The Weyl BMS group and Einstein's equations

Roberto Oliveri
LUTH, Paris Observatory

March 17th 2022

Mainly based on arXiv:2104.05793/2104.12881 with Laurent Freidel, Daniele Pranzetti and Simone Speziale

Motivation and outline

Asymptotic symmetries are crucial to study:

- Gravitational waves
in asymptotically flat spacetimes \rightarrow Bondi-Metzner-Sachs (BMS) group, implications for waveforms
- Infrared sector of gauge theories
interplay among asymptotic symmetries, soft theorems and memory effects (the Strominger's triangle)
- the holographic nature of gravity
e.g., Brown-Henneaux in AdS_{3} with Dirichlet boundary conditions and conformal transformations in CFT $_{2}$ for 4 d asymptotically flat spacetimes, what is the "ultimate" asymptotic symmetry group?

Motivation and outline

Asymptotic symmetries are crucial to study:

- Gravitational waves
in asymptotically flat spacetimes \rightarrow Bondi-Metzner-Sachs (BMS) group, implications for waveforms
- Infrared sector of gauge theories
interplay among asymptotic symmetries, soft theorems and memory effects (the Strominger's triangle)
- the holographic nature of gravity e.g., Brown-Henneaux in AdS_{3} with Dirichlet boundary conditions and conformal transformations in CFT_{2} for 4 d asymptotically flat spacetimes, what is the "ultimate" asymptotic symmetry group?

In this talk:
i. review the original, extended and generalized BMS groups

Bondi-Sachs gauge, boundary conditions, and asymptotic symmetry group
ii. introduce the Weyl BMS (or BMSW) group
new boundary conditions, properties of the BMSW group, action on the asymptotic phase space
iii. the BMSW charge algebra and the asymptotic Einstein's equations new charge bracket, its algebra, obtaining asymptotic Einsteins' equations
iv. rediscovering BMSW: pushing the extended corner symmetry to infinity

The Weyl BMS group

The Bondi-Sachs gauge

[Madler\&Winicour, 1609.01731]
Bondi coordinates: $x^{\mu}=\left(u, r, x^{A}\right)$.

The Bondi-Sachs gauge

[Madler\&Winicour, 1609.01731]
Bondi coordinates: $x^{\mu}=\left(u, r, x^{A}\right)$.
Bondi gauge: $g_{r r}=0, g_{r A}=0, \partial_{r} \operatorname{det}\left(g_{A B} / r^{2}\right)=0$.

The Bondi-Sachs gauge

[Madler\&Winicour, 1609.01731]
Bondi coordinates: $x^{\mu}=\left(u, r, x^{A}\right)$.
Bondi gauge: $g_{r r}=0, g_{r A}=0, \partial_{r} \operatorname{det}\left(g_{A B} / r^{2}\right)=0$.
Bondi-Sachs metric:

$$
d s^{2}=-2 e^{2 \beta} d u(F d u+d r)+r^{2} q_{A B}\left(d x^{A}-U^{A} d u\right)\left(d x^{B}-U^{B} d u\right)
$$

where β, F, U^{A}, and $q_{A B}$ are functions of $\left(u, r, x^{A}\right)$.

The Bondi-Sachs gauge

[Madler\&Winicour, 1609.01731]
Bondi coordinates: $x^{\mu}=\left(u, r, x^{A}\right)$.
Bondi gauge: $g_{r r}=0, g_{r A}=0, \partial_{r} \operatorname{det}\left(g_{A B} / r^{2}\right)=0$.
Bondi-Sachs metric:

$$
d s^{2}=-2 e^{2 \beta} d u(F d u+d r)+r^{2} q_{A B}\left(d x^{A}-U^{A} d u\right)\left(d x^{B}-U^{B} d u\right)
$$

where β, F, U^{A}, and $q_{A B}$ are functions of $\left(u, r, x^{A}\right)$.
What is the radial asymptotic behaviour of these quantities?

The boundary conditions (1/2)

The ur and $u A$ components obey the fall-off conditions:

$$
g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), \quad g_{u A}=\mathcal{O}(1) .
$$

The boundary conditions (1/2)

The ur and $u A$ components obey the fall-off conditions:

$$
g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), \quad g_{u A}=\mathcal{O}(1) .
$$

More freedom in the $u u$ and $A B$ components:

$$
\left\{\begin{array}{lll}
g_{u u}=-1+\mathcal{O}\left(r^{-1}\right), & q_{A B}=\stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & \text { (original BMS) } \\
g_{u u}=\mathcal{O}(r), & q_{A B}=e^{2 \phi(u)} \stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { extended BMS) } \\
g_{u u}=\mathcal{O}(1), & q_{A B}=\bar{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { generalized BMS) },
\end{array}\right.
$$

o-BMS: $\stackrel{\circ}{9}_{A B}$ is the round metric on S^{2} with Ricci scalar $\stackrel{\circ}{R}=2$ [Bondi-Metzner-Sachs, 1962]
e-BMS: conformally related to $\stackrel{\circ}{q}_{A B}$ with u-dependence [Barnich-Troesseart, 2010]
g-BMS: $\partial_{u} \bar{q}_{A B}=0$ and $\delta \sqrt{\bar{q}}=0$ [Campiglia-Laddha, 2014] [Compère et al., 2018]

The boundary conditions (1/2)

The ur and $u A$ components obey the fall-off conditions:

$$
g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), \quad g_{u A}=\mathcal{O}(1) .
$$

