Averaging in spatially homogenous Einstein-Klein-Gordon cosmology

Gernot Heißel Meudon, 27.02.2020

Introducing myself

- * 2 year Postdoc @ LESIA in GRAVITY group
- ◆ Main project: probe possibility of detection of extended mass distribution between S2 and SBH @ galactic centre.
 → celestial mechanics. newtonian, post newtonian, relativistic
- * Studied Physics in Innsbruck (BSc), Vienna (MSc) and Cardiff (PhD)
- PhD thesis with Mark Hannam on black hole initial data for 3+1 simulations (under umbrella of LSC)
- ◆ MSc thesis with Mark Heinzle and first Postdoc in Vienna with David Fajman on mathematical cosmology. → spatially homogenous cosmology with various matter models.

Spatially homogenous cosmology

Friedman cosmology inhomogenous cosmology

analytically

(generally) numerically

Spatially homogenous cosmology

Friedman cosmology

analytically

spatially homogenous cosmology

qualitatively analytically inhomogenous cosmology

(generally) numerically

Spatially homogenous cosmology

Friedman cosmology

analytically

spatially homogenous cosmology

qualitatively analytically

eg exact past & future asymptotic dynamics inhomogenous cosmology

(generally) numerically D Fajman, G Heißel, M Maliborski On the oscillations and future asymptotics of locally rotationally symmetric Bianchi type III cosmologies with a massive scalar field arXiv:2001.00252, submitted for publication

 D Fajman, G Heißel, JW Jang Averaging with a time dependent perturbation drafting

 D Fajman, G Heißel Averaging methods in spatially homogenous Einstein-Klein-Gordon cosmology drafting

SH scalar field cosmology

$$\Rightarrow R_{ab} - \frac{R}{2}g_{ab} = T_{ab}$$

$$T_{ab} = \nabla_a \phi \nabla_b \phi - \left(\frac{1}{2} \nabla_c \nabla^c \phi + V(\phi)\right) g_{ab}$$

$$\Box_{\mathbf{g}}\phi = V'(\phi)$$

 Formulate Einstein-matter eqs as dynmaical system in expansion (/Hubble) normalised variables.

$$H := \left(\frac{\dot{a}}{a} + 2\frac{\dot{b}}{b}\right)/3$$

* Exponential potential: $V(\phi) \propto e^{\kappa \phi}$

→ Interesting in the context of inflation. → $V'(\phi) \propto V(\phi) \Rightarrow$ Raychaudhuri eq $\dot{H}(t) = ...$ decouples → Asymptotics related to equilibrium points of the reduced system.

→ Dynamical systems analysis to determine asymptotics.

* Harmonic potential: $V(\phi) = m^2 \phi^2/2$

→ Massive scalar field / Klein-Gordon field.
→ Raychaudhuri eq does *not* decouple.
→ Standard dynamical systems approach *not* a priori applicable.

LRS Bianchi III Einstein-Klein-Gordon

D Fajman, G Heißel, M Maliborski arXiv:2001.00252 submitted for publication

Choose formulation of Rendall & Uggla (2000)

$$\mathbf{g} = -\mathrm{d}t^2 + a(t)^2\mathrm{d}r^2 + b(t)^2\mathbf{g}_{H^2}$$

 $H := \frac{1}{3} \left(\frac{\dot{a}}{a} + 2\frac{\dot{b}}{b} \right)$ $\Sigma_{+} := \frac{1}{3H} \left(\frac{\dot{a}}{a} - \frac{\dot{b}}{b} \right)$ $T^{a}_{b} = \operatorname{diag}(-\rho, p_{1}, p_{2}, p_{3})$

Hubble scalar

shear variable

* Plug in m = 1 Klein-Gordon field into their equations

$$\rho = \frac{1}{2} (\dot{\phi}^2 + \phi^2)$$
$$p_i = \frac{1}{2} (\dot{\phi}^2 - \phi^2)$$

$$q := 2\Sigma_{+}^{2} + \frac{1}{6H^{2}} \left(2\dot{\phi}^{2} - \phi^{2} \right)$$

$$\Omega:=\frac{\rho}{3H^2}$$

deceleration parameter rescaled energy density

Yields reduced system

$$\dot{H} = H^{2} \Big[-(1+q) \Big]$$

$$\dot{\Sigma}_{+} = H \Big[-(2-q)\Sigma_{+} + 1 - \Sigma_{+}^{2} - \Omega \Big] \Big\}$$
Einstein evol.
$$\ddot{\phi} + \phi = H \Big[- 3\dot{\phi} \Big]$$
Klein-Gordon

