MODIFY GRAVITY

A classification of "healthy" higher-order scalar-tensor theories

Karim Noui

Fédération Denis Poisson, Tours

AstroParticules et Cosmologie, Paris 7

Einstein gravity : from 1915 to 2015...

1915 : Gravity results from deformations of space-time $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$

2015 : First detection of gravitational waves by LIGO Total agreement with theoretical predictions

Gravity : a success story BUT...

A beautiful theory with a happy end...

- Gravity is Lorentzian geometry
- It gives a beautiful picture of (almost) full history of universe
- Agreements with observations : Planck, LIGO, Microscope...

But open issues in "extreme" regimes

- Very short (Planck) scale : singularities?
 - Big bang singularity at the origin of the universe
 - Black hole singularity behind the horizon
 - \implies Breakdown of the theory? Need of quantization?
- Very large (cosmological) scale : dark energy?
 - Accelerated expansion of the universe leads to troubles
 - Signature of a modification of gravity laws?

(Motivations)

Quantum gravity : just a word

• Modification of gravity at Planck scale : $\ell_P = 10^{-35} m$

- Gravity is no more classical geometry
- Two main approaches : String vs. Loop
- Loop : discretization of space

Area
$$\propto \ell_{
ho}^2 \sum_{j=0}^\infty {\it n}_j \, \sqrt{j(j+1)}$$

Modification of Einstein gravity at small distances

$$\left(\frac{\dot{V}}{V}\right)^{2} = 24\pi G_{N} \rho \left(1 - \frac{\rho}{\rho_{max}}\right) \Longrightarrow \rho < \rho_{max}$$

 ρ cannot diverge and then V reaches a minimum with no more initial singularity

Alternative models for dark energy?

Let's modify gravity

- The cosmological constant problem
- How to modify gravity?
- Scalar-Tensor theories : examples and issues
- Classification : DHOST theories
- Theoretical and observational constraints
- Discussion

Scalar-tensor

r

DHOST

Conclusion

Cosmological constant problem

Evidence for the ΛCDM Model

- Homogeneous and isotropic universe : FLRW space-time
- Fluctuations about FLRW background related to structures
- Best fit model : 70 % of energy density is dark energy
- Dark energy has negative pressure \implies Repulsive strength

The cosmological constant Λ

- General relativity has only two coupling constants : G_N and Λ
- Λ "simple" explanation of dark energy : $\rho_{\Lambda} \approx 10^{-29}$ g.cm⁻³
- $\bullet\,$ From particles physics : $\rho_{\it vac}\approx 10^{74}\,\,{\rm GeV^4}>10^{120}\rho_{\Lambda}$
- Extreme fine tuning : cosmological constant problem
- Alternative models for dark energy : numerous attempts

Robustness of gravity

Uniqueness of gravity + cosmological constant

- Hyp.1 : Space-time is of dimension 4 (+ symmetries)
- Hyp.2 : Gravity is described by a metric only $g_{\mu
 u}$
- Hyp.3 : Euler-Lagrange equations are local and second order
- Lovelock theorem : Einstein gravity + Cosmological constant

No much room available...

... Drop out one of the hypothesis above with :

- Explain dark energy with eventually self-tuning mechanism
- Theoretical/Experimental constraints
- No modifications at "small" scales (screening mechanism)

Try to modify gravity

I like the idea that space-time is 4-dimensional

However, we assume that

- Gravity comes with a scalar field ϕ : a fifth force which is expected to be responsible for dark energy \implies Scalar-Tensor theories
- Equations of motion are not necessarily of second order

Motivations

- Adding a scalar is the simplest case, but there are more complicated scenarii (bi-gravity, vectors,...)
- Higher order equations because the dynamics of gravity is governed by an action with second order derivatives : $\partial_{\mu}\partial_{\nu}g_{\rho\sigma} \rightarrow \partial_{\mu}\partial_{\nu}\phi$

Motivations

Many examples in the market

"Standard" scalar-tensor theories

• Simplest extension of GR with a scalar field

$$S[g_{\mu
u},\phi] = \int d^4x \sqrt{-g}[R+Z(\phi)\phi_\mu\phi^\mu - V(\phi)], \ \phi_\mu \equiv \partial_\mu\phi$$

• K-essence field to account for dark energy

$$S[g_{\mu\nu},\phi] = \int d^4x \sqrt{-g}[R+K(\phi,X)], \ X \equiv \phi_\mu \phi^\mu$$

Higher-Order scalar-tensor theories

• DGP theory or cubic Galileon (inspired from brane world) with higher-order terms in the action...

