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• All LISA results will rely on the L0-L1 pipeline, and some of the algorithms (e.g., 
TDI, clock sync., …) have various possible solutions

• SYRTE is planning to develop an independent pipeline, which might bring the 
following benefits:

• Alternative methods for data analysis.

• Validation of some parts (or of all) the official pipeline.

• Increased robustness of LISA data analysis infrastructure

• An increase in the number of LISA scientists with L0 to L1 know-how.
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• The S/C separation is determined by orbital mechanics:

• Armlength mismatches ±1% over a year  laser frequency noise does not cancel→

• Relative velocities  10 m/s  Doppler shifts  10 MHz  
 MHz beatnotes, clock noise couples

≈ → ≈
→

Why TDI?
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• First proposed in [Tinto99]

• Cancel laser noise by constructing equal 
arm interferometer in post-processing
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TDI working principles
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Φ1(te) ≡ D21Φ1(tr)
= Φ1(tr − d21(tr))

1 2

tr

te
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Full first generation TDI

η12 +D12η21 +D121η13 +D1213η31X =
−η12 −D13η31 −D131η13 −D1312η21
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TDI with desynchronized clocks



• TCB time 

• Defined as the time shown of a perfect clock sitting at the solar 
system baricenter

• Global timescale, used for data analysis + ‘standard’ TDI
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t

• One proper time  for each spacecraft  ( )

• Defined as the time shown of a perfect clock sitting in spacecraft 

• Related to  (and each other) by General Relativity

• Used for describing physics inside one spacecraft

τi i i = 1,2,3

i

t

• One onboard clock time  for each spacecraft  ( )

• Defined as the time shown of the actual clock sitting in spacecraft 

• Differs from  by instrumental imperfections

• Only timescale directly accessible by the satellites

̂τi i i = 1,2,3

i

τi

Timescales in LISA
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• LISA measures total phase/
frequency of MHz interferometric 
beat notes

• 1 cycle/  @ 20 MHz requires 
50 fs/  timing precision

μ Hz
Hz

• This is out of reach for space-
qualified clocks.

• Instead: measure relative clock 
errors, correct in post-processing

• Note: any time shift applied to total 
phase/frequency requires same  
50 fs/  precisionHz
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TDI with desynchronized clocks + total frequency: performance
• Perform simulation with:

• Realistic orbits

• Realistic laser, clock, 
sideband and PRN noise

• Neglect ultimately limiting 
secondary noises

• Performance is unaffected by 
large clock drifts + offsets

• Sideband noise enters identical 
to previous studies with 
frequency fluctuations + 
dedicated clock correction step

• Numerics are a problem: 
double precision not quite 
enough for 1 pm across whole 
band
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• TDI variables can be constructed directly from the unsynchronised data

• The necessary delays can be directly extracted from the onboard ranging 
measurements at 50 fs/  precisionHz

• This allows to simplify the L0-L1 pipeline

• Remark: Resulting TDI data still needs to be synchronised to TCB, but at much 
lower precision.
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