 $1 > \Sigma_{+}^{2} + \Omega$ Hamiltonian constraint

The Van der Pol equation

* Consider general class of Van der Pol equations

 $\ddot{\phi} + \phi = \epsilon g(\dot{\phi}, \phi), \epsilon = \text{const}$ vs $\ddot{\phi} + \phi = H \left[-3\dot{\phi} \right], H = H(t)$

Apply amplitude phase (variation of constants) transformation

$$\begin{aligned} \phi &= r \sin(t - \varphi) \\ \dot{\phi} &= r \cos(t - \varphi) \end{aligned} \Rightarrow \begin{bmatrix} \dot{r} \\ \dot{\phi} \end{bmatrix} = \epsilon \begin{bmatrix} \cos(t - \varphi)g(\phi, \dot{\phi}) \\ \frac{1}{r}\sin(t - \varphi)g(\phi, \dot{\phi}) \end{bmatrix} =: \epsilon \mathbf{f}^{1}(t, r, \varphi)$$

* Note that $\mathbf{f}^1(t, r, \varphi)$ is 2π periodic in t.

* Idea: take time average of right hand side function

$$\overline{\mathbf{f}}^{1}(r,\varphi) := \frac{1}{2\pi} \int_{0}^{2\pi} \mathbf{f}^{1}(s,r,\varphi) \,\mathrm{d}s$$

Construct averaged system

$$\begin{bmatrix} \dot{\bar{r}} \\ \dot{\bar{\varphi}} \end{bmatrix} = \epsilon \bar{\mathbf{f}}^1(\bar{r}, \bar{\varphi})$$

How good is this approximation?

Theory of averaging

... originally motivated by celestial mechanics

 \rightarrow perturbed 2 body problem, etc.

Applied Mathematical Sciences 59

Jan A. Sanders Ferdinand Verhulst James Murdock

(2007)

Averaging Methods in Nonlinear Dynamical Systems

Second Edition

Theorem 1 (periodic averaging)

$$\dot{\mathbf{x}} = \epsilon \mathbf{f}^1(\mathbf{x}, t) + \epsilon^2 \mathbf{f}^{[2]}(\mathbf{x}, t, \epsilon), \quad \mathbf{x}(0) = \mathbf{a}$$

f¹, f^[2] *T*-periodic in *t*f¹ Lipschitz, f^[2] continuous

$$\dot{\mathbf{z}} = \epsilon \, \bar{\mathbf{f}}^1(\mathbf{z}), \quad \mathbf{z}(0) = \mathbf{a}, \quad \bar{\mathbf{f}}^1(\mathbf{z}) = \frac{1}{T} \int_0^T \mathbf{f}^1(\mathbf{z}, s) \, \mathrm{d}s$$

Then
$$\mathbf{x}(t) - \mathbf{z}(t) = \mathcal{O}(\epsilon)$$
 on timescales of order ϵ^{-1} .

Theorem 2 (Eckhaus/Sanchez-Palencia)

$$\dot{\mathbf{x}} = \epsilon \mathbf{f}^1(\mathbf{x}, t), \quad \mathbf{x}(0) = \mathbf{a}$$
 $\dot{\mathbf{z}} = \epsilon \overline{\mathbf{f}}^1(\mathbf{z}), \quad \mathbf{z}(0) = \mathbf{a}, \qquad \mathbf{f}^1 \text{ KBM}$

If z = 0 is an asymptotically stable equilibrium point of the linearisation...

...then
$$\mathbf{x}(t) - \mathbf{z}(t) = \mathcal{O}(\epsilon)$$
 for $0 \le t < \infty$.

