Modelling proto-neutron star evolution

LUTh's student day

Aurélien PASCAL In collaboration with M. OERTEL and J. NOVAK

Wednesday 10th March

LUTh (Laboratoire Univers et Théories), Observatoire de Paris, PSL

The formation of neutron stars

The core-collapse mechanism : infall

Figure 1: Core-collapse mechanism, figure extracted from Janka et al. (2007) Iron core beyond the Chandrasekhar mass $M_{Ch} \approx 1.2 \, M_{\odot} \Rightarrow$ collapse Electron captures during the infall :

$$_{Z}^{A}\mathrm{X}+e^{-} \rightarrow _{Z-1}^{A}\mathrm{Y}+
u_{e}$$

The limit of the zone at high densities and temperatures in which neutrinos are *trapped* because of their low mean free path is called the *neutrinosphere*

The core-collapse mechanism : bounce and shock

Figure 2: Core-collapse mechanism, figure extracted from Janka et al. (2007)

density of roughly nuclear saturation : $n_0 = 0.16 \,\text{fm}^{-3}$ \Rightarrow nuclei dissociation, core bounce and shock generation

shock propagation ν -burst when the shock reaches the neutrinosphere exhaustion of the shock by dissociation of infalling material

The core-collapse mechanism : shock stalling and revival

Figure 3: Core-collapse mechanism, figure extracted from Janka et al. (2007)

shock stalling and accretion

 $\nu\text{-heating}\ (\text{coupled with SASI}\ \text{and strong asymmetries}) \Rightarrow$ possible revival of the shock and final explosion

Proto Neutron Star and \nu-emission

Figure 4: Core-collapse mechanism, figure extracted from Janka et al. (2007)

Relevant weak processes occuring during core-collapse

 $\label{eq:linear_state} \frac{\text{Neutrinos absorption/emission via charge exchange}}{p + e^{-} \leftrightarrows n + \nu_{e}} \qquad p \leftrightarrows n + e^{+} + \nu_{e}}$ $n + e^{+} \leftrightarrows p + \bar{\nu}_{e} \qquad n \leftrightarrows p + e^{-} + \bar{\nu}_{e}$ $\stackrel{A}{_{Z}} X + e^{-} \leftrightarrows \stackrel{A}{_{Z}} Y + \nu_{e}$

Thermal pair production of neutrinos

 $e^- + e^+ \leftrightarrows \nu + \bar{\nu}$

 $N + N \leftrightarrows N + N + \nu + \overline{\nu}$ (nucleon bremsstrahlung)

Neutrino scattering

$$\begin{split} & N + \nu \leftrightarrows N + \nu \\ & \overset{A}{_Z} \mathbf{X} + \nu \leftrightarrows \overset{A}{_Z} \mathbf{X} + \nu \\ & \mathbf{e}^{\pm} + \nu \leftrightarrows \mathbf{e}^{\pm} + \nu \end{split}$$

Proto-neutron star structure

Figure 5: Schematic representation of a proto neutron star structure (PNS), compared to the corresponding cold catalysed neutron star (NS)

PNS cooling : $T_{PNS} \sim 10 \text{ MeV} (10^{11} \text{ K}) \Rightarrow T_{NS} \sim 10 \text{ keV} (10^8 \text{ K})$

main mechanism : energy loss and deleptonization via emission of ν_e, ν_μ, ν_τ \Rightarrow mantle contraction with Kelvin-Helmoltz mechanism : cooling via radiation \rightarrow heating via contraction \rightarrow cooling... Acoustic timescale :

$$t_{\rm ac} = \frac{R}{c_{\rm sound}} = \left(\frac{R}{10\,\rm km}\right) \left(\frac{c_{\rm sound}}{10^8\,\rm m\,s^{-1}}\right)^{-1} \times 10^{-1}\,\rm ms$$

Deleptonization timescale :

$$t_{\rm delep} = \frac{Y_e N_B}{L_{\nu,n}} \approx \left(\frac{Y_e}{0.2}\right) \left(\frac{M}{1.6\,\rm M_\odot}\right) \left(\frac{L_{\nu,n}}{10^{55}\,\rm s^{-1}}\right)^{-1} \times 30\,\rm s$$

Where N_B is the total baryon number, M is the total mass and $L_{\nu,n}$ the total neutrino number-luminosity.

