ ——{LDLL(L 2 0 F(L,a,t)

oL L

ot 20L

Anisotropic diffusion coefficients

Drr(L,a) x — Z /dL da’ 6p(nQP™(L,a) — n'QP™(L,a"))

X |Apn/(L,a, L', d )‘ plluster(p/ q/ t)

Some properties
F(L,a,t) Orbital distortion N Resonance numbers

0/0L Adiabatic invariance /dL’da’ Scan of orbital space

Drr, (L7 a) Anisotropic diffusion 0D (nQpreC — n/QPree /) Resonance condition

L/Ny| Finite-N effects |Ann, (L, a, L, a/) |2 Coupling coefficients
26
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Scalar Resonant Relaxation in Galactic Nuclei
3.0 -

Fast
Diffusion

2.9 7

2.0 7

1.5 -

1.0 -

0.5 7

0.0 7

—0.5 1

Slow
Diffusion

—1.0 . .
—15 —1.0 —=0.5

Diffusion coefficients in orbital space

—2.5 =20
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The diffusion coefficients of eccentricity

1< 7>
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Non-local resonances 6p(nQ, (L) — n'Q, . (L))

RR #

1078 :
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Non-local resonances Op(n€2 e (L) — n'€2, . (L))

Higher resonances
j=— O

107° 1 . E M \\

(1,1)
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Scalar Resonant Relaxation in Galactic Nuclei
3.0 -

Fast
Diffusion

2.9 7

2.0 7

1.5 -

1.0 -

0.5 7

0.0 7

—0.5 1

Slow
Diffusion

—1.0 . .
—15 —1.0 —=0.5

Diffusion coefficients in orbital space

—2.5 =20
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Scalar Resonant Relaxation in Galactic Nuclei

BL
X
©
|

S
©
£
£
Q

(Vo)

15 ~1.0 205 0.0

. . Bar-Or & Alexander, 2016
Eccentricity

Monte-Carlo realisation of the diffusion coefficients
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Scalar Resonant Relaxation can affect the S-stars
24 early-type stars

] T T T I

e

- F.(e) =[ de' F (e') = e’
0

Gillessen et al., 2017 -

00 02 04 06 08 10

Thermal equilibrium _

OF (L,yy 1 0 F@) ]

| 0
——|LD,, (L
o1 2 oL | LL()aL_ L

— F,(L)xL < F, (e)=e*

Do these stars have had the time to relax in eccentricities? N
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3. Scalar RR

More
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+ High-precision measurement of S2's orbit, from Gravity,
in particular at pericentre passage

+ Possible distortions of the Keplerian orbits due to
- Relativistic precessions
- Precession from the enclosed mass

(m?)

(m)?

p(r) & r~ 7 Cusp profile Mass spectrum




Resonant Relaxation in Galactic Nuclei 2. Galactic Nuclei

Timescales are highly hierarchical

3. Vector Resonant Relaxation
on-spherical torque coupling

df’— (L, 1)
dr
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Vector Resonant Relaxation

The dynamics of Keplerian wires

I

Gpr cC

Since Tprec < TyRRr , we can perform a second orbit-average
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Vector Resonant Relaxation
Orbit average: Wire = Annuli

L

Dynamical

What is the dynamics of a set of long-range coupled annuli?
37
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Vector Resonant Relaxation

Random walk of the stars’ orientations

+ Long-range Hamiltonian system
H — Z A(ai, ei, aj, ej) U(Ll . L])
1<j

A\

+ Dynamical variables - orientations: [,

+ Some properties

- No kinetic energy

- Vanishing mean field <H> =0

- Additional “labels” (Cl, 8)

Pairwise coupling between two annuli - Rotational invariance Li . Lj

38
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Vector Resonant Relaxation

+ Motion coherent on large scales
- Long-range interacting system
+ Motion smooth on short times
- Time-correlated noise
+ Particles have “preferred friends”
- Parametric coupling (a, ¢)
+ System in statistical equilibrium

- Time stationarity (# — ')

- Rotation invariance (L - L)
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Vector Resonant Relaxation