Back to LRS Bianchi III

* Equations in $\{H, \Sigma_+, \phi, \dot{\phi}\}$

 $\dot{H} = H^2 \Big[-(1+q) \Big]$ $\dot{\Sigma}_+ = H \Big[-(2-q)\Sigma_+ + 1 - \Sigma_+^2 - \Omega \Big]$ $\ddot{\phi} + \phi = H \Big[-3\dot{\phi} \Big]$

 $\Sigma_{+}^{2} + \Omega < 1$ Hamiltonian constraint

Amplitude phase (variation of constants) transformation

$$\phi = r \sin(t - \varphi)
\dot{\phi} = r \cos(t - \varphi)', \qquad r \mapsto \Omega = \frac{r^2}{6H^2} \implies q = 2\Sigma_+^2 + \Omega \left(3\cos(t - \varphi)^2 - 1\right)$$

* Equations in $\{H, \Sigma_+, \Omega, \varphi\}$

$$\dot{H} = H^{2} \left[-(1+q) \right]$$

$$\dot{\Sigma}_{+} = H \left[-(2-q)\Sigma_{+} + 1 - \Sigma_{+}^{2} - \Omega \right]$$

$$\dot{\Omega} = H \left[2\Omega \left(1 + q - 3\cos(t-\varphi)^{2} \right) \right]$$

$$\dot{\varphi} = H \left[-3\sin(t-\varphi)\cos(t-\varphi) \right]$$

$$1 > \Sigma_{+}^{2} + \Omega$$

* Writing $\mathbf{x} = [\Sigma_+, \Omega, \varphi]^T$ this has the form

$$\begin{bmatrix} \dot{H} \\ \dot{\mathbf{x}} \end{bmatrix} = H \mathbf{F}^{1}(\mathbf{x}, t) + H^{2} \mathbf{F}^{[2]}(\mathbf{x}, t) = H \begin{bmatrix} \mathbf{0} \\ \mathbf{f}^{1}(\mathbf{x}, t) \end{bmatrix} + H^{2} \begin{bmatrix} f^{[2]}(\mathbf{x}, t) \\ \mathbf{0} \end{bmatrix}$$

analogous to a periodic perturbation problem in standard form

 $\dot{\mathbf{x}} = \epsilon \, \mathbf{f}^1(\mathbf{x}, t) + \epsilon^2 \, \mathbf{f}^{[2]}(\mathbf{x}, t, \epsilon).$

* Difference: $\rightarrow H(t)$ is time dependent ...

 \rightarrow ... and itself subject to evolution equation which is part of the system

* Idea: View this as an averaging problem with time dependent perturbation function.

* Equations in $\{H, \Sigma_+, \Omega, \varphi\}$

$$\dot{H} = H^{2} \left[-(1+q) \right]$$

$$\dot{\Sigma}_{+} = H \left[-(2-q)\Sigma_{+} + 1 - \Sigma_{+}^{2} - \Omega \right]$$

$$\dot{\Omega} = H \left[2\Omega \left(1 + q - 3\cos(t-\varphi)^{2} \right) \right]$$

$$\dot{\varphi} = H \left[-3\sin(t-\varphi)\cos(t-\varphi) \right]$$

 $1 > \Sigma_+^2 + \Omega$

* Writing $\mathbf{x} = [\Sigma_+, \Omega, \varphi]^T$ this has the form

$$\begin{bmatrix} \dot{H} \\ \dot{\mathbf{x}} \end{bmatrix} = H \mathbf{F}^{1}(\mathbf{x}, t) + H^{2} \mathbf{F}^{[2]}(\mathbf{x}, t) = H \begin{bmatrix} \mathbf{0} \\ \mathbf{f}^{1}(\mathbf{x}, t) \end{bmatrix} + H^{2} \begin{bmatrix} f^{[2]}(\mathbf{x}, t) \\ \mathbf{0} \end{bmatrix}$$

analogous to a periodic perturbation problem in standard form

 $\dot{\mathbf{x}} = \epsilon \, \mathbf{f}^1(\mathbf{x}, t) + \epsilon^2 \, \mathbf{f}^{[2]}(\mathbf{x}, t, \epsilon).$

* Difference: $\rightarrow H(t)$ is time dependent ...

 \rightarrow ... and itself subject to evolution equation which is part of the system

* Idea: View this as an averaging problem with time dependent perturbation function.