Kelvin-Helmholtz (star contraction) timescale :

$$t_{\rm KH} = \frac{GM^2}{RL_{\nu,e}} \approx \left(\frac{M}{1.6\,\rm M_{\odot}}\right)^2 \left(\frac{R}{10\,\rm km}\right)^{-1} \left(\frac{L_{\nu,e}}{10^{52}\,\rm erg\,s^{-1}}\right)^{-1} \times 30\,\rm s$$

Where $L_{\nu,e}$ is the total luminosity.

 $t_{
m ac} = 10^{-1}\,
m ms$ $t_{
m delep} = 30\,
m s$ $t_{
m Kelvin-Helmoltz} = 30\,
m s$

We want to simulate $\sim 60\,{\rm s}$ but the acoustic timescale limits timesteps to $\delta t \sim 10\,{\rm \mu s}$

 \Rightarrow we use a quasi-stationary approximation to average acoustic effects and evolve the PNS over KH-time

Open questions on PNS evolution

- how do uncertainties on microphysics (EoS and weak cross sections) influence the cooling ?
- how and when the NS does the crust form ? and what influence does it have on cooling ?
- what is the influence of the neutrino transport scheme
- to which extent convection effects contributes to the cooling ?
- what are the effects of rotation (meridional circulation, horizontal turbulence, magneto-dynamo...)
- what is the GW emission of a PNS ?

PNS modelling within the quasi-stationnary approximation

We assume the star contracts slowly : $\frac{\partial n_B}{\partial t} \sim 0, \ \frac{\partial p}{\partial t} \sim 0, \ \frac{\partial g_{\mu\nu}}{\partial t} \sim 0$ (but we still have $\frac{\partial s}{\partial t} \neq 0$ and $\frac{\partial Y_e}{\partial t} \neq 0$!)

\Rightarrow *p* is computed via the TOV equations

Closure is obtained with a hot equation of state for dense matter¹ : $(p, s, Y_e) \mapsto$ density, temperature, composition, chemical potentials, ...

Metric in spherical symmetry :

$$ds^{2} = -\alpha^{2}c^{2}dt^{2} + \psi^{2}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

Einstein equations :

$$\frac{1}{\psi} = \sqrt{1 - \frac{2Gm}{rc^2}}$$
$$\frac{dm}{dr} = 4\pi r^2 \frac{E}{c^2}$$
$$\frac{d\ln\alpha}{dr} = \psi^2 \frac{G}{c^2} \left(\frac{m}{r^2} + 4\pi r \frac{p}{c^2}\right)$$

Hydrostatic equilibrium equation :

$$\frac{dp}{dr} = -(E+p)\frac{d\ln\alpha}{dr}$$

Despite the quasi-stationary approximation, we still have $\frac{\partial Y_e}{\partial t} \neq 0$ and $\frac{\partial s}{\partial t} \neq 0$ and we use evolution equations for Y_e and s to compute the next quasi-stationary state

The time evolution of Y_e and s comes from the source of electrons s_n and the source of energy s_e :

$$abla_{\mu}(n_{B}Y_{e}u^{\mu}) = s_{n}$$
 $u_{
u}
abla_{\mu}(T^{\mu
u}) = s_{e}$

which can be recasted as

$$\frac{1}{\alpha c} \frac{DY_e}{Dt} = \frac{s_n}{n_B}$$
$$\frac{1}{\alpha c} \frac{Ds}{Dt} = \frac{\alpha s_e - \mu_e s_n}{n_B T}$$

 s_n and s_e have to be computed with a neutrino radiation-transfert scheme

we need the source terms for evolution :

$$s_n = -\frac{1}{c} \left(\Gamma_{\nu_e} - \Gamma_{\bar{\nu}_e} \right)$$

$$s_e = -\frac{1}{c} \left(Q_{\nu_e} + Q_{\bar{\nu}_e} + 4Q_{\nu_x} \right)$$

we use the Fast Multigroup Transport scheme² a *stationnary* approximation of the transport equation :

$$p^{i}\frac{\partial f}{\partial x^{i}}-\Gamma^{i}{}_{\mu\nu}p^{\mu}p^{\nu}\frac{\partial f}{\partial p^{i}}=u_{\mu}p^{\mu}\mathcal{B}[f]$$

at high optical depth we use the *two-stream approximation* at low optical depth we use a *two-moment closure*

²Müller and Janka 2015.

Some exemples of results

Figure 6: Evolution of the mass of the PNS

Some exemples of results

Figure 7: Evolution of the ν -luminosity of the PNS

- a code to model PNS cooling has been developed
- it is currently used to study influence of ν interaction rates and/or convection on the cooling
- currently writing a paper and the manuscript... you are invited to my PhD defense in June for more details on all this ;)