More freedom in the $u u$ and $A B$ components:

$$
\left\{\begin{array}{lll}
g_{u u}=-1+\mathcal{O}\left(r^{-1}\right), & q_{A B}=\stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & \text { (original BMS) } \\
g_{u u}=\mathcal{O}(r), & q_{A B}=e^{2 \phi(u)} \stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { extended BMS) } \\
g_{u u}=\mathcal{O}(1), & q_{A B}=\bar{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { generalized BMS) },
\end{array}\right.
$$

o-BMS: $\stackrel{\circ}{9}_{A B}$ is the round metric on S^{2} with Ricci scalar $\stackrel{\circ}{R}=2$ [Bondi-Metzner-Sachs, 1962]
e-BMS: conformally related to $\stackrel{\circ}{q}_{A B}$ with u-dependence [Barnich-Troesseart, 2010]
g-BMS: $\partial_{u} \bar{q}_{A B}=0$ and $\delta \sqrt{\bar{q}}=0$ [Campiglia-Laddha, 2014] [Compère et al., 2018]
Our proposal [Freidel-RO-Pranzetti-Speziale, 2021]

$$
\mathrm{BMSW}: \partial_{u} \bar{q}_{A B}=0 \text { and } \delta \sqrt{\bar{q}} \neq 0
$$

The boundary conditions (1/2)

The ur and $u A$ components obey the fall-off conditions:

$$
g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), \quad g_{u A}=\mathcal{O}(1)
$$

More freedom in the $u u$ and $A B$ components:

$$
\left\{\begin{array}{lll}
g_{u u}=-1+\mathcal{O}\left(r^{-1}\right), & q_{A B}=\stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & \text { (original BMS) } \\
g_{u u}=\mathcal{O}(r), & q_{A B}=e^{2 \phi(u)} \stackrel{\circ}{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { extended BMS) } \\
g_{u u}=\mathcal{O}(1), & q_{A B}=\bar{q}_{A B}+\mathcal{O}\left(r^{-1}\right) & (\text { generalized BMS) },
\end{array}\right.
$$

o-BMS: $\stackrel{\circ}{q}_{A B}$ is the round metric on S^{2} with Ricci scalar $\stackrel{\circ}{R}=2$ [Bondi-Metzner-Sachs, 1962]
e-BMS: conformally related to $\stackrel{\circ}{q}_{A B}$ with u-dependence [Barnich-Troesseart, 2010]
g-BMS: $\partial_{u} \bar{q}_{A B}=0$ and $\delta \sqrt{\bar{q}}=0$ [Campiglia-Laddha, 2014] [Compère et al., 2018]
Our proposal [Freidel-RO-Pranzetti-Speziale, 2021]

$$
\mathrm{BMSW}: \partial_{u} \bar{q}_{A B}=0 \text { and } \delta \sqrt{\bar{q}} \neq 0
$$

Remark 1: $\partial_{u} \bar{q}_{A B}=0$ implies that $g_{u u}=\mathcal{O}(1)$.
Enough to describe MPM spacetimes [Blanchet et al, 2021]
Remark 2: relaxing bcs \rightarrow divergences \rightarrow phase-space renormalization! in AdS/CFT adding boundary action counter-terms [deHaro-Solodukhin-Skenderis, 2001], [Compère-Marolf, 2008] in g-BMS adding boundary Lagrangian (and associated symplectic potential) [Compère et al., 2018] Additional investigation of this issue in [Freidel-Geiller-Pranzetti, 2020]

The boundary conditions (2/2)

The BMSW bcs: $g_{u u}=\mathcal{O}(1), g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), g_{u A}=\mathcal{O}(1), g_{A B}=\mathcal{O}\left(r^{2}\right)$

$$
\begin{array}{ll}
g_{u u}:=-2 F e^{2 \beta} & \Longrightarrow F=\bar{F}-\frac{M}{r}+\mathcal{O}\left(r^{-2}\right) \\
g_{u r}:=-e^{2 \beta} & \Longrightarrow \beta=\frac{\bar{\beta}}{r^{2}}+\mathcal{O}\left(r^{-3}\right) \\
g_{u A}:=-r^{2} q_{A B} U^{B} & \Longrightarrow U^{A}=\frac{\bar{U}^{A}}{r^{2}}-\frac{2}{3 r^{9}} \bar{q}^{A B}\left(P_{B}+C_{B C} \bar{U}^{C}+\partial_{B} \bar{\beta}\right)+\mathcal{O}\left(r^{-4}\right) \\
g_{A B}:=r^{2} q_{A B} & \Longrightarrow q_{A B}=\bar{q}_{A B}+\frac{C_{A B}}{r}+\frac{1}{4 r^{2}} \bar{q}_{A B} C_{C D} C^{C D}+\frac{E_{A B}}{r^{3}}+\mathcal{O}\left(r^{-4}\right)
\end{array}
$$

The boundary conditions (2/2)

The BMSW bcs: $g_{u u}=\mathcal{O}(1), g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), g_{u A}=\mathcal{O}(1), g_{A B}=\mathcal{O}\left(r^{2}\right)$

$$
\begin{array}{ll}
g_{u u}:=-2 F e^{2 \beta} & \Longrightarrow F=\bar{F}-\frac{M}{r}+\mathcal{O}\left(r^{-2}\right) \\
g_{u r}:=-e^{2 \beta} & \Longrightarrow \beta=\frac{\bar{\beta}}{r^{2}}+\mathcal{O}\left(r^{-3}\right) \\
g_{u A}:=-r^{2} q_{A B} U^{B} & \Longrightarrow U^{A}=\frac{\bar{U}^{A}}{r^{2}}-\frac{2}{3 r^{9}} \bar{q}^{A B}\left(P_{B}+C_{B C} \bar{U}^{C}+\partial_{B} \bar{\beta}\right)+\mathcal{O}\left(r^{-4}\right), \\
g_{A B}:=r^{2} q_{A B} \quad \Longrightarrow q_{A B}=\bar{q}_{A B}+\frac{C_{A B}}{r}+\frac{1}{4 r^{2}} \bar{q}_{A B} C_{C D} C^{C D}+\frac{E_{A B}}{r^{3}}+\mathcal{O}\left(r^{-4}\right) .
\end{array}
$$

