Investigating dense matter using Neutron Star observations Journée des étudiants

Lami Suleiman

Laboratoire Univers et THéories (LUTH, France) with Micaela Oertel

Centrum Astronomiczne im. Mikołaja Kopernika (CAMK, Polska) with Leszek Zdunik

March 15, 2021

Ξ

イロト イポト イヨト イヨト

- 1 From multi-messenger astronomy to dense matter physics
 - Nuclear model theories for Neutron Star interior ...
 - ... and how they compare to observations
- 2 Unexplained sources in lowly accreting binaries
 - A new approach for the crust
 - Properties of partially accreted crusts
- 3 Conclusion

LUTH & CAMK

From multi-messenger astronomy to dense matter physics

Lami Suleiman

Investigating dense matter using Neutron Star observations

イロト イポト イヨト イヨト

Ξ

Equations of State for Neutron Star matter

Nuclear model theories for Neutron Star interior ...

LUTH & CAMK

Neutron Stars (NS):

- density $\rightarrow 10^{15} \text{ g/cm}^3$
- mass ~ M_{\odot}
- radius ~ 10kms

Structure:

- Crust: lattice state of matter
 - outer crust: up to 10^{11} g/cm³
 - inner crust: free neutrons outside nuclei
- Core: soup of particles
 - outer core: $npe\mu$ gaz
 - inner core: ?

How is the interior described ? Equation of State (EoS) : $P(\rho)$

Inner core: different hypothesis

- hyperons
- quark matter ?
- etc.
- Calculation techniques:
 - Microscopic: *ab-initio* ...
 - Phenomenological: Relativistic Mean Field, Skyrme based models...

イロト イポト イヨト イヨト

Equations of State for Neutron Star matter

Nuclear model theories for Neutron Star interior ... LUTH & CAMK

Neutron Stars (NS):

- density $\rightarrow 10^{15} \text{ g/cm}^3$
- mass ~ M_{\odot}
- radius ~ 10kms

Structure:

- Crust: lattice state of matter
 - outer crust: up to 10^{11} g/cm³
 - inner crust: free neutrons outside nuclei
- Core: soup of particles
 - outer core: $npe\mu$ gaz
 - inner core: ?

How is the interior described ? Equation of State (EoS) : $P(\rho)$

Inner core: different hypothesis

hyperons

- quark matter ?
- etc.

Calculation techniques:

- Microscopic: *ab-initio* ...
- Phenomenological: Relativistic Mean Field, Skyrme based models...

イロト イポト イヨト イヨト

... and how they compare to observations

For cold isolated NS : Tolman-Oppenheimer-Volkoff

$$\frac{dP}{dr} = -\frac{Gm(r)}{r^2}\rho(r)\left(1 + \frac{P}{\rho(r)c^2}\right)\left(1 + \frac{4\pi r^3 P}{m(r)c^2}\right)\left(1 - \frac{2Gm(r)}{rc^2}\right)^{-1}$$

- ... and how they compare to observations
 - For cold isolated NS : Tolman-Oppenheimer-Volkoff

$$\frac{dP}{dr} = -\frac{Gm(r)}{r^2}\rho(r)\left(1 + \frac{P}{\rho(r)c^2}\right)\left(1 + \frac{4\pi r^3 P}{m(r)c^2}\right)\left(1 - \frac{2Gm(r)}{rc^2}\right)^{-1}$$

Investigating dense matter using Neutron Star observations

... and how they compare to observations

For accreting NS in binary systems :

$$\frac{\partial}{\partial r} \left(\frac{Kr^2}{\Gamma(r)} e^{\phi} \frac{\partial \mathcal{T}}{\partial r} \right) = r^2 \Gamma(r) e^{\phi} \left(C_V \frac{\partial \mathcal{T}}{\partial t} + e^{\phi} \left(Q_\nu - Q_h \right) \right) \quad \rightarrow \quad L^{\infty}_{\nu,\gamma}$$

Study the presence of neutrino emissive processes in NS

... and how they compare to observations

For accreting NS in binary systems :

$$\frac{\partial}{\partial r} \left(\frac{Kr^2}{\Gamma(r)} e^{\phi} \frac{\partial \mathcal{T}}{\partial r} \right) = r^2 \Gamma(r) e^{\phi} \left(C_V \frac{\partial T}{\partial t} + e^{\phi} \left(Q_\nu - Q_h \right) \right) \quad \rightarrow \quad L^{\infty}_{\nu,\gamma}$$

Study the presence of neutrino emissive processes in NS

Investigating dense matter using Neutron Star observations

LUTH & CAMK

Unexplained sources in lowly accreting binaries

Lami Suleiman

Investigating dense matter using Neutron Star observations

トイラトイラト

< A

Ξ

A new approach for the crust

LUTH & CAMK

Accreting NS = NS receiving matter from companion

- Accretion \rightarrow highly luminous 10^{40}erg/s
- Cooling of SQRTs: deep crustal heating [Haensel, Zdunik 1990]
- Directly depends nuclear model
- \rightarrow SQRTs help us constrain the crust

Fully accreted crust approximation

= Original crust replaced by accreted material

```
What if that's not valid ?
Unexplained source :
IGR J17480 – 2446
→ 11Hz spin
→ not recycled = young star
```

Hybrid crust = Accreted material + crus compressed

Framework:

- first accretion : original crust is catalyzed
- simple nuclear model : CLDM

(日) (四) (王) (王)

accreted material : Fe⁵⁶

A new approach for the crust

LUTH & CAMK

- Accreting NS = NS receiving matter from companion
- Accretion \rightarrow highly luminous 10^{40}erg/s
- Cooling of SQRTs: deep crustal heating [Haensel, Zdunik 1990]
- Directly depends nuclear model
- \rightarrow SQRTs help us constrain the crust

