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Introducing myselt

= 2 year Postdoc (@ LESIA in GRAVITY group

<= Main project: probe possibility of detection of extended mass distribution
between S2 and SBH (@) galactic centre.

— celestial mechanics. newtonian, post newtonian, relativistic

<= Studied Physics in Innsbruck (BSc), Vienna (MSc) and Gardift (PhD)

< PhD thesis with Mark Hannam on black hole initial data for 3+1 stmulations
(under umbrella of LSC)

<= MSc thesis with Mark Heinzle and first Postdoc in Vienna with David
Fajman on mathematical cosmology. — spatially homogenous cosmology
with various matter models.
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<= D Fajman, G Heil3el, M Maliborski
On the oscillations and future asymptotics of locally
rotationally symmetric Bianchu type 11 cosmologies with a
masswe scalar field

arXiv:2001.00252, submitted for publication

<= D Fayman, G Heil3el, JW Jang
Averaging with a time dependent perturbation

dratting

= D Fayman, G Heil3el
Averaging methods wn spatially homogenous Eanstein-Klen-
Gordon cosmology

drafting




SH scalar field cosmology
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Exponential potential: V(¢) « e

— Interesting 1n the context ot inflation.

— V/(¢p) « V(¢p) = Raychaudhuri eq H(f) = ... decouples
— Asymptotics related to equilibrium points of the
reduced system.

— Dynamical systems analysis to determine asymptotics.

Harmonic potential: V(¢) = m*¢*/2

— Massive scalar field / Klein-Gordon field.

— Raychaudhurn eq does not decouple.
— Standard dynamical systems approach not a priori

applicable.




LLRS Bianchi 111
Einstein-Klein-

Gordon

D Fayman, G Heifsel, M Maliborski
arXw:2001.00252
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<= Choose formulation of Rendall & Uggla (2000)

g = — di® + a(0?dr? + b(t gy

H:=1(2+22) Hubble scalar
i 32 < Z i ) shear variable

1%, = diag(—p, p1> P2 P3)

<= Plug in m = 1 Klein-Gordon field into their equations

p:
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< Define

ke 1 (quz — qb2) deceleration parameter

6H?
=L
3H?

rescaled energy density

<+ Yields reduced system

H=H*-(

Q)

: _ : Finstein evol.
Y, =H|-Q2-¢@Z, +1-%5-Q]

o+¢=H|-3¢|

1 >3 +Q

Klein-Gordon

Hamiltonian constraint




T'he Van der Pol equation

<= (Consider general class of Van der Pol equations

gb + @ = eg(qb @), € = const

VS

d+¢=H|-3¢|,.H=HQ

<= Apply amplitude phase (variation of constants) transtormation

¢ = rsin(t — @)
¢ = rcos(t — @)

=
=

cos(t = )g(eh )
S sin(t — 9)g(6h. )

= Note that f'(z, 7, @) is 27 periodic 1n t.

=l




<= ldea: take time average of right hand side function

27

fl(r, ) := 2%[ f'(s, r, p)ds
0

S
Ce®

Construct averaged system
H = ¢f (7, 9)
¢

<= How good is this approximation?
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< Theorem 1 (periodic aVeraging>

i

X =efl(x,0) + e’ fl?(x,1,¢),} x(0)=a

e £, ! T-periodic in ¢
e f! Lipschitz, f*! continuous

54 T
7=cfl(z), z(0)=a,| fl(z)= lJ fl(z,s)ds
r 0

Then iX(t) — 2(t) = O(e)} on timescales of order e~.

<+ Theorem 2 (Eckhaus/Sanchez-Palencia)

x = efl(x,1).] x(0)=a 1=¢cf(z).} z0)=a, f KBM

If z = 015 an asymptotically stable equilibrium point of the linearisation...

e e @(e)} e

oo e




Back to LRS Bianchi 111
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Equations in {H, X, ¢, ¢}

= rsin(t — @) 7

—(1+9)]
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Hamiltonian constraint

mplitude phase (variation of constants) transformation

ri— £ =

6H?