The asymptotic Einstein's equations read as

$$
\bar{F}=\frac{1}{4} \bar{R}, \quad \bar{\beta}=-\frac{1}{32} C_{A B} C^{A B}, \quad \bar{U}^{A}=-\frac{1}{2} \bar{D}_{B} C^{A B}, \quad \partial_{u} \bar{q}_{A B}=0,
$$

together with the Bondi mass and angular momentum loss formulae ($N_{A B} \equiv \partial_{u} C_{A B}$)

$$
\begin{aligned}
\partial_{u} M & =-\frac{1}{8} N_{A B} N^{A B}+\frac{1}{4} \bar{D}_{A} \bar{D}_{B} N^{A B}+\frac{1}{2} \bar{\Delta} \bar{F} \\
\partial_{u} P_{A} & =\left\{\text { terms linear and quadratic in the shear } C_{A B} \text { and news } N_{A B}\right\}
\end{aligned}
$$

also known as flux-balance laws! PN expanded in ([Nichols, 2017-18], [Compère-RO-Seraj, 2019]).

The boundary conditions (2/2)

The BMSW bcs: $g_{u u}=\mathcal{O}(1), g_{u r}=-1+\mathcal{O}\left(r^{-2}\right), g_{u A}=\mathcal{O}(1), g_{A B}=\mathcal{O}\left(r^{2}\right)$

$$
\begin{array}{ll}
g_{u u}:=-2 \mathrm{Fe}^{2 \beta} & \Longrightarrow F=\bar{F}-\frac{M}{r}+\mathcal{O}\left(r^{-2}\right), \\
g_{u r}:=-e^{2 \beta} & \Longrightarrow \beta=\frac{\bar{\beta}}{r^{2}}+\mathcal{O}\left(r^{-3}\right), \\
g_{u A}:=-r^{2} q_{A B} U^{B} & \Longrightarrow U^{A}=\frac{\bar{U}^{A}}{r^{2}}-\frac{2}{3 r^{3}} \bar{q}^{A B}\left(P_{B}+C_{B C} \bar{U}^{C}+\partial_{B} \bar{\beta}\right)+\mathcal{O}\left(r^{-4}\right), \\
g_{A B}:=r^{2} q_{A B} \quad \Longrightarrow q_{A B}=\bar{q}_{A B}+\frac{C_{A B}}{r}+\frac{1}{4 r^{2}} \bar{q}_{A B} C_{C D} C^{C D}+\frac{E_{A B}}{r^{3}}+\mathcal{O}\left(r^{-4}\right) .
\end{array}
$$

The asymptotic Einstein's equations read as

$$
\bar{F}=\frac{1}{4} \bar{R}, \quad \bar{\beta}=-\frac{1}{32} C_{A B} C^{A B}, \quad \bar{U}^{A}=-\frac{1}{2} \bar{D}_{B} C^{A B}, \quad \partial_{u} \bar{q}_{A B}=0,
$$

together with the Bondi mass and angular momentum loss formulae ($N_{A B} \equiv \partial_{u} C_{A B}$)

$$
\begin{aligned}
\partial_{u} M & =-\frac{1}{8} N_{A B} N^{A B}+\frac{1}{4} \bar{D}_{A} \bar{D}_{B} N^{A B}+\frac{1}{2} \bar{\Delta} \bar{F} \\
\partial_{u} P_{A} & =\left\{\text { terms linear and quadratic in the shear } C_{A B} \text { and news } N_{A B}\right\}
\end{aligned}
$$

also known as flux-balance laws! PN expanded in ([Nichols, 2017-18], [Compère-RO-Seraj, 2019]).

The asymptotic symmetry group

We seek vector fields preserving: a) the Bondi gauge and b) the boundary conditions.

The asymptotic symmetry group

We seek vector fields preserving: a) the Bondi gauge and b) the boundary conditions.
a) Preserving the Bondi gauge, namely

$$
\mathcal{L}_{\xi} g_{r r}=0, \quad \mathcal{L}_{\xi} g_{r A}=0, \quad \partial_{r}\left(g^{A B} \mathcal{L} g_{A B}\right)=0
$$

gives

$$
\xi^{u}=\tau, \quad \xi^{r}=-r W+\frac{r}{2}\left[D_{A}\left(I^{A B} \partial_{B} \tau\right)+U^{A} \partial_{A} \tau\right], \quad \xi^{A}=Y^{A}-I^{A B} \partial_{B} \tau
$$

Here τ, W, and Y^{A} are functions of $\left(u, x^{A}\right)$, and $I^{A B}=\int_{r}^{+\infty} d r^{\prime} e^{2 \beta} q^{A B} / r^{\prime 2}$. Moreover, we allow the scale structure to vary:

$$
\delta_{\xi} \sqrt{\bar{q}}=\left(D_{A} Y^{A}-2 W\right) \sqrt{\bar{q}}
$$

The asymptotic symmetry group

We seek vector fields preserving: a) the Bondi gauge and b) the boundary conditions.
a) Preserving the Bondi gauge, namely

$$
\mathcal{L}_{\xi} g_{r r}=0, \quad \mathcal{L}_{\xi} g_{r A}=0, \quad \partial_{r}\left(g^{A B} \mathcal{L} g_{A B}\right)=0
$$

gives

$$
\xi^{u}=\tau, \quad \xi^{r}=-r W+\frac{r}{2}\left[D_{A}\left(I^{A B} \partial_{B} \tau\right)+U^{A} \partial_{A} \tau\right], \quad \xi^{A}=Y^{A}-I^{A B} \partial_{B} \tau
$$

Here τ, W, and Y^{A} are functions of $\left(u, x^{A}\right)$, and $I^{A B}=\int_{r}^{+\infty} d r^{\prime} e^{2 \beta} q^{A B} / r^{\prime 2}$.
Moreover, we allow the scale structure to vary:

$$
\delta_{\xi} \sqrt{\bar{q}}=\left(D_{A} Y^{A}-2 W\right) \sqrt{\bar{q}}
$$

b) Preserving the boundary conditions, namely

$$
\mathcal{L}_{\xi} g_{u u}=\mathcal{O}(1), \quad \mathcal{L}_{\xi} g_{u r}=\mathcal{O}\left(r^{-2}\right), \quad \mathcal{L}_{\xi} g_{u A}=\mathcal{O}(1), \quad \mathcal{L}_{\xi} g_{A B}=\mathcal{O}\left(r^{2}\right)
$$

gives

$$
\tau=T+u W, \quad \partial_{u} W=0=\partial_{u} T, \quad \partial_{u} Y^{A}=0
$$

$T\left(x^{A}\right)$: super-translations; $W\left(x^{A}\right)$: Weyl rescaling of $S^{2} ; Y^{A}\left(x^{B}\right)$: diffeos of S^{2}.