Same core idea independently before us: A Alho & C Uggla (2015) A Alho et al (2015) A Alho et al (arXiv, 2019) ✤ Full eq

$$\dot{\mathbf{x}} = \epsilon \, \mathbf{f}^1(\mathbf{x}, t) + \epsilon^2 \, \mathbf{f}^{[2]}(\mathbf{x}, t, \epsilon)$$

Averaged eq

 $\dot{\mathbf{z}} = \epsilon \, \bar{\mathbf{f}}^1(\mathbf{z})$

* Theorem

On timescales of order ϵ^{-1}

 $\mathbf{x}(t) - \mathbf{z}(t) = \mathcal{O}(\epsilon)$

✤ Full eq

$$\begin{bmatrix} \dot{H} \\ \dot{\mathbf{x}} \end{bmatrix} = H \begin{bmatrix} \mathbf{0} \\ \mathbf{f}^{1}(\mathbf{x}, t) \end{bmatrix} + H^{2} \begin{bmatrix} f^{[2]}(\mathbf{x}, t) \\ \mathbf{0} \end{bmatrix}$$

Averaged eq

 $\dot{\mathbf{z}} = H(t)\,\overline{\mathbf{f}}^1(\mathbf{z})$

* Conjecture

 $\exists t_*$ such that $\forall t > t_*$

 $\mathbf{X}(t) - \mathbf{Z}(t) = \mathcal{O}(H(t))$

* Lemma. *H* is strictly decreasing with *t* and $\lim_{t\to\infty} H(t) = 0$.

Analytical support for the conjecture

10 011

Back to LRS Bianchi III

Start with full system

$$\begin{bmatrix} \dot{H} \\ \dot{\mathbf{x}} \end{bmatrix} = H \begin{bmatrix} 0 \\ \mathbf{f}^{1}(\mathbf{x}, t) \end{bmatrix} + H^{2} \begin{bmatrix} f^{[2]}(\mathbf{x}, t) \\ \mathbf{0} \end{bmatrix}$$

* Truncate to first order after sufficiently large $t = t_* \Rightarrow H^2 \ll H \ll 1$

$$\begin{bmatrix} \hat{\mathcal{H}} \\ \dot{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathcal{H} \mathbf{f}^{1}(\mathbf{y}, t) \end{bmatrix} = \begin{bmatrix} 0 \\ H_{*} \mathbf{f}^{1}(\mathbf{y}, t) \end{bmatrix}, \text{ with } H_{*} = \mathcal{H}(t_{*}) = H(t_{*})$$

- * Assumption: $\mathbf{x}(t) \mathbf{y}(t) = \mathcal{O}(H_*)$
- * Average first order system $\dot{\mathbf{z}} = H_* \bar{\mathbf{f}}^1(\mathbf{z})$
- * By standard averaging Thm: $\mathbf{X}(t) \mathbf{Y}(t) = \mathcal{O}(H_*)$
- * Together with truncation error: $\mathbf{X}(t) \mathbf{Z}(t) = \mathcal{O}(H_*)$
- * Continuum limit yields statement of conjecture: $\mathbf{X}(t) \mathbf{Z}(t) = \mathcal{O}(H(t))$

Future asymptotics of LRS Bianchi III E-K-G

10 914

Under the premise that the conjecture holds.

$$t \mapsto \tau := \int_{t_0}^t H(s) \,\mathrm{d}s \implies \partial_t = H\partial_\tau$$

System transforms to

$$\begin{bmatrix} \dot{H} \\ \dot{\mathbf{x}} \end{bmatrix} = H \mathbf{F}^{1}(\mathbf{x}, \tau) + H^{2} \mathbf{F}^{[2]}(\mathbf{x}, \tau) \quad \mapsto \quad \begin{bmatrix} \partial_{\tau} H \\ \partial_{\tau} \mathbf{x} \end{bmatrix} = \mathbf{F}^{1}(\mathbf{x}, \tau) + H \mathbf{F}^{[2]}(\mathbf{x}, \tau)$$

* Averaging to $\partial_{\tau} \overline{\mathbf{x}} = \overline{\mathbf{F}}^1(\mathbf{x}, \tau)$

$$\begin{bmatrix} \partial_{\tau} \overline{\Sigma}_{+} \\ \partial_{\tau} \overline{\Omega} \\ \partial_{\tau} \overline{\varphi} \end{bmatrix} = \begin{bmatrix} -\left(2\left(1 - \overline{\Sigma}_{+}^{2}\right) - \frac{\overline{\Omega}}{2}\right)\overline{\Sigma}_{+} + 1 - \overline{\Sigma}_{+}^{2} - \overline{\Omega} \\ \overline{\Omega}\left(4\overline{\Sigma}_{+}^{2} - \left(1 - \overline{\Omega}\right)\right) \\ 0 \end{bmatrix}$$