@)

—— = 22?F . 9(3 coSlE = 1)




<= Equations in {H,2,,Q, ¢}
H=H|-(1+q)|
E B[ o ortl-Eoq
Q= H [2Q(1 + g - 3cos(t — 9)?)]

p-=-I1 :— 3 sin(t — @)cos(t — go)]
1>32+Q

= Writing x = [Z,, Q, ¢]' this has the form

+ H?

H I E O+ Flixn=H [
X

f2(x, t)]

fl(x, 1) 0

analogous to a periodic perturbation problem in standard form
x =efl(x, 1) + e f%(x, ¢, €).

<= Difterence: — H(¢) is time dependent ...
— ... and 1tself subject to evolution equation which 1s part of the system

<= {ldea: View this as an averaging problem with time dependent perturbation function.




= Equations in {H,X,,Q, ¢} (Same core idea independently before us:
Spe A Alho & G Uggla (2015)
gEaiay A Alho et al (2015)
B OO A Alho et al (arXiv, 2019)
Q=H :2Q(I+q—3cos(t—go)2)] - ~
p=H — 3 sin(t — @)cos(t — ga)]
SO
SR =X - () @]" this has the form
Bl _gPx)+ Py =H|, O |+ ®D
X t (Xa t) 0

analogous to a periodic perturbation problem in standard form
x =efl(x, 1) + e f%(x, ¢, €).

<= Difterence: — H(¢) is time dependent ...
— ... and 1tself subject to evolution equation which 1s part of the system

<= {ldea: View this as an averaging problem with time dependent perturbation function.




= Full eq = ylleq

x = efl(x,1) + 2 f12(x, 1, ¢) H| | = gy
Be HEdD ear 0
= Averaged eq = Averaged eq
7 = e fli(z) 7 = H@®) fl(z)
<= Theorem =} Conjecture
On timescales of order ¢! 3t such that V1 > ¢,
X(1) — z(1) = O(e) X(1) — Z(1) = O(H(?))

<= Lemma. H s strictly decreasing
with-rand="lhm H@)y=10"

=00




Analytical
support for the

conjecture

Back to LRS Bianch 111




> Start with full system

[ ] [f%g, 3

= Truncate to first order after sufficiently large t =¢t. => H’<H<1

[?] = [% fl(y, t)] = [H* fl(y, I)] , AT %(f*) =H)

+ H?

f2(x, r)]
0

= Assumption: x(r) — y(¢) = O(H..)

= Average first order system z = H.f!(z)
By standard averaging Thm: X(r) — Y(¢) = O(H.)

= Together with truncation error: X(r) — Z(r) = O(H.)
Co

ntinuum limit yields statement of conjecture: X(¢) — Z(¢) = @(H(t))




Future asymptotics

of LRS Bianchi
111 E-K-G

Under the premise that the comjecture
holds.




< "Transtorm to rescaled time

=

<= System transforms to

0, = Ho,

=k 0.H
Al —HF'(x,7) + H*F2(x,0) — |
223 _aTX
+ Averaging to d.X = F!(x, 7)
e u-m) -t e-m
0,0 | = a4z a
2 Q452 - (1-9))
P
=i : 0

= Fl(x,7) + H F4(x, 7)
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Exact solutions associated with
equilibrium points

= lirst, solve Raychaudhuri eq at equilibrium points
H=H-(1+9)|, ¢=22%+Q(3cos(t—¢)*—1)

2
= = P for large ¢

<= ''hen, solve evolution eqgs of the scale tactors

=22 ) D a(t) = ¢
. —
b=bH(1 +X,) b(t) = cyt




g = — di® + a()’dr? + b()’gy

equil. point | a(t) b(t) solution
I8 c1t Co Taub (flat LRS Kasner)
@, cit= Y3 | cot?/3 | non-flat LRS Kasner
D, C1 Cot Bianchi III form of flat spacetime
F c1t?/3 | ¢ot?/3 | Einstein-de-Sitter (flat Friedman)

VDAt




<= (entre manifold analysis yields

Lemma.