The boundary symmetry algebra

The leading order BMSW vector fields are

$$
\bar{\xi}_{(T, W, Y)}:=T \partial_{u}+Y^{A} \partial_{A}+W\left(u \partial_{u}-r \partial_{r}\right)
$$

The boundary symmetry algebra

The leading order BMSW vector fields are

$$
\bar{\xi}_{(T, W, Y)}:=T \partial_{u}+Y^{A} \partial_{A}+W\left(u \partial_{u}-r \partial_{r}\right)
$$

Computing the Lie commutators $\left[\bar{\xi}_{\left(T_{1}, W_{1}, Y_{1}\right)}, \bar{\xi}_{\left(T_{2}, W_{2}, Y_{2}\right)}\right]=\bar{\xi}_{\left(T_{12}, W_{12}, Y_{12}\right)}$ with

$$
T_{12}=Y_{1}\left[T_{2}\right]-W_{1} T_{2}-(1 \leftrightarrow 2), \quad W_{12}=Y_{1}\left[W_{2}\right]-Y_{2}\left[W_{1}\right], \quad Y_{12}=\left[Y_{1}, Y_{2}\right]
$$

The boundary symmetry algebra

The leading order BMSW vector fields are

$$
\bar{\xi}_{(T, W, Y)}:=T \partial_{u}+Y^{A} \partial_{A}+W\left(u \partial_{u}-r \partial_{r}\right)
$$

Computing the Lie commutators $\left[\bar{\xi}_{\left(T_{1}, W_{1}, Y_{1}\right)}, \bar{\xi}_{\left(T_{2}, W_{2}, Y_{2}\right)}\right]=\bar{\xi}_{\left(T_{12}, W_{12}, Y_{12}\right)}$ with

$$
T_{12}=Y_{1}\left[T_{2}\right]-W_{1} T_{2}-(1 \leftrightarrow 2), \quad W_{12}=Y_{1}\left[W_{2}\right]-Y_{2}\left[W_{1}\right], \quad Y_{12}=\left[Y_{1}, Y_{2}\right]
$$

Comparison with previous literature:

	background structure	restriction	parametrisation
bmsw	\emptyset	\emptyset	(T, W, Y)
generalized bms	scale structure	$\delta \sqrt{q}=0$	$\left(T, \frac{1}{2} D_{A} Y^{A}, Y\right)$
extended bms	conformal structure	$\delta\left[q_{A B}\right]=0$	$\left(e^{\phi} t, \frac{1}{2}\left(D_{A} Y^{A}-w\right), Y\right)$
original bms	round sphere structure	$\delta q_{A B}=0$	$\left(T, \frac{1}{2} D_{A} Y^{A}, Y\right)$

The boundary symmetry algebra

The leading order BMSW vector fields are

$$
\bar{\xi}_{(T, W, Y)}:=T \partial_{u}+Y^{A} \partial_{A}+W\left(u \partial_{u}-r \partial_{r}\right)
$$

Computing the Lie commutators $\left[\bar{\xi}_{\left(T_{1}, W_{1}, Y_{1}\right)}, \bar{\xi}_{\left(T_{2}, W_{2}, Y_{2}\right)}\right]=\bar{\xi}_{\left(T_{12}, W_{12}, Y_{12}\right)}$ with

$$
T_{12}=Y_{1}\left[T_{2}\right]-W_{1} T_{2}-(1 \leftrightarrow 2), \quad W_{12}=Y_{1}\left[W_{2}\right]-Y_{2}\left[W_{1}\right], \quad Y_{12}=\left[Y_{1}, Y_{2}\right]
$$

we obtain the $\mathfrak{b m s w}$ Lie algebra: $\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathbb{R}_{W}\right) \oplus \mathbb{R}_{T}$.
Comparison with previous literature:

	background structure	restriction	parametrisation
bmsw	\emptyset	\emptyset	(T, W, Y)
generalized bms	scale structure	$\delta \sqrt{q}=0$	$\left(T, \frac{1}{2} D_{A} Y^{A}, Y\right)$
extended bms	conformal structure	$\delta\left[q_{A B}\right]=0$	$\left(e^{\phi} t, \frac{1}{2}\left(D_{A} Y^{A}-w\right), Y\right)$
original bms	round sphere structure	$\delta q_{A B}=0$	$\left(T, \frac{1}{2} D_{A} Y^{A}, Y\right)$

	group	algebra
bmsw	$\left(\operatorname{Diff}\left(S^{2}\right) \ltimes \mathbb{R}_{W}\right) \ltimes \mathbb{R}_{T}$	$\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathbb{R}_{W}\right) \oplus \mathbb{R}_{T}$
generalized bms	$\operatorname{Diff}\left(S^{2}\right) \ltimes \mathbb{R}_{T}$	$\operatorname{diff}\left(S^{2}\right) \oplus \mathbb{R}_{T}$
extended bms	$\left(\right.$ loc- $\left.\operatorname{CKV}\left(S^{2}\right)_{\dot{q}} \ltimes \mathbb{R}_{T}\right) \times \mathbb{R}_{W}$	$\left(\operatorname{Vir} \oplus \operatorname{Vir} \oplus \mathbb{R}_{T}\right) \oplus \mathbb{R}_{W}$
original bms	$\operatorname{glob-CKV}\left(S^{2}\right)_{\dot{q}} \ltimes \mathbb{R}_{T}$	$\operatorname{SL}(2, \mathbb{C}) \oplus \mathbb{R}_{T}$

Action on the asymptotic phase space

The asymptotic phase space is parametrized by $\Phi^{i}=\left(\bar{F}, \bar{\beta}, \bar{U}^{A}, \bar{q}_{A B}, M, P_{A}, C_{A B}\right)$.