$$S[g_{\mu\nu},\phi] = \int d^4x \sqrt{-g} [R + \alpha X \Box \phi], \ \Box \phi \equiv \nabla_{\mu} \partial^{\mu} \phi$$

Horndeski theories

"Viable or safe" Higher derivative Scalar-Tensor theories

Horndeski (1974)

Most general scalar-tensor action leading to at most second order Euler-Lagrange equations for the scalar field and the metric

« Generalized Galileons »

- Deffayet & al (2011) rediscovered Horndeski result
- Combination of the four Lagrangians (with $X=\phi^{\mu}\phi_{\mu})$

$$\begin{split} L_{2}^{\rm H} &\equiv G_{2}(\phi, X) , \qquad L_{3}^{\rm H} \equiv G_{3}(\phi, X) \Box \phi , \\ L_{4}^{\rm H} &\equiv G_{4}(\phi, X)^{(4)} R - 2G_{4,X}(\phi, X) (\Box \phi^{2} - \phi^{\mu\nu} \phi_{\mu\nu}) \\ L_{5}^{\rm H} &\equiv G_{5}(\phi, X)^{(4)} G_{\mu\nu} \phi^{\mu\nu} + \frac{1}{3} G_{5,X}(\phi, X) \times \\ &\times (\Box \phi^{3} - 3 \Box \phi \phi_{\mu\nu} \phi^{\mu\nu} + 2 \phi_{\mu\nu} \phi^{\mu\sigma} \phi^{\nu}{}_{\sigma}) \end{split}$$

$$\begin{split} L_4^{\rm bH} &\equiv F_4(\phi, X) \epsilon^{\mu\nu\rho}{}_{\sigma} \, \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \\ L_5^{\rm bH} &\equiv F_5(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'} \,, \end{split}$$

with higher order equations of motion !

Many other examples exist in none of previous classes !

- Khronometric theories : invariance under $\phi o ilde{\phi}(\phi)$
- Mimetic gravity : with an extra conformal invariance $g_{\mu
 u} o \Omega g_{\mu
 u}$
- Chern-Simons gravity (with parity breaking)

Need of a classification

Are these theories all physically viable? Are they equivalent up to symmetries or fields redefinition?

Theoretical constraints

- Higher-Order Scalar-Tensor theories with 3 DOF : one scalar only
- Cosmology : avoid cosmological instabilities and ghosts

Observational constraints

Obtain an effective description to parametrize (consistent) deviations from gravity that we could observe in the future : \longrightarrow speed of GW, structure of stars, BH hairs and emission of GW, large scale structures, equivalence principle...

 \implies Testing many aspects of gravity

Motivations

Classical mechanics : a single variable

Dynamics of a point like particle q(t)

$$S[q(t)] = \int dt \left(\dot{q}^2 - \omega^2 q^2 + lpha \ddot{q}^2\right) \implies \ddot{q} + \omega^2 q - lpha \ddot{q} = 0.$$

Degrees of Freedom and Ostrogradski ghost

- One needs 4 initial conditions : q(0), $\dot{q}(0)$, $\ddot{q}(0)$ and $\ddot{q}(0)$
- Hence, two degrees of freedom : one is necessarily a ghost !

Hamiltonian unbounded from below

$$S_{eq}[q,X] = \int dt \left(\dot{q}^2 - \omega^2 q^2 - 2\alpha [\dot{X}\dot{q} + \frac{1}{2}X^2] \right) \implies X = \ddot{q}$$

Kinetic energy : $T = \dot{q}^2 - 2\alpha \dot{X}\dot{q} = (\dot{q} - \alpha \dot{X})^2 - \alpha^2 \dot{X}^2$

Motivations

Classical mechanics : a coupled system

Dynamics of two point like particles q(t) and x(t)

$$S[q,x] = \int dt \left(\dot{q}^2 - \omega^2 q^2 + lpha \ddot{q}^2 + lpha eta^2 \dot{x}^2 + 2lpha eta \dot{x} \ddot{q} - V(x)
ight) \, .$$

 $\mathsf{EOM}: \ddot{q} + \omega^2 q - \alpha \ddot{q} + \alpha \beta \ddot{x} = 0 \text{ and } \beta \ddot{x} - \frac{1}{2} V'(x) + \ddot{q} = 0 \quad .$

How many degrees of Freedom?