Exact solutions associated with equilibrium points

* First, solve Raychaudhuri eq at equilibrium points

$$\dot{H} = H^2 \Big[-(1+q) \Big], \quad q = 2\Sigma_+^2 + \Omega \Big(3\cos(t-\varphi)^2 - 1 \Big)$$

$$\stackrel{D}{\Longrightarrow} H(t) = \frac{2}{3t} \quad \text{for large } t$$

* Then, solve evolution eqs of the scale factors

 $\dot{a} = aH(1 - 2\Sigma_{+}) \qquad \stackrel{D}{\Longrightarrow} \qquad \begin{array}{c} a(t) = c_{1} \\ b = bH(1 + \Sigma_{+}) \end{array} \qquad \begin{array}{c} b \\ b(t) = c_{2}t \end{array}$

$$\mathbf{g} = -dt^{2} + a(t)^{2}dr^{2} + b(t)^{2}\mathbf{g}_{H^{2}}$$

equil. point	a(t)	b(t)	solution
T	$c_1 t$	c_2	Taub (flat LRS Kasner)
Q	$c_1 t^{-1/3}$	$c_2 t^{2/3}$	non-flat LRS Kasner
D	c_1	$c_2 t$	Bianchi III form of flat spacetime
F	$c_1 t^{2/3}$	$c_2 t^{2/3}$	Einstein-de-Sitter (flat Friedman)

Centre manifold analysis yields

Lemma.

$$\overline{\Sigma}_{+} \approx \frac{1}{2} - \frac{1}{2\tau}$$
 and $\overline{\Omega}(\tau) \approx \frac{1}{\tau}$ for large τ

* Assuming that conjecture $\mathbf{X}(t) - \mathbf{Z}(t) = \mathcal{O}(H(t))$ holds

Lemma. $H(t) \approx \frac{2}{3t}$ for large t

Lemma.
$$\tau(t) \approx \frac{2}{3} \ln t$$
 for large t $\left(t \mapsto \tau := \int_{t_0}^t H(s) \, ds\right)$

$$\implies \mathbf{X}(t) = \mathbf{Z}(t) + \mathcal{O}(H(t)) = \begin{bmatrix} \frac{1}{2} - \frac{3}{4\ln t} \\ \frac{3}{2\ln t} \end{bmatrix} + \mathcal{O}(t^{-1})$$

* ...

$$\implies \mathbf{X}(t) = \mathbf{Z}(t) + \mathcal{O}(H(t)) = \begin{bmatrix} \frac{1}{2} - \frac{3}{4\ln t} \\ \frac{3}{2\ln t} \end{bmatrix} + \mathcal{O}(t^{-1})$$

Theorem 1. Assuming that the conjecture holds,

$$\Sigma_{+}(t) \approx \frac{1}{2} - \frac{3}{4 \ln t}$$
 and $\Omega(t) \approx \frac{3}{2 \ln t}$ for large t

* Theorem 1. Assuming that the conjecture holds, $\Sigma_{+}(t) \approx \frac{1}{2} - \frac{3}{4 \ln t}$ and $\Omega(t) \approx \frac{3}{2 \ln t}$ for large t. * **Theorem 2.** Assuming that the conjecture holds, $\mathbf{g} = -dt^2 + a(t)^2 dr^2 + b(t)^2 \mathbf{g}_{H^2}$ with $a(t) \approx c_1 \ln t$ and $b(t) \approx c_2 t$. * Compare to vacuum solutions: $a(t) \approx c_1, b(t) \approx c_2 t$

LRS Bianchi I & II

D Fajman, G Heißel

Thm: Averaging with time dependent perturbation

10 01/2

D Fajman, G Heißel, JW Jang

m that we consider throughout this manuscript has the fold $\dot{H} = H\mathbf{F}^{1}(\mathbf{x}, t) + H^{2}\mathbf{F}^{[2]}(\mathbf{x}, t) = H \begin{bmatrix} 0 \\ \mathbf{f}^{1}(\mathbf{x}, t) \end{bmatrix} + H^{2} \begin{bmatrix} f^{[2]}(\mathbf{x}, t) \\ 0 \end{bmatrix}$ H(t) is positive, is strictly decreasing in t, and

$$\lim_{t \to \infty} H(t) = 0.$$

we ready to introduce the statement of our main theorem: **.1.** Suppose that H = H(t) > 0 is strictly decreasing in t, $\lim_{t \to \infty} H(t) = 0.$

fix any $\varepsilon > 0$ with $\varepsilon < H(0)$ and define $t_* > 0$ such that

