Putting Infinity on the Grid

David Hilditch

CENTRA, IST Lisbon

Seminar Meudon
February 2020

P Class.Quant.Grav. 35 (2018) 5, with E. Harms, M. Bugner. H. Riiter. B. Briigmann.
»  Class.Quant.Grav. 36 (2019) 19, with E. Gasperin.
> Class.Quant.Grav. 37 (2020) 3 with E. Gasperin, S. Gautam, A. Vafié-Vifiuales.



Open problems of practice and principle

There are fundamental open problems in NR even in the most
conservative setting. These include;

» Extreme spacetimes.
» Compact objects.
» The weak-field.

Here: focus on last of these.

The timelike outer boundary. Vafié-Vifiuales. 2015.



The weak-field |

The wavezone is weak so how is it a problem? Infinity really big.

» Asymptotic Flatness: Metric
— Minkowski near infinity. "

» Idea: draw infinity to a finite
place. How could this work?

» Key complication: managing
irregular terms.

Conformal approach:

— matched

» Analysis: Penrose, Friedrich.

i-

» Numerics: Frauendiener, CCM Cartoon. Vafié-Vifiuales. 2015.
Hubner.
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place. How could this work?

» Key complication: managing
irregular terms.

Conformal approach:

— hyperboloidal

» Analysis: Penrose, Friedrich. -

» Numerics: Frauendiener, Hyperboloidal foliation. Vafi6-Vifiuales. 2015.
Hubner.



The weak-field Il

A dual-foliation strategy:

» Difficulty: Vars/EoMs
divergent.

» Observation: global inertial
representation of MK metric
trivially regular.

» Use nice representation.
With care EoMs regular?

Illustration of DF setup.



The dual foliation formalism

Relationship between geometry with X = (T, X%) or x* = (t,x')?

» Parametrize the inverse Jacobian J=! = 9,x? as,

J1_ ( a 'W(A-BLV)) (A-BLV)IV + Bi(p1)) ) .
—a WV, (e H)i—-n'v;
» Suppose we have a system
Otu = (AAP + BP1)0pu + AS,
» Then in the lowercase coordinates we have
(1+AY)0m = aW H(AR(p )P, + (1+ AY)MP)Opu + aW 'S,

How to choose Jacobian?



The hyperboloidal initial value problem

T=T(tr)=t+HR), R=R(r)=Q(r)*r, 0A=0"

» Height function H,
compression function 2.

» Hyperboloidal Jacobian;

1 0 00

HR R 0 0
=19 0 1 0
0 0 0 1

Rough Idea: R' ~ R" and H' ~1—1/R’, 1 < n < 2 achieves
desirable coordinate lightspeeds whilst compactifying.



Regularity of the principal part, asymptotics primer

For systems with wave-equation like principal part (KG, GR in
GHG) combining with the Ju, gives;

1 0 0
1+A) = | —pw?y, Mgl w2y,
(W2 —1) W2VE w2

Observations:

» Composite lower case principal part matrices regular by
construction; symmetric hyperbolicity invariant.

» On the other hand R’ ~ R" = W ~ a ~ R"/2. Therefore
need decay in sources S to absorb growth.



Hyperboloidal numerics with the DF-wave equation

t=2.02 t=4.05 t= 8.1

A first numerical sanity check:

» For wave equation S small.

» Can even evolve radiation
field R¢. [Target for GR].

» Respectable pseudospectral
convergence achieved.

)

Numerics with the wave equation in bamps.



Asymptotic flatness

GR in GHG: can decay compensate growing terms? Sufficient
conditions for (14 AY)™1S < oo are

» (Weak) Asymptotic flatness assumption,
8w = Muw + O(R™°), Ou8uv = O(R™°), €>1/2.
» (Strong) Lightspeed condition CF = A/L — BR,
9, CR=0(R717%), 4s5>0.

For the latter magic is needed!



Taking stock

Questions:
> What is behind the “mysterious” lightspeed condition?
» Can be the equations explicitly regularised?
Observations:
» Specific non-linear structure has not been exploited up so far.

» Relevant: Global non-linear stability of Minkowski by Lindblad
& Rodnianski. Spoiler: The weak null condition!



The classical null condition

For quasilinear wave-equations with quadratic nonlinearity in V¢,
classical null condition = global existence [Kla86,Chr86].

Example: L=01+0r
L=01 -0
O¢ = V¢V .0, <
L L
54
but m??L,L, = 0, so the CNC \/
holds. Too restrictive. 6

» WNC: “asymptotic system admits global solutions that do not
grow too fast” [LinRod03].