- It is not clear at all from the Lagrangian and and the EOM
- EOM are higher derivatives \Longrightarrow Ostrogradski ghost?
- Change variables $X \equiv \beta x + \dot{q}$

$$S[q,x] = \int dt \left(\dot{q}^2 - \omega^2 q^2 + \alpha \dot{X}^2 - V(x) \right)$$

Not always as easy, eg. $L = \dot{x}^2/(1+\ddot{q}) + F(\dot{q},q,x)$

Not easy to see from the Lagrangian nor from the EOM.

$$L(\ddot{q},\dot{q},q;\dot{x},x) \Longrightarrow L_{eq} = L(\dot{Q},Q,\phi;\dot{x},x) + \pi(\dot{q}-Q)$$

Kinetic matrix and degeneracy

$$\mathcal{K} = \begin{pmatrix} L_{\dot{Q}\dot{Q}} & L_{\dot{x}\dot{Q}} \\ L_{\dot{x}\dot{Q}} & L_{\dot{x}\dot{x}} \end{pmatrix} \quad \text{with} \quad L_{XY} = \frac{\partial^2}{\partial X \partial Y} L_{eq} \,.$$

• K is degenerate iff there is a primary constraint of type ($K \neq 0$)

$$\Psi = P - F(p) \approx 0 \iff \frac{\partial L_{eq}}{\partial \dot{Q}} - F(\frac{\partial L_{eq}}{\partial \dot{x}}) \approx 0$$

- Hamiltonian analysis : det $K = 0 \iff$ No-Ostrogradski ghost
- Euler-Lagrange equation are higher order but reduce to 2nd order !

Quartic Scalar-Tensor Theories

The covariance is a key ingredient which enables us classifying more explicitly Scalar-Tensor theories

Covariant quartic Lagrangians

$$S[g_{\mu\nu},\phi] \equiv \int \sqrt{-g} \left(f \, \mathcal{R} + C^{\mu\nu\rho\sigma} \, \nabla_{\mu} \nabla_{\nu} \phi \, \nabla_{\rho} \nabla_{\sigma} \phi \right)$$

where $f = f(X, \phi)$ and $C^{\mu
u
ho \sigma}$ depend on ϕ and ϕ_{μ} only

$$C^{\mu\nu\rho\sigma}\phi_{\mu\nu}\phi_{\rho\sigma} = \alpha_1 \phi_{\mu\nu}\phi^{\mu\nu} + \alpha_2 (\Box\phi)^2 + \alpha_3 \Box\phi(\phi_{\mu\nu}\phi^{\mu}\phi^{\nu}) + \alpha_4 \phi_{\mu\nu}\phi^{\nu\rho}\phi^{\mu}\phi_{\rho} + \alpha_5 (\phi_{\mu\nu}\phi^{\mu}\phi^{\nu})^2$$

with $\alpha_i = \alpha_i(X, \phi)$ and $X = \phi_\mu \phi^\mu$.

We can go further (up to cubic order), but for simplicity we restrict our presentation to quartic theories.

Scalar-tensor

Hamiltonian decomposition

Equivalent action in terms of a vector field A^{μ}

$$S[g_{\mu\nu},\phi;A_{\mu},\lambda^{\mu}] \equiv \int \sqrt{|g|} \left(f \mathcal{R} + C^{\mu\nu\rho\sigma} A_{\mu\nu} A_{\rho\sigma} \right) + \lambda^{\mu} (\phi_{\mu} - A_{\mu})$$

ADM decomposition

• Metric :
$$g_{\mu\nu} \rightarrow ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt)$$

• Vector field : $A^{\mu}
ightarrow (A_*, A_i)$ with $A_* = (A_0 - N^i A_i)/N$

(3+1) action and Kinetic term

$$S = \int \mathcal{A}\dot{A}_{*}^{2} + 2\mathcal{B}^{ij}\dot{A}_{*}K_{ij} + \mathcal{K}^{ij,kl}K_{ij}K_{kl} + \dots$$

with $K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - D_i N_j - D_j N_i \right)$ the second fundamental form.

Kinetic matrix and degeneracy

Velocities are K_{ij} and \dot{A}_* only. No \dot{N} neither \dot{N}^i in the Lagrangian !

Kinetic matrix (7 dimensions) : it mixes K_{ij} and A_*

$$\mathcal{K} = \left(egin{array}{cc} \mathcal{A} & \mathcal{B}^{kl} \ \mathcal{B}^{ij} & \mathcal{K}^{ij,kl} \end{array}
ight)$$

Degeneracy conditions

- No Ghost \implies Det $\mathcal{K} = 0$
- We solved the condition [Det $\mathcal{K}=0$] and classified ghost free theories
- Degenerate Higher Order Scalar Tensor (DHOST) theories

Scalar-tensor

DHOST theories

We have obtained a full classification of Degenerate Higher-Order Scalar-Tensor theories

- Up to metric redefinition : $g_{\mu
 u} o A(\phi,X)g_{\mu
 u} + B(\phi,X)\phi_{\mu}\phi_{
 u}$
- We recovered all known theories and found new theories
- What about higher-derivatives of pure metric theories?