Action on the asymptotic phase space

The asymptotic phase space is parametrized by $\Phi^{i}=\left(\bar{F}, \bar{\beta}, \bar{U}^{A}, \bar{q}_{A B}, M, P_{A}, C_{A B}\right)$. In general, the action of the BMSW vectors over Φ^{i} is

$$
\begin{aligned}
\delta_{(\tau, Y)} \Phi^{i} & =\delta_{\bar{\xi}_{(\tau, Y)}} \Phi^{i}+\Delta_{\xi} \Phi^{i} \\
& =\left[\tau \partial_{u}+\mathcal{L}_{Y}-s \dot{\tau}\right] \Phi^{i}+L_{\Phi^{i}}^{A} \bar{D}_{A} \tau+\tilde{L}_{\Phi^{i}}^{A} \bar{D}_{A} \dot{\tau}+Q_{\Phi^{i}}^{A B} \bar{D}_{A} \bar{D}_{B} \tau+\tilde{Q}_{\Phi^{i}}^{A B} \bar{D}_{A} \bar{D}_{B} \dot{\tau}
\end{aligned}
$$

Action on the asymptotic phase space

The asymptotic phase space is parametrized by $\Phi^{i}=\left(\bar{F}, \bar{\beta}, \bar{U}^{A}, \bar{q}_{A B}, M, P_{A}, C_{A B}\right)$. In general, the action of the BMSW vectors over Φ^{i} is

$$
\begin{aligned}
\delta_{(\tau, Y)} \Phi^{i} & =\delta_{\bar{\xi}_{(\tau, Y)}} \Phi^{i}+\Delta_{\xi} \Phi^{i} \\
& =\left[\tau \partial_{u}+\mathcal{L}_{Y}-s \dot{\tau}\right] \Phi^{i}+L_{\Phi^{i}}^{A} \bar{D}_{A} \tau+\tilde{L}_{\Phi^{i}}^{A} \bar{D}_{A} \dot{\tau}+Q_{\Phi^{i}}^{A B} \bar{D}_{A} \bar{D}_{B} \tau+\tilde{Q}_{\Phi^{i}}^{A B} \bar{D}_{A} \bar{D}_{B} \dot{\tau}
\end{aligned}
$$

A special class of functionals with no quadratic anomaly: the covariant functionals. For instance, the covariant mass $\mathcal{M}:=M+\frac{1}{8} C_{A B} N^{A B}$ transforms as

$$
\delta_{(\tau, Y)} \mathcal{M}=\left[\tau \partial_{u}+\mathcal{L}_{Y}+3 \dot{\tau}\right] \mathcal{M}+M^{A} \partial_{A} \tau, \quad M^{A}=\frac{1}{2} \bar{D}_{B} N^{A B}+\bar{D}^{A} \bar{F}
$$

In particular, the covariant functionals

$$
\mathcal{P}_{A}:=P_{A}-2 \bar{D}_{A} \bar{\beta}-\frac{1}{2} C_{A B} \bar{U}^{B}, \quad \mathcal{M}:=M+\frac{1}{8} C_{A B} N^{A B}, \quad M^{A}=\frac{1}{2} \bar{D}_{B} N^{A B}+\bar{D}^{A} \bar{F}
$$

are the leading Weyl scalars $\psi_{1}, \operatorname{Re}\left(\psi_{2}\right)$, and ψ_{3} respectively.

Action on the asymptotic phase space

The asymptotic phase space is parametrized by $\Phi^{i}=\left(\bar{F}, \bar{\beta}, \bar{U}^{A}, \bar{q}_{A B}, M, P_{A}, C_{A B}\right)$. In general, the action of the BMSW vectors over Φ^{i} is

$$
\begin{aligned}
\delta_{(\tau, Y)} \Phi^{i} & =\delta_{\bar{\xi}_{(\tau, Y)}} \Phi^{i}+\Delta_{\xi} \Phi^{i} \\
& =\left[\tau \partial_{u}+\mathcal{L}_{Y}-s \dot{\tau}\right] \Phi^{i}+L_{\Phi^{i}}^{A} \bar{D}_{A} \tau+\tilde{L}_{\Phi^{i}}^{A} \bar{D}_{A} \dot{\tau}+Q_{\Phi^{i}}^{A B} \bar{D}_{A} \bar{D}_{B} \tau+\tilde{Q}_{\Phi^{i}}^{A B} \bar{D}_{A} \bar{D}_{B} \dot{\tau}
\end{aligned}
$$

A special class of functionals with no quadratic anomaly: the covariant functionals. For instance, the covariant mass $\mathcal{M}:=M+\frac{1}{8} C_{A B} N^{A B}$ transforms as

$$
\delta_{(\tau, Y)} \mathcal{M}=\left[\tau \partial_{u}+\mathcal{L}_{Y}+3 \dot{\tau}\right] \mathcal{M}+M^{A} \partial_{A} \tau, \quad M^{A}=\frac{1}{2} \bar{D}_{B} N^{A B}+\bar{D}^{A} \bar{F}
$$

In particular, the covariant functionals

$$
\mathcal{P}_{A}:=P_{A}-2 \bar{D}_{A} \bar{\beta}-\frac{1}{2} C_{A B} \bar{U}^{B}, \quad \mathcal{M}:=M+\frac{1}{8} C_{A B} N^{A B}, \quad M^{A}=\frac{1}{2} \bar{D}_{B} N^{A B}+\bar{D}^{A} \bar{F}
$$

are the leading Weyl scalars $\psi_{1}, \operatorname{Re}\left(\psi_{2}\right)$, and ψ_{3} respectively.
Manifold of flat vacua is defined by $\mathcal{M}=0, M^{A}=0, \dot{N}_{A B}=0$.
Vacuum sector - orbits of the BMSW group: $|\tau, Y\rangle=\hat{e}_{(\tau, Y)}|0\rangle$.

