
Particle simulations in 

special and general relativity 

Observatoire de Paris – LUTH, Meudon 

March 29th 2018 

 

Fabio Bacchini 
In collaboration with: Bart Ripperda, Oliver Porth, Rony 

Keppens, Giovanni Lapenta, Alex Chen, and Lorenzo Sironi 

Centre for mathematical Plasma-Astrophysics 

Department of Mathematics, KU Leuven 



Extreme particle acceleration 

in the universe 
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Extreme phenomena in the universe are responsible 

for the emission of highly energetic particles 

 

The precise mechanisms are not fully understood 

and involve large separation of scales  

 macroscopic phenomena affect the micro scales 

and vice versa 

 

Modelling of such systems is computationally very 

demanding 
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Separation of scales in 

stationary GR 

 ∼ ͳͲ 3   �c  ∼ ͳ   AU  
 ∼ ͳͲ − ଵ5   m 
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Modelling tools 
Each scale can be efficiently described by dedicated 

models: 

• Jets  (SR) Hydrodynamics 

• Accretion disks and jet launching 

 GR (Resistive) Magnetohydrodynamics 

• Local plasma phenomena 

 Particle/Kinetic physics in SR/GR 

 

Need for highly efficient simulation codes 

 

SCAL�
 



Plasma dynamics around black holes 
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Typically modelled with GRMHD and radiation + photon geodesics 

 

 

 

 

 

 

 

Extensions and refinements of currently used simulation tools can 

be carried out: 

• Enriching and improving the physical models, e.g. Resistivity in 

GRMHD with efficient ImEx schemes; 

• Creating new methods, e.g. particle methods for SR/GR; 
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[Bronzwaer, Moscibrodzka, Davelaar, and Falcke, using HARM2D GRMHD.] 

A black hole in a computer 
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[Bronzwaer, Moscibrodzka, Davelaar, and Falcke, using HARM2D GRMHD.] 

Accretion disk 

Black hole shadow 
Event Horizon 

A black hole in a computer 

Reconnection 

and particle 

acceleration? 



The macro scale: General Relativistic MHD 
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• Ignore spacetime evolution  (ideal) GRMHD for modelling the 

macroscopic dynamics of plasmas around black holes, e.g. 

accretion disks / jet formation: BHAC, ECHO, HARM, ATHENA, 

KORAL… 

• Recently, resistivity was added to GRMHD codes  

 reconnection processes can be simulated 
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The macro scale: General Relativistic MHD 
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[Dolence, using HARM3D] [Hotaka Shiokawa] 
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[Bronzwaer, Moscibrodzka, Davelaar, and Falcke, using HARM2D GRMHD.] 

Accretion disk 

Black hole shadow 
Event Horizon 

A black hole in a computer 

Reconnection 

and particle 

acceleration? 



The macro scale: GRMHD + ray-tracing 

11 

 
[Ziri Younsi, using BHOSS + BHAC] 

Synthetic radiation maps from GRMHD 

  solution of the geodesic equation for photons 

3+1 split formalism:  � ݑ ௜ �ݑ ߙ − = ݐ ଴ ߲ ௜ ݑ + ߙ ௝ ߲ ௜ ߚ ௝ − ݑ ௝ ݑ ௞ ʹ ݑ ଴ ߲ ௜ ߛ ௝௞ , 
 ௝ ݑ ௜ ݑ ௜௝ ߛ + ߳ = ଴ ݑߙ 
• Integrate 3+3 equations instead of 4+4; 

• Coordinate time for easy matching with field evolution (for 

GRMHD) 

• General: only the metric functions are needed! 