 \Longrightarrow Landscape of scalar-tensor theories without Ostrogradski ghost

$$S[g_{\mu\nu},\phi] = \int d^4x \sqrt{|g|} [F_0 + F_1 \Box \phi + F_2 R + \alpha_1 \phi_{\mu\nu} \phi^{\mu\nu} + \alpha_2 (\Box \phi)^2 + \alpha_3 \Box \phi \phi^{\mu} \phi^{\nu} \phi_{\mu\nu} + \alpha_4 (\phi_{\mu\nu} \phi^{\nu})^2 + \alpha_5 (\phi^{\mu} \phi^{\nu} \phi_{\mu\nu})^2]$$

 $F_n(\phi, X)$ are free functions and $\alpha_n(\phi, X)$ are not independent...

Motiva	ations	Outlook	Modify gravity	Scalar-tensor	(DHOST)	Conclusion
	Cosmology					
	 Background solutions : FLRW space-time One finds solutions compatible with observations 					
	• Self-	tuning me	chanisms for the o	cosmological co	nstant	
	Cosmolo	gical sta	bility (at linear	r level) : EFT	approach	

• General analysis of scalar and tensor perturbations about FLRW

$$S^{(2)}[\zeta] = \frac{1}{2} \int d^3 x \, dt \, a^3 \left[\mathcal{A}_s \dot{\zeta}^2 + \mathcal{B}_s \frac{(\partial_i \zeta)^2}{a^2} \right]$$

$$S^{(2)}[\gamma] = \frac{1}{8} \int d^3 x \, dt \, a^3 M^2 \left[\dot{\gamma}_{ij}^2 - (1 + \alpha_T) \frac{(\partial_k \gamma_{ij})^2}{a^2} \right]$$

• Stability conditions : $A_s > 0$, $c_s^2 \equiv -B_s/A_s > 0$, $M^2 > 0$ and $c_T \equiv 1 + \alpha_T > 0$

DHOST theories after GW170817

Constraint on the speed of gravitational waves : $lpha_{T} < 10^{-15}$

Assuming $\alpha_T = 0$ holds exactly, this implies

- No viable DHOST theories beyond quadratic order (in $\phi_{\mu\nu}$)
- The very famous Horndeski theories do not satisfy this constraint
- New DHOST theories remain with $\alpha_1 = 0$

$$S[g_{\mu\nu},\phi] = \int d^4x \sqrt{|g|} [F_0(\phi,X) + F_1(\phi,X) \Box \phi + F_2(\phi,X)R + \alpha_3 \Box \phi \phi^{\mu} \phi^{\nu} \phi_{\mu\nu} + \alpha_4 (\phi_{\mu\nu} \phi^{\nu})^2 + \alpha_5 (\phi_{\mu\nu} \phi^{\mu} \phi^{\nu})^2$$

where F_n are free functions and $\alpha_n(\phi, X)$ are not independent...

Motivations Outlook Modify gravity Scalar-tensor DHOST Conclusion
Gravitation inside matter

Quasi-static approximation on scales $r \ll H^{-1}$

$$ds^2 = -(1+2\Phi)dt^2 + (1-2\Psi)dx^2, \ \phi = \phi_0(t) + \chi(r)$$

Modified Gravitation laws in spherical body with density $\rho(r)$

$$\frac{d\Phi}{dr} = \frac{G_N M(r)}{r^2} + \Xi_1 G_N M''(r)$$

$$\frac{d\Psi}{dr} = \frac{G_N M(r)}{r^2} + \Xi_2 \frac{G_N M'(r)}{r} + \Xi_3 G_N M''(r)$$

with $(8\pi G_N)^{-1} \equiv 2F_2(1 + \Xi_0)$.

Observational constraints

From stars, Hulse-Taylor binary pulsar...

DHOST theories provide a very general framework to describe scalar-tensor theories with higher derivatives

Parametrize modifications of gravity

- Cosmological scales (with speed of GW)
- Effect on LSS formation
- Astrophysical scales : breaking of Vainshtein mechanism
- Black Holes : Hairy BH and modification of GW form
- Quantum gravity scale : breaking of Lorentz invariance...

We hope to see modifications of gravity... And we have built a powerful frame to model these modifications...