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Context: X-INREP development at SYRTE

- The LDPG WG 6 is tasked with developing an official prototype of the LO-L1
pipeline (dubbed Initial Noise Reduction Pipeline [INREP])

- All LISA results will rely on the LO-L1 pipeline, and some of the algorithms (e.g.,
TDI, clock sync., ...) have various possible solutions

- SYRTE is planning to develop an independent pipeline, which might bring the
following benefits:

- Alternative methods for data analysis.
- Validation of some parts (or of all) the official pipeline.
» |Increased robustness of LISA data analysis infrastructure

- An increase in the number of LISA scientists with LO to L1 know-how.
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Why TDI?

- The S/C separation is determined by orbital mechanics:
- Armlength mismatches +1% over a year — laser frequency noise does not cancel

- Relative velocities ~ 10 m/s — Doppler shifts &~ 10 MHz
— MHz beatnotes, clock noise couples
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Laser noise cancellation in LISA
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Residual laser noise in LISA

Residual laser noise
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Raw laser noise

Non-locking ISC, dt=16.66s

Non-locking ISC, dt=8.33s
= Michelson, dt=0.22s
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Residual laser noise

Raw laser noise
Michelson, dt=0.22s
TDI X1, dt=10"s
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Residual laser noise in LISA

Residual laser noise

Raw laser noise
Michelson, dt=0.22s
TDI X1, dt=10"s
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TDI working principles
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Full first generation TDI
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Full first generation TDI
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TDI with desynchronized clocks
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Timescales in LISA
. TCBtimeft

- Defined as the time shown of a perfect clock sitting at the solar
system baricenter

- Global timescale, used for data analysis + ‘standard’ TDI
. One proper time 7; for each spacecrafti (i = 1,2,3)

. Defined as the time shown of a perfect clock sitting in spacecraft 1

. Related to 7 (and each other) by General Relativity

- Used for describing physics inside one spacecratft ‘ [
- One onboard clock time 7; for each spacecrafti (i = 1,2,3)

. Defined as the time shown of the actual clock sitting in spacecraft 1

. Differs from 7; by instrumental imperfections

- Only timescale directly accessible by the satellites

19




Raw data
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Raw data

- LISA measures total phase/
frequency of MHz interferometric
beat notes

. 1 ucycle/A/ Hz @ 20 MHz requires
50 fs/\/ Hz timing precision
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Raw data

- LISA measures total phase/ , .
. . Phase/Displacement Frequency/Velocity
frequency of MHz interferometric

beat notes

. 1 ucycle/A/ Hz @ 20 MHz requires
50 fs/\/ Hz timing precision

Total phase in cycles
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Raw data

- LISA measures total phase/
frequency of MHz interferometric
beat notes

. 1 ucycle/A/ Hz @ 20 MHz requires
50 fs/\/ Hz timing precision

 This is out of reach for space-
gualified clocks.

» Instead: measure relative clock
errors, correct in post-processing
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Raw data

- LISA measures total phase/ , .
. . Phase/Displacement Frequency/Velocity
frequency of MHz interferometric
beat notes

. 1 ucycle/A/ Hz @ 20 MHz requires
50 fs/\/ Hz timing precision

Total phase in cycles

Time in seconds

 This is out of reach for space-
gualified clocks.

» Instead: measure relative clock
errors, correct in post-processing

- Note: any time shift applied to total
phase/frequency requires same

50 fs/A/ Hz precision
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Determining the delay: pseudo-ranging measurements
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TDI with desynchronized clocks

- ‘Baseline’ pipeline (simplified):

- Alternative pipeline:
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Geometric TDI with clock times
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Geometric TDI with clock times

Measurements
4 in TCB:
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TDI with desynchronized clocks + total frequency: performance
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Perform simulation with:
- Realistic orbits

- Realistic laser, clock,
sideband and PRN noise

- Neglect ultimately limiting
secondary noises

Performance is unaffected by
large clock drifts + offsets

Sideband noise enters identical
to previous studies with
frequency fluctuations +
dedicated clock correction step

Numerics are a problem:
double precision not quite
enough for 1 pm across whole

band
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Paper in preparation with J.B. Bayle, M. Staab
and the SYRTE Theory and Metrology group
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Conclusion

- TDI variables can be constructed directly from the unsynchronised data

» The necessary delays can be directly extracted from the onboard ranging
measurements at 50 fs/A/ Hz precision

» This allows to simplify the LO-L1 pipeline

- Remark: Resulting TDI data still needs to be synchronised to TCB, but at much
lower precision.
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