> WNC =% Global existence [Conjecture].



The GB-model |

What is the asymptotic system? Example:
Og =0, Ob=(d71g)%

Recipe:
» Rescale G = Rg, B = Rb.
» Change coordinates u=T — R, s = log(R).

» Turn krank, collect leading order in R71.
For the GB-model this gives
9s0,G =0,  20,0,B = —(0,G)>.

[NB. We have worked all of this out for first order systems.]



The GB-model Il

0,0,G =0,  20,0,B = —(9,G)>

Solution to asymptotic system
» 0:0,6=0 = G= Fg(u,QA).

I~ r~

> 0,0,B = —1(0,6)? = , ]
0,B = —15(8,G)?. =

> B =(InR) Fy(u,0).

/L]

&

N
[S))
<

Predicts the asymptotics of original fields

_ 1 A _ log(R)
g_ R'Fg(u79 )7 b_ R

Fp(u, QA)



GHG with constraint damping |

» Reduced Ricci
Rap = Rag = V(aCp) + Wap

> W, homogeneous in Cy
> The reduced EFE Rog =0 =

gﬂaﬁazgﬂ = Nﬂ[ﬁg,ag] + P%[Og, 8g] + F%—l- 2Wa75,



GHG with constraint damping ||

To apply recipe to GHG write
8ab = Map + haba Hab = Rhab'

Define flat-null frame {L, L, Sa}

» G-fields Hg: Hii, His,, Hx = 2Hs;s,, Hi = Hs s,
> B-field: Hyp.
» U-fields Hy: Hpyp, HLSAy Hy = H5151 + H5252.

Asymptotic constraints

Cy = O,Hy, free evolution Cy #0.

— H5252.



The good the bad and the ugly

It turns out that W, can be prescribed so that

(a +H2 a)a Hg =0,
b (OuH2)? | (DuH)?
(a + 2ty )a L= +

mn 5 5
(as + HLL

1
Ta“> Outy = =00, Hy = 50uHudHur.

Figure: The good



The good the bad and the ugly

It turns out that W, can be prescribed so that

Hu (), (0uHy)?
T
1
(85 + L0, Dby = 50, oy — S0 HwduHuL

Figure: The bad



The good the bad and the ugly

It turns out that W, can be prescribed so that

(2 + "a,)ouHg =0,

2
Hit ~ (0uH)? | (OuHx)?
(85+ Ta”>a”H4 = T
(85 + %&,) OuHy = —80,Hy — %%Huau/’/u-

Figure: The Ugly




The good the bad and the ugly

It turns out that W, can be prescribed so that

(as + %8,,)8,,/‘@ —0,

Hit ~ (0uHy)? | (OuHx)?
(85 + Ta“>8“H4 = T
H 1

#au) Cu=—6Cu = 5CuCu.

(85 +

We have Cf ~1— HLL/(2R). But Hy; € Hy.
Lightspeed condition obtained. Magic!

Figure: The Ugly




The GBU-model

Consider the toy model for GR in harmonic gauge;
Og =0, Ob = (07g)3, Ou ~ 207u.
» Asymptotics; g ~ R, b~ R7llog(R), u~ R72.
> “Subtract the logs" regularization; evolving

G~ Rg, B ~ Rb+ § log(R)n,
U = R2U, au77 ~ (auG)za

in fact gives regular equations for regular unknowns!

[NB. 7 analagous to news in GR].



Hyperboloidal numerics with the GBU-model

Second numerical sanity check:

| 2 Again ||ke 'radiation f|e|d, Convergence at J*

0.00002 .
0.00001 A R
0.00000

—0.00001

» Implemented GBU-model in
spherical FD code.

=2

» Convergence despite logs.

» (Spectral numerics desirable

—0.00002

Differences, conv.order:

— B-: (low-med)/2*
. H B-: med-high
too; patience needed!) ~0.00003 T U owmedrz
¥ U-: med—high
-0.00004
0.0 0.2 0.4 0.6 0.8 1.0

Can specially chosen basis ¢

functions save hassle here or for
N i ith GBU-model.
GR? umerics wr model



Conclusions

Motivated by need for GWs at null infinity we are developing a new
regularization using compactified hyperboloids. Features include:

» Dual-foliation formalism.

» Exploiting null-structure for NR (lightspeed condition
achieved!).

» Nonlinear change of variables to get regular equations for
regular unknowns.

GR on the way - stay tuned!