 $\|\mathbf{f}^1\|_{L^{\infty}_{\mathbf{x},t}}, \|f^{[2]}\|_{L^{\infty}_{\mathbf{x},t}} < \infty,$

x, t) is Lipschitz continuous and $f^{[2]}$ is continuous with res lso, assume that **f**¹ and $f^{[2]}$ are *T*-periodic for some T >th $t = t_* + O(H(t_*)^{-\gamma})$ for some $\gamma \in (0, 1)$, we have

$$\mathbf{x}(t) - \mathbf{z}(t) = O(H(t_*)^{\min\{1, 2-2\gamma\}}),$$

he solution of the system (3.1) with the initial condition \mathbf{x} (plution of the averaged equation

$$\dot{\mathbf{z}} = H(t_*) \bar{\mathbf{f}}^1(\mathbf{z}), \text{ for } t > t_*$$

ial condition $\mathbf{z}(t_*) = \mathbf{x}(t_*)$ where the average $\overline{\mathbf{f}}^1$ is defined

 $\bar{\mathbf{f}}^1(\mathbf{z}) = \frac{1}{T} \int_{t_*}^{t_*+T} \mathbf{f}^1(\mathbf{z}, s) ds.$

$$\begin{bmatrix} \dot{H} \\ \dot{\mathbf{x}} \end{bmatrix} = H \begin{bmatrix} 0 \\ \mathbf{f}^{1}(\mathbf{x}, t) \end{bmatrix} + H^{2} \begin{bmatrix} f^{[2]}(\mathbf{x}, t) \\ \mathbf{0} \end{bmatrix}$$
(3.1)

Theorem 3.1 (Local-in-time asymptotic). Suppose that H = H(t) > 0 is strictly decreasing in t, and

$$\lim_{t \to \infty} H(t) = 0.$$

Choose and fix any $\varepsilon > 0$ with $\varepsilon < H(0)$ and define $t_* > 0$ such that $\varepsilon = H(t_*)$. Suppose that

$$\|\mathbf{f}^1\|_{L^{\infty}_{\mathbf{x},t}}, \|f^{[2]}\|_{L^{\infty}_{\mathbf{x},t}} < \infty,$$

and that $\mathbf{f}^1(\mathbf{x}, t)$ is Lipschitz continuous and $f^{[2]}$ is continuous with respect to \mathbf{x} for all $t \ge t_*$. Also, assume that \mathbf{f}^1 and $f^{[2]}$ are T-periodic for some T > 0. Then for all $t > t_*$ with $t = t_* + O(H(t_*)^{-\gamma})$ for some $\gamma \in (0, 1)$, we have

$$\mathbf{x}(t) - \mathbf{z}(t) = O(H(t_*)^{\min\{1, 2-2\gamma\}}),$$

where **x** is the solution of the system (3.1) with the initial condition $\mathbf{x}(0) = \mathbf{x}_0$ and $\mathbf{z}(t)$ is the solution of the averaged equation

$$\dot{\mathbf{z}} = H(t_*) \bar{\mathbf{f}}^1(\mathbf{z}), \text{ for } t > t_*$$

with the initial condition $\mathbf{z}(t_*) = \mathbf{x}(t_*)$ where the average $\mathbf{\bar{f}}^1$ is defined as

$$\bar{\mathbf{f}}^1(\mathbf{z}) = \frac{1}{T} \int_{t_*}^{t_*+T} \mathbf{f}^1(\mathbf{z}, s) ds.$$

Theorem 3.2 (Global-in-time asymptotic). Assume the same assumptions of Theorem 3.1. Then we have

$$\lim_{\tau \to \infty} \|\mathbf{x}(\tau) - \mathbf{z}(\tau)\| = 0.$$

* Sufficient to prove LRS Bianchi I & II asymptotics

Insufficient to prove LRS Bianchi III asymptotics