+ Motion coherent on large scales
- Long-range interacting system
+ Motion smooth on short times
- Time-correlated noise
+ Particles have “preferred friends”
- Parametric coupling (a, ¢)
+ System in statistical equilibrium
- Time stationarity (f — ')

- Rotation invariance (L - L)
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Self-consistency requirement

Bath of particles Test particle

Imposes a noisy
(correlated) potential

—

. \
Undergoes a
(correlated) random walk

é’bath — <77 (f,, t) ﬂ(f/, t,)> é’test — <f‘test(t) ; i\‘test(o)>
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Characterising the bath noise ¢, , = <;7(£, A (L, t’)>

(L, ) + The state of the bath is fully characterised by
A [
Pram(Ls, 1) = N Z op(L = Ly(?))
i=1
+ System’s (quadratic) evolution equation
0Ppain(?)
;; — Q Cﬂbath(t) q”bath(t)
(L', 1) + Good news
- At t=0, particles are statistically decorrelated
¢ ) - Very constraining spherical symmetries
bath
1.2¢ N + Initial time statistics
N-body .
CA’O — Gaussian dzcbath
<Cbath(t = O)> dr? )
=
Initial amplitude Coherence time
+ (Natural) Gaussian Ansatz
A _ A =T,
— Coun®) = Coe™™
d 6 7
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Characterising the random walk ¢, = <ﬁtest(r) - ttest(0)>

Heavy tails

— N-body

— Gaussian

+ Location of the test particle characterised by

Presi(Ly 1) = Sp(L — L ()

+ (Linear) time-dependent evolution equation

0Piesi(?)
ot

— nbath(t ) q”test(t )

+ Good news
- Noise is treated as external
- Very constraining spherical symmetry

+ Motion solved using Magnus series
t

PrestD) = €2V 0 (0)  with Q1) =[ dt' n, ()
0

+ Explicit expression of the time correlation

t t
Ciest(t) = eXxp [ —J dtlJ dty Cpon(t; — fz)]
o Jo
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Vo

Characterising the random walk ¢, = <1:test(z) - ttest(0)>

—Log(Cieq (1))
= —N-body _
10k — (aussian - .
1 -
E Ballistic regime - Diffusive regime
10_1 = x 12 . X I
1072 :
10_3— Ll ' L1 1 1 1111 1 111 f
10_1 Liest 10
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Mimicking the random walk

N-body simulations

/)//\f}\

7.4V’

NP

| [ jr \/
|

\. \

N

~
—_— e

27 %
N2

N
H= Y A;UL,-L)

i<j

Full N-body problem of O(N?) complexity

Effective model

= =T test M(F) X IAJtest(t)

dr
o I test Amplitude
wi
<”(t) ”(t’» — e_((t_t,)/Ttest)z Coherence time
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Vector Resonant Relaxation can affect the disc-stars

Line of sight

Gillessen et al., 2017

How long should these stars stay “neighbors”?
Are they young enough?
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Vector Resonant Relaxation can randomize disc stars

+ How "neighbors” get separated

+ Evolution sourced by a shared,
spatially-extended
and time-correlated noise

<’7(ai ; ti, Hn(a, IAJJ-, f’))

— C(al,d],Ll°Lj,l‘—l")

+ Two joint sources of separation

- Parametric separation
a; # a;
- Angular separation

L #L
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Resonant Relaxation in Galactic Nuclei

_1 Context
Scalar RR How to aliment a supermassive black hole?
50 - | Stellar diffusion in galactic centers
+ Origin and structure of SgrA*
1.5 1 + Relaxation in eccentricity, orientation
1.0 - Sources of gravitational waves
0.5 1 + BHs-binary mergers
| + TDEs, EMRIs
—0.5 1 Novelties
~1.0 . . + New kinetic equations written and implemented
—25 =20
+ Confronted to astrophysical observations
Vector RR + Theory in a regime inaccessible to simulations
Next steps
/ Galactic centers Globular clusters
/ Stellar capture rates Effect of velocity anisotropy
/ Gravitational waves sources Effect of rotation
|
\ Galactic discs Dark Matter halo
\ Galactic Archeology Cusp-Core transition
Radial Migration/Thickening Environmental forcing

48