Allows for comparisons with upcoming observations 



Simulating geodesic motion 

12 

 

• 3+1 split formalism: set of 6 nonlinear, coupled, first-order 

differential equations for massive and massless particles 

 

• Standard (RK4 or IMR) numerical methods introduce large 

errors due to non-conservation of energy around metric 

singularities 

 

• Solution: an exactly (to round-off) energy-conserving 

numerical scheme derived from the underlying Hamiltonian 
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Practical effects: massive particles 
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Spurious escape 



Simulating geodesic motion 
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Generalized, energy-conserving numerical integration 

of geodesics in General Relativity 

F. Bacchini, B. Ripperda, A. Chen, L. Sironi, submitted to ApJS 
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Practical effects on black hole imaging 
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Practical effects on black hole imaging 
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Framework flexibility: nonstandard spacetimes 
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[Bronzwaer, Moscibrodzka, Davelaar, and Falcke, using HARM2D GRMHD.] 

Accretion disk 

Black hole shadow 
Event Horizon 

A black hole in a computer 

Reconnection 

and particle 

acceleration? 



Macro to micro: test particles in GRMHD 
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• The system is not fully self-consistent, but it gives some insight 

into the dynamics at the particle level 

• Only special relativistic particle movers have been thoroughly 

developed and studied. Geodesic motion is usually ignored! 
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Macro to micro: 

Particle acceleration from SR reconnection 
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From locally flat to GRMHD 

21 

 

Asenjo & Comisso (PRL, 118, 055101, 2017) 

• Advanced schemes including 

resistivity make possible to 

simulate MHD reconnection in 

curved spacetimes 

 

• But reconnection is a 

microscopic process! Hence, 

we need particles in full GR 

 

• A fully self-consistent 

description must rely on kinetic 

models 



The real micro scale: GR-kinetics 
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• Simulating plasmas fully consistently at the particle level is 

physically more accurate, but also computationally more 

expensive 

• Particle-in-Cell methods are designed for the task. However, 

there are very few and specific GR-PiC methods! 
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Projection 

particles  grid 

Grid 
advancing 

Projection 

grid  particles 

Particle 
advancing 

In SR: iPiC3D, Tristan-MP, xPic (implicit). What about GR? 

The real micro scale: Particle-in-Cell 



The importance of the numerical method 
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Energy conservation Preservation of invariants 

A comprehensive comparison of relativistic particle integrators,  

B. Ripperda, F. Bacchini, et al., accepted in ApJS (2018) 



Charged particle dynamics in GR 
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• We need to solve the full geodesic equation of motion + 

Lorentz force:  � ݑ ఓ �� − ݑ ఉ ݑ ఈ = � � � ఓఔ ݑ ఔ 

 

• The method developed for the geodesic part (energy-

conserving from Hamiltonian) can be easily extended to 

include the Lorentz force  energy-conserving charged 

particles movers for GR 

 

• Energy conservation is critical for massive particles, even 

in SR! 
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Uniform B field (Wald solution) Pure geodesic motion 

Charged particle dynamics in GR 
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A much richer picture in a variety of spacetimes 

Charged particle dynamics in GR 
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Towards the GR-PiC approach 

• Energy-conserving movers for 

charged particles in GR; 

 

• Maxwell solvers are available 

(already used in MHD) 

 

• Still missing a suitable 

generalized infrastructure + 

moment gathering steps… 

 

… but not an impossible task! 



Conclusions 
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• We have GRMHD simulations with resistivity  

 study accretion disks and jet launching; 

• We created a versatile framework for calculating photon and 

massless particle geodesics  

 ray-tracing for black hole shadows 

• We can easily extend to GR-Lorentz force 

 charged test particles in GRMHD 

• With a “little” extra effort  

 GR-PiC codes for microscopic processes 

Bonus features: 

• Can handle any 3+1 split metric, only requires the spacetime 

functions 

• Includes a new, exactly energy-conserving numerical scheme 

based on the Hamiltonian formulation 
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Next steps? 

• Wrap up studies on GR-Lorentz 

particle movers 

 

• Test charged particles in GRMHD 

to study particle distributions in 

reconnection 

 

• Full GR-PiC (some time in the 

future) 


