Evolution Problem in Numerical Relativity

Jordan NICOULES

jordan.nicoules@obspm.fr

LUTH STUDENTS' DAY

March 10th, 2021

Laboratoire de l'Univers et de ses Théories

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

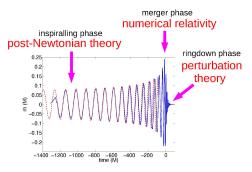
Context	Kadath		Conclusion
0000	00	000000	0

Context

・ロト ・四ト ・ヨト ・ヨト

Context: Numerical Relativity

- Numerical Relativity: Solve Einstein's equations (or more) numerically.
- Black Hole Binary Grand Challenge (90s): achieve several orbits and merger to generate waveforms for Gravitational Waves emission.



Picture from http://www.iap.fr/actualites/laune/2016/OndesGr/forme_onde_an.jpg

Image: A matrix and a matrix

- Numerical Relativity: Solve Einstein's equations (or more) numerically.
- Black Hole Binary Grand Challenge (90s): achieve several orbits and merger to generate waveforms for Gravitational Waves emission.
- In 2005, first successful simulation by Pretorius (https://doi.org/10.1103/PhysRevLett.95.121101)
- In 2015, first successful detection of GW (https://doi.org/10.1103/PhysRevLett.116.061102)

- To obtain a successful computation, you need a handful of ingredients, mixed together in a delicate and sometimes empirical manner.
- Put it in the oven of High Performance Computing for thousands of CPU hours.
- See for example Brügmann in *Science* for a short review https://science.sciencemag.org/content/361/6400/366

Context	Kadath		Conclusion
0000	00	0000000	0
	<u> </u>		

An overview of a few ingredients

- System of equations:
 - Choice of theory
 - Choice of dynamical variables
 - Choice of the order of equations (in time, in space)
 - Constraint damping...
- Discretization, integration scheme, numerical methods, parallelization.
- Gauge conditions, boundary conditions, initial data.
- Management of the physical objects (horizons, shocks) and extraction of relevant data (gravitational waveform).

- First: Start with standard methods and implement them in Kadath, to have a working code.
- Second: Apply them to new physical systems (AADS spacetimes, scalar-tensor theories...) and/or explore less standard methods (constrained evolution schemes, time spectral methods).

< 3 > < 3 >

Context	Kadath		Conclusion
0000	00	000000	0

Brief introduction to Kadath and my contribution

- Kadath library: numerical code (C++) developed at LUTH which implements spectral methods and a Newton-Raphson scheme to solve non-linear PDEs.
- Can be used to study stationary systems or generate initial data for evolution for example.
- Very flexible in terms of geometry, equations to solve, designed with NR in mind, but no evolving systems yet (hence PhD).

Context	Kadath	Scalar wave	Conclusion
0000	○●	0000000	O
What's new?			

- Solve hyperbolic systems of equations with
 - a 4th-order Runge-Kutta scheme ;
 - an adaptive step Runge-Kutta scheme (Dormand-Prince method).
- Equations given as $\partial_t u = \dots$ with u being one of the dynamical variables, for bulk, boundary and matching equations.
- Implemented for spherical types of spaces (nucleus and shell domains) but easily transferable to other types of domains and spaces when needed.
- Save configurations with a custom frequency (e.g. every 10 time steps) or stop the time scheme with numerical or physical criteria.

Context	Kadath	Scalar wave	Conclusion
0000	00	000000	0

A first application: the scalar wave

- Simple and controlled toy-model to proof test the code.
- The Einstein equations in Generalized Harmonic Gauge have a wave-like structure.
- Allows to test and familiarize with various aspects independently:
 - 1D/3D
 - various kinds of boundary conditions
 - constraint damping
 - penalty methods
 - self-interaction.
- Illustration of a few items here.

•
$$\frac{\partial^2 N}{\partial t^2} = c^2 \frac{\partial^2 N}{\partial r^2}$$

• First-order reduction: Use the space and time derivatives (resp. G and V) as independent variables

$$\begin{cases} \partial_t N = cV \\ \partial_t G = c\partial_r V \\ \partial_t V = c\partial_r G \end{cases}$$

• Free evolution: the constraint $C = G - \partial_r N$ is not evolved. (Rem: C(t = 0) = 0 and $\partial_t C = \partial_t G - \partial_t (\partial_r N) = c \partial_r V - c \partial_r V = 0$) \Rightarrow It can be used as a measure of the numerical convergence.