The Weyl BMS, its charge algebra and Einstein's equations

Canonical analysis

Nomenclature:
$\left\{d, i_{\xi}, \mathcal{L}_{\xi}\right\}$, spacetime differential, contraction and Lie derivative: $\mathcal{L}_{\xi}=d i_{\xi}+i_{\xi} d$
$\left\{\delta, \iota_{\xi}, \delta_{\xi}\right\}$, field space differential, contraction and variation: $\delta_{\xi}=\delta I_{\xi}+\iota_{\xi} \delta$.

Canonical analysis

Nomenclature:
$\left\{d, i_{\xi}, \mathcal{L}_{\xi}\right\}$, spacetime differential, contraction and Lie derivative: $\mathcal{L}_{\xi}=d i_{\xi}+i_{\xi} d$ $\left\{\delta, \iota_{\xi}, \delta_{\xi}\right\}$, field space differential, contraction and variation: $\delta_{\xi}=\delta I_{\xi}+\iota_{\xi} \delta$.
Anomaly: $\Delta_{\xi} \omega:=\left(\delta_{\xi}-\mathcal{L}_{\xi}-I_{\delta_{\xi}}\right) \omega$. [Freidel-Hopfmueller, 2018], see also [Harlow-Wu, 2019]

Canonical analysis

Nomenclature:
$\left\{d, i_{\xi}, \mathcal{L}_{\xi}\right\}$, spacetime differential, contraction and Lie derivative: $\mathcal{L}_{\xi}=d i_{\xi}+i_{\xi} d$ $\left\{\delta, I_{\xi}, \delta_{\xi}\right\}$, field space differential, contraction and variation: $\delta_{\xi}=\delta I_{\xi}+\iota_{\xi} \delta$.
Anomaly: $\Delta_{\xi} \omega:=\left(\delta_{\xi}-\mathcal{L}_{\xi}-I_{\delta_{\xi}}\right) \omega$. [Freidel-Hopfmueller, 2018], see also [Harlow-Wu, 2019]
Given a Lagragian $L, \delta L=d \theta_{L}-E$.
(assume that L and θ_{L} have no anomalies for the sake of presentation)
Noether's theorems say that

$$
I_{\xi} E=d C_{\xi}, \quad j_{\xi}:=I_{\xi} \theta_{L}-i_{\xi} L=C_{\xi}+d d_{\xi} \quad\left(d j_{\xi} \approx 0\right)
$$

Canonical analysis

Nomenclature:
$\left\{d, i_{\xi}, \mathcal{L}_{\xi}\right\}$, spacetime differential, contraction and Lie derivative: $\mathcal{L}_{\xi}=d i_{\xi}+i_{\xi} d$ $\left\{\delta, I_{\xi}, \delta_{\xi}\right\}$, field space differential, contraction and variation: $\delta_{\xi}=\delta I_{\xi}+\iota_{\xi} \delta$.
Anomaly: $\Delta_{\xi} \omega:=\left(\delta_{\xi}-\mathcal{L}_{\xi}-I_{\delta_{\xi}}\right) \omega$. [Freidel-Hopfmueller, 2018], see also [Harlow-Wu, 2019]
Given a Lagragian $L, \delta L=d \theta_{L}-E$.
(assume that L and θ_{L} have no anomalies for the sake of presentation)
Noether's theorems say that

$$
I_{\xi} E=d C_{\xi}, \quad j_{\xi}:=I_{\xi} \theta_{L}-i_{\xi} L=C_{\xi}+d a_{\xi} \quad\left(d j_{\xi} \approx 0\right)
$$

The symplectic 2-form, the Noether charge and the flux read as

$$
\Omega=\int_{\Sigma} \delta \theta_{L}, \quad Q_{\xi}=\int_{S^{2}} q_{\xi}, \quad \mathcal{F}_{\xi}=\int_{S^{2}}\left(i_{\xi} \theta_{L}+q_{\delta_{\xi}}\right)
$$

obey the fundamental canonical relation (see e.g., [Lee-Wald, 1990], [lyer-Wald, 1994])

$$
-I_{\xi} \Omega \approx \delta Q_{\xi}-\mathcal{F}_{\xi}
$$

Canonical analysis

Nomenclature:
$\left\{d, i_{\xi}, \mathcal{L}_{\xi}\right\}$, spacetime differential, contraction and Lie derivative: $\mathcal{L}_{\xi}=d i_{\xi}+i_{\xi} d$ $\left\{\delta, \iota_{\xi}, \delta_{\xi}\right\}$, field space differential, contraction and variation: $\delta_{\xi}=\delta I_{\xi}+\iota_{\xi} \delta$.
Anomaly: $\Delta_{\xi} \omega:=\left(\delta_{\xi}-\mathcal{L}_{\xi}-I_{\delta_{\xi}}\right) \omega$. [Freidel-Hopfmueller, 2018], see also [Harlow-Wu, 2019]
Given a Lagragian $L, \delta L=d \theta_{L}-E$.
(assume that L and θ_{L} have no anomalies for the sake of presentation)
Noether's theorems say that

$$
I_{\xi} E=d C_{\xi}, \quad j_{\xi}:=I_{\xi} \theta_{L}-i_{\xi} L=C_{\xi}+d a_{\xi} \quad\left(d j_{\xi} \approx 0\right)
$$