Fully accreted crust approximation

= Original crust replaced by accreted material

```
What if that's not valid ?
Unexplained source :
IGR J17480 – 2446
→ 11Hz spin
→ not recycled = young star
```

Hybrid crust = Accreted material + crust compressed

Framework:

 first accretion : original crust is catalyzed

《曰》 《聞》 《臣》 《臣》

simple nuclear model : CLDM

```
accreted material : Fe<sup>56</sup>
```

Э

A new approach for the crust

LUTH & CAMK

Accreting NS = NS receiving matter from companion

- Accretion \rightarrow highly luminous 10^{40}erg/s
- Cooling of SQRTs: deep crustal heating [Haensel, Zdunik 1990]
- Directly depends nuclear model
- \rightarrow SQRTs help us constrain the crust

Fully accreted crust approximation

= Original crust replaced by accreted material

What if that's not valid ?

Unexplained source : IGR J17480 – 2446 \rightarrow 11Hz spin \rightarrow not recycled = young star

Hubrid cruct -

Accreted material + crust compressed

Framework:

 first accretion : original crust is catalyzed

《日》 《圖》 《臣》 《臣》

- simple nuclear model : CLDM
- accreted material : Fe⁵⁶

3

A new approach for the crust

LUTH & CAMK

Accreting NS = NS receiving matter from companion

- Accretion \rightarrow highly luminous 10^{40}erg/s
- Cooling of SQRTs: deep crustal heating [Haensel, Zdunik 1990]
- Directly depends nuclear model
- \rightarrow SQRTs help us constrain the crust

Fully accreted crust approximation

= Original crust replaced by accreted material

What if that's not valid ? Unexplained source : IGR J17480 – 2446 → 11Hz spin

 \rightarrow not recycled = young star

Hybrid crust = Accreted material + crust compressed

Framework:

- first accretion : original crust is catalyzed
- simple nuclear model : CLDM

<ロト <回ト < 臣ト < 臣ト

accreted material : Fe⁵⁶

Partially accreted crust

A new approach for the crust

MB (CLDM) Brussels Skyrme BSK21 $\Delta M (M_{\odot})$ Α А $\Delta M (M_{\odot})$ 2.18×10^{-11} 2.99×10^{-11} 56* Fe Fe 56* Ni 1.28×10^{-10} 62* 0.39 × 10⁻⁸ Fe 58* 64* 0.35×10^{-10} Ni Fe 58* 0.36×10^{-8} 66* 2.85×10^{-8} 64* 86* Kr Se Kr 86* 0.59 × 10⁻⁷ 0.80×10^{-6} Se 84* 0.42×10⁻⁶ Ge 82* 1.11 × 10⁻⁶ 94 100 96 102 Se Se 1.84×10^{-1} Kr 2.36×10^{-1} $\begin{array}{c} 0.74 \times 10^{-7} \\ 3.10 \times 10^{-6} \\ 0.36 \times 10^{-5} \end{array}$ 114 116 118 120 \mathbf{Sr} 0.40×10^{-5} 0.39 × 10-5 Ni 80 0.38×10^{-5} Zr Mo 124 0.83 × 10⁻⁵ Zr 122 0.43×10-5 Y 121 0.51 × 10⁻⁵ 0.35×10^{-5} 120 Sr 0.91×10^{-5}

LUTH & CAMK

Investigating dense matter using Neutron Star observations

124 3.09 × 10⁻⁶

그는 기 그는 제 문제

Ξ

Partially accreted crust

A new approach for the crust

LUTH & CAMK

Investigating dense matter using Neutron Star observations

E

LUTH & CAMK

Neutron drip anomaly

Neutron drip = density related + (A_c, Z, N) dependent Alternating shells with and without free neutrons Happens for $\Delta P = [1 \times 10^{30}; 1.6 \times 10^{30}]$

Do they diffuse ? Or are they absorbed ? Does this affect the composition and heat releases ? Do they pair ?

Investigating dense matter using Neutron Star observations

LUTH & CAMK

Neutron drip anomaly

Neutron drip = density related + (A_c, \overline{Z}, N) dependent Alternating shells with and without free neutrons Happens for $\Delta P = [1 \times 10^{30}; 1.6 \times 10^{30}]$

Do they diffuse ?

Or are they absorbed ? Does this affect the composition and heat releases ? Do they pair ?

LUTH & CAMK

Neutron drip anomaly

Neutron drip = density related + (A_c, \overline{Z}, N) dependent Alternating shells with and without free neutrons Happens for $\Delta P = [1 \times 10^{30}; 1.6 \times 10^{30}]$

Do they diffuse ? Or are they absorbed ? Does this affect the composition and heat releases ? Do they pair ?

LUTH & CAMK

Neutron drip = $\frac{\text{Neutron drip anomaly}}{\text{density related} + (A_c, Z, N) \text{ dependent}}$ Alternating shells with and without free neutrons Happens for $\Delta P = [1 \times 10^{30}; 1.6 \times 10^{30}]$

Do they diffuse ? Or are they absorbed ? Does this affect the composition and heat releases ? Do they pair ?

LUTH & CAMK

Conclusion

Lami Suleiman

Investigating dense matter using Neutron Star observations

Conclusion

- All in all, until we go to higher density in Earth laboratories, NS are the next best laboratory for high density matter we have !
- Modelisation of macroscopic parameters is fully dependent on the treatment of nuclear models
- Need for a correct treatment of the EoS to be able to compare modelisation to observations :
 WARNING be carefully of core-crust bound nuclear models
- Accreting NS are wonderful tests of high density matter because we have many observations
- Partially accreted crusts might experience rearrangement of the shells