= 1 =
i D@~ — lorlaioeys
P 5

<= Assuming that conjecture X(¢) — Z(¢) = @(H(t)) holds

Eemina-H(t) ~ % for large ¢

i
Lemma. 7(¢) ~ %lnt for large ¢ <t S e [ H(s) ds)

1 3
Dt

3
2Int

= X =Z@) + 6(H®) =




\/

1 5
2 41nt
3
2Int

— X() = Z(1) + O(H(1)) = + 0@

<= Theorem 1. Assuming that the conjecture holds,

2. () ~ ; 413“ and Q) ~ 2131” for large 1




<= Theorem 1. Assuming that the conjecture holds,

e ; 413“ Bk S for large t.

21nt
<+ Theorem 2. Assuming that the conjecture holds,
g = — dt* + a(®)*dr? + b(t)*g;
with a(f) = ¢;Int and b(¢) = c,t.

= (ompare to vacuum solutions: a(t) = c;, b(¢) = c,t
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LLRS Bianchi I &
11

D Fayman, G Heifel




LLRS Bianchi 1

{5

Asymptotics: Einstei-De-Sitter

>
1.01
T e —
| Y
0.5 ,
B 7%
[/
; /
0.0
\ \
| Q
\\
~0.5- \
| I\
L .,
T 0.4 0.6 0.8 1.0

a(r), b(t) « t*3

T




LLRS Bianchi 11

Asymptotics
Collins-Stewart (dust)
a(t) x \/1,b(t) x 134
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m that we consider throughout this manuscript has the fd

' 2
Jﬂ = HF'(x,t) + H*FP(x,t) = H [fl(?c,t)] I [f 51

[ ]
Thm : Ave raglng 1(t) is positive, is strictly decreasing in ¢, and
o o tl_lglo H(t) = 0.
Wl th t1m€ dep e nde nt w ready to introduce the statement of our main theorem:
1. Suppose that H = H(t) > 0 is strictly decreasing in t,
lim H(t) = 0.

perturbation

fir any € > 0 with ¢ < H(0) and define t, > 0 such thai

NS o I 172 eg, < oo,

K,t) is Lipschitz continuous and f 2l is continuous with re:
lso, assume that £' and f? are T-periodic for some T >

D F@]man) G Helﬁel; ]Wjang ¥ht=t,+O(H(t,)™7) for some~ € (0,1), we have

X(t) o Z(t) — O(H(t*)min{l,2—2'y})’

he solution of the system (3.1) with the initial condition xd
vlution of the averaged equation

z = H(t,)f'(z), fort >t.

ial condition z(t,) = x(t,) where the average f' is de ned‘

) | [tetT
fl(z) = T/ fl(z,s)ds.
_ﬁ___—ﬂ




ST

f[2] (x, t)] G.1)

s 0
[x] =2 [fl(x, ) 0

Theorem 3.1 (Local-in-time asymptotic). Suppose that H = H(t) > 0 is strictly
decreasing in t, and

lim H(t) =0.

t— 00

Choose and fix any € > 0 with ¢ < H(0) and define t, > 0 such that ¢ = H(t.).
Suppose that

1| Lee,s (1FP I Lee, < oo,
and that £1(x, t) is Lipschitz continuous and f? is continuous with respect to x for
allt > t,. Also, assume that f' and 12! are T-periodic for some T > 0. Then for
t>t. witht =t, + O(H(t,) ") for somey € (0,1), we have |
| x(t) — z(t) = O(H(t,)™"{12721) |

where x is the solution of the system (3.1) with the initial condition x(0) = xo and
z(t) is the solution of the averaged equation

z = H(t,)f'(z), fort>t,

with the initial condition z(t,) = x(t,) where the average f' is defined as

B 1 t.+T
fl(z) = T/ f'(z,s)ds.
t

*




Theorem 3.2 (Global-in-time asymptotic). Assume the same assumptions of The-
orem 3.1. Then we have

lim [x() - 2(r)]| = 0.

<= Suthcient to prove LRS Bianchi I & II asymptotics

<= Insuthcient to prove LRS Bianchi Il asymptotics
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