The symplectic 2-form, the Noether charge and the flux read as

$$
\Omega=\int_{\Sigma} \delta \theta_{L}, \quad Q_{\xi}=\int_{S^{2}} q_{\xi}, \quad \mathcal{F}_{\xi}=\int_{S^{2}}\left(i_{\xi} \theta_{L}+q_{\delta_{\xi}}\right)
$$

obey the fundamental canonical relation (see e.g., [Lee-Wald, 1990], [lyer-Wald, 1994])

$$
-I_{\xi} \Omega \approx \delta Q_{\xi}-\mathcal{F}_{\xi}
$$

Contracting again (using antisymmetry in the second step),

$$
-I_{\chi} I_{\xi} \Omega \approx \delta_{\chi} Q_{\xi}-I_{\chi} \mathcal{F}_{\xi} \approx-\left(\delta_{\xi} Q_{\chi}-I_{\xi} \mathcal{F}_{\chi}\right)
$$

Charge bracket

Using only the antisymmetry of the symplectic form Ω :

$$
I_{\chi} I_{\xi} \Omega \approx \delta_{\xi} Q_{\chi}-I_{\xi} \mathcal{F}_{\chi}
$$

suggesting the definition of the charge bracket (generalizes [Barnich-Troessaert, 2011])

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}:=\delta_{\xi} Q_{\chi}-I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\xi} i_{\chi} L
$$

Charge bracket

Using only the antisymmetry of the symplectic form Ω :

$$
I_{\chi} I_{\xi} \Omega \approx \delta_{\xi} Q_{\chi}-I_{\xi} \mathcal{F}_{\chi}
$$

suggesting the definition of the charge bracket (generalizes [Barnich-Troessaert, 2011])

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}:=\delta_{\xi} Q_{\chi}-I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\xi} i_{\chi} L
$$

Consider two (field-dependent) vector fields ξ and χ with modified Lie bracket

$$
\llbracket \xi, \chi \rrbracket:=[\xi, \chi]_{L i e}+\delta_{\chi} \xi-\delta_{\xi} \chi
$$

s.t. the commutator of two field space variations is still a symmetry transformation

$$
\left[\delta_{\xi}, \delta_{\chi}\right]=-\delta_{\llbracket \xi, \chi \rrbracket}
$$

Charge bracket

Using only the antisymmetry of the symplectic form Ω :

$$
I_{\chi} I_{\xi} \Omega \approx \delta_{\xi} Q_{\chi}-I_{\xi} \mathcal{F}_{\chi}
$$

suggesting the definition of the charge bracket (generalizes [Barnich-Troessaert, 2011])

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}:=\delta_{\xi} Q_{\chi}-I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\xi} i_{\chi} L
$$

Consider two (field-dependent) vector fields ξ and χ with modified Lie bracket

$$
\llbracket \xi, \chi \rrbracket:=[\xi, \chi]_{L i e}+\delta_{\chi} \xi-\delta_{\xi} \chi
$$

s.t. the commutator of two field space variations is still a symmetry transformation

$$
\left[\delta_{\xi}, \delta_{\chi}\right]=-\delta_{\llbracket \xi, \chi \rrbracket}
$$

It can be proven that (technical step: $\Delta_{\xi} Q_{\chi}=Q_{\delta_{\chi} \xi}-Q_{\llbracket \xi, \chi \rrbracket}$)

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}+Q_{\llbracket \xi, \chi \rrbracket}=-\int_{S^{2}} i_{\xi} C_{\chi} \approx 0
$$

Property 1: it provides a representation of the vector field algebra on-shell.
Property 2: it is invariant under $L \rightarrow L+d l$.

Charge bracket

Using only the antisymmetry of the symplectic form Ω :

$$
I_{\chi} I_{\xi} \Omega \approx \delta_{\xi} Q_{\chi}-I_{\xi} \mathcal{F}_{\chi}
$$

suggesting the definition of the charge bracket (generalizes [Barnich-Troessaert, 2011])

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}:=\delta_{\xi} Q_{\chi}-I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\xi} i_{\chi} L
$$

Consider two (field-dependent) vector fields ξ and χ with modified Lie bracket

$$
\llbracket \xi, \chi \rrbracket:=[\xi, \chi]_{L i e}+\delta_{\chi} \xi-\delta_{\xi} \chi
$$

s.t. the commutator of two field space variations is still a symmetry transformation

$$
\left[\delta_{\xi}, \delta_{\chi}\right]=-\delta_{\llbracket \xi, \chi \rrbracket}
$$

It can be proven that (technical step: $\Delta_{\xi} Q_{\chi}=Q_{\delta \chi \xi}-Q_{\llbracket \xi, \chi \rrbracket}$)

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}+Q_{\llbracket \xi, \chi \rrbracket}=-\int_{S^{2}} i_{\xi} C_{\chi} \approx 0
$$

Property 1: it provides a representation of the vector field algebra on-shell.
Property 2: it is invariant under $L \rightarrow L+d l$.
This is the flux-balance relation, equivalent to (asymptotic) Einstein's equations.

Obtaining the asymptotic Einstein's equations (1/2)

Interplay among:
geometric data - phase-space data - dynamics

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}+Q_{\llbracket \xi, \chi \rrbracket} \approx 0 \Longleftrightarrow \delta_{\xi} Q_{\chi}+Q_{\llbracket \xi, \chi \rrbracket} \approx I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\chi} i_{\xi} L
$$

Obtaining the asymptotic Einstein's equations (1/2)

Interplay among:
geometric data - phase-space data - dynamics

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}+Q_{\llbracket \xi, \chi \rrbracket} \approx 0 \Longleftrightarrow \delta_{\xi} Q_{\chi}+Q_{\llbracket \xi, \chi \rrbracket} \approx I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\chi} i_{\xi} L
$$