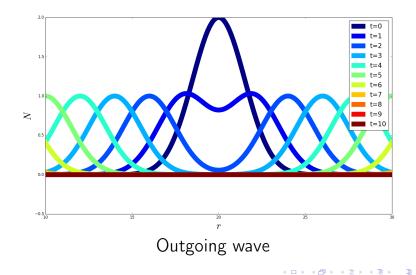
Co	ntex	
00	000	

Kadat

Scalar wave

Conclusion

Illustration



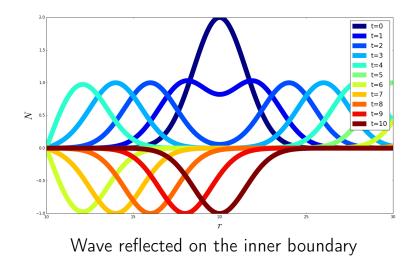
Co	nt	ext
00	00	

Kada

Scalar wave

Conclusion 0

Illustration



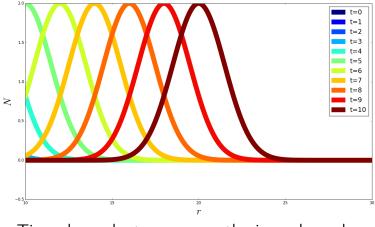
Context	

Kadat

Scalar wave

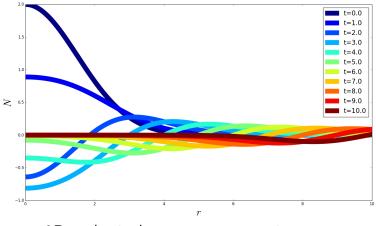
Conclusion

Illustration



Time-dependent source on the inner boundary

Context	Kadath	Scalar wave	Conclusion
0000	00	○○●0000	O
Illustration			



3D, spherical symmetry, outgoing wave

< ロト < 回 > < 回 > < 回 > < 回 >

Context

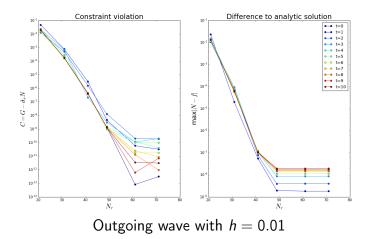
Kada

Scalar wave

Conclusion 0

Some convergence results (1D)

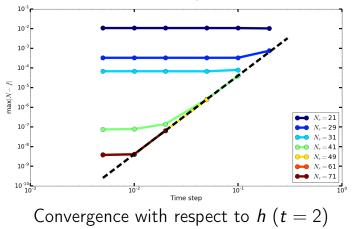
Spectral convergence



э

Time-step convergence

Difference to analytic solution



4 円

Idea: No need to impose exact boundary conditions on the approximate (aka discretized) system.
 ⇒ The boundary conditions are included in the bulk equations as a

penalty term.

$$\operatorname{EOM}(u) + \kappa Q(x) \cdot \operatorname{BC}(u) = 0$$

• Schematically,
$$\kappa \xrightarrow[N \to \infty]{} +\infty$$
 and $Q(x) = \delta(x - x_{
m BC})$

크 🕨 🖌 크

- Yields more stable schemes for spectral methods, allows more variety on boundary types and conditions (see for example Hesthaven https://doi.org/10.1016/S0168-9274(99)00068-9).
- Reduces the number of equations to compute in Kadath.
- Following Taylor *et al.*, way to go for second-order-in-space systems (https://doi.org/10.1103/PhysRevD.82.024037).
 ⇒ Reduces the number of variables, equations and constraints.
- Works in Kadath for the scalar wave, for boundary and matching conditions, 1D/3D, 1st and 2nd order in space.

(3)

Context	Kadath		Conclusion
0000	00	000000	0

Current and future work

• • • • • • • • • • •

Context	Kadath	Scalar wave	Conclusion
0000	00	0000000	•
Conclusion			

- Achieved work:
 - Implement a solver for evolution equations in Kadath
 - Validate it with the scalar wave
 - Use this toy-model to get familiar with various ingredients required for the evolution problem in GR.
- Current work: Compute the evolution of a GR system. Initial data consisting in gravitational waves (Teukolsky wave).
- Future work: Apply the code to new systems (e.g. stability of geons in AAdS spacetime, stability of black holes in modified gravity).

Context	Kadath		Conclusion
0000	00	0000000	
These			
Thank yo	u!		

▲□▶ ▲圖▶ ▲国▶ ▲国▶