BMSW generators (ξ, χ)	$\left\{Q_{\xi}, Q_{\chi}\right\}+Q_{\llbracket \xi, \chi \rrbracket}=0$	Einstein's equations
$\left(\partial_{u}, \xi_{T}\right)$	$2 \mathrm{E}_{M}-\frac{1}{4} \bar{\Delta} \mathrm{E}_{\bar{F}}=0$	$\xi_{T}^{\mu} G_{\mu}{ }^{r}=0$
$\left(\xi_{T}, \partial_{u}\right)$	$2 \mathrm{E}_{M}+\bar{D}^{A} \dot{\mathrm{E}}_{\bar{U}_{A}}+\frac{1}{4} \bar{\Delta} \mathrm{E}_{\bar{F}}=0$	$\xi_{T}^{u} G_{u}{ }^{r}-\xi_{T}^{r} G_{u}{ }^{u}=0$
$\left(\partial_{u}, \xi_{W}\right)$	$\bar{D}^{A} \mathrm{E}_{\bar{U}_{A}}+u\left(2 \mathrm{E}_{M}-\frac{1}{4} \Delta \mathrm{E}_{\bar{F}}\right)=0$	$\xi_{W}^{\mu} G_{\mu}{ }^{r}=0$
$\left(\xi_{W}, \partial_{u}\right)$	$-\bar{D}^{A} \mathrm{E}_{\bar{U}_{A}}+u\left(2 \mathrm{E}_{M}+\bar{D}^{A} \dot{\mathrm{E}}_{\bar{U}_{A}}+\frac{1}{4} \Delta \mathrm{E}_{\bar{F}}\right)=0$	$\xi_{W}^{u} G_{u}{ }^{r}-\xi_{W}^{r} G_{u}{ }^{u}=0$
$\left(\partial_{u}, \xi_{Y}\right)$	$\mathrm{E}_{\bar{P}_{A}}+2 \bar{D}_{A} \dot{\mathrm{E}}_{\bar{\beta}}-2 \bar{F} \overline{\mathrm{E}}_{\bar{U}_{A}}-\frac{1}{2} \bar{U}_{A} \mathrm{E}_{\bar{F}}=0$	$\xi_{Y}^{\mu} G_{\mu}{ }^{r}=0$
$\left(\xi_{Y}, \partial_{u}\right)$	$0=0$	$0=0$

-original BMS: 1 flux-balance (energy);
-generalized BMS: 3 flux-balances (energy, angular mom) - importance of $\operatorname{diff}\left(S^{2}\right)$; -BMSW: 8 flux-balances - importance of the Weyl rescalings.

Obtaining the asymptotic Einstein's equations (2/2)

Interplay among:
geometric data - phase-space data - dynamics

$$
\left\{Q_{\xi}, Q_{\chi}\right\}_{L}+Q_{\llbracket \xi, \chi \rrbracket}=\int_{S^{2}} i_{\xi} C_{\chi} \approx 0 \Longleftrightarrow \delta_{\xi} Q_{\chi}+Q_{\llbracket \xi, \chi \rrbracket} \approx I_{\chi} \mathcal{F}_{\xi}+\int_{S^{2}} i_{\chi} i_{\xi} L
$$

-original BMS: 1 flux-balance (energy);
-generalized BMS: 3 flux-balances (energy, angular mom) - importance of Diff(S);
-BMSW: 8 flux-balances - importance of the Weyl rescalings;
-extension of the BMSW?

Rediscovering BMSW: pushing extended corner symmetry to scri

Extended corner symmetry

Corner symmetry group: surface diffeomorphisms "plus" surface boosts
[Donnelly-Freidel, 2016], [Donnelly-Freidel-Moosavian-Speranza, 2020]

$$
\mathfrak{g}_{S^{2}}=\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})
$$

Extended corner symmetry

Corner symmetry group: surface diffeomorphisms "plus" surface boosts
[Donnelly-Freidel, 2016], [Donnelly-Freidel-Moosavian-Speranza, 2020]

$$
\mathfrak{g}_{S^{2}}=\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})
$$

Extended corner symmetry includes surface translations (see also [Ciambelli-Leigh, 2021])

$$
\mathfrak{g}_{S^{2}}^{\text {ext }}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})\right) \oplus \mathbb{R}^{2}
$$

To prove this, consider the following metric around the corner S^{2} :

$$
d s^{2}=h_{a b} d x^{a} d x^{b}+\gamma_{A B}\left(d \sigma^{A}-U_{a}^{A} d x^{a}\right)\left(d \sigma^{B}-U_{b}^{B} d x^{b}\right)
$$

One defines $Y^{A}=\left.\xi^{A}\right|_{x^{a}=0}, W_{a}^{b}=\left.\partial_{a} \xi^{b}\right|_{x^{a}=0}, T^{a}=\left.\xi^{a}\right|_{x^{a}=0}$ and the associated charges

$$
\begin{gathered}
P_{A}=\frac{1}{2} \gamma_{A B} \epsilon^{a b}\left(\partial_{a}+U_{a}^{A} \partial_{A}\right) U_{b}^{B}, \quad N_{b}^{a}=\frac{1}{2} h_{b c} \epsilon^{c a} \\
Q_{a}=\frac{1}{2} \epsilon^{c b}\left(\partial_{b}+U_{b}^{A} \partial_{A}\right) h_{a c}-U_{a}^{B} P_{B}-D_{C}\left(N_{a}^{b} U_{b}^{c}\right),
\end{gathered}
$$

Extended corner symmetry

Corner symmetry group: surface diffeomorphisms "plus" surface boosts
[Donnelly-Freidel, 2016], [Donnelly-Freidel-Moosavian-Speranza, 2020]

$$
\mathfrak{g}_{S^{2}}=\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})
$$

Extended corner symmetry includes surface translations (see also [Ciambelli-Leigh, 2021])

$$
\mathfrak{g}_{S^{2}}^{\text {ext }}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})\right) \oplus \mathbb{R}^{2}
$$

To prove this, consider the following metric around the corner S^{2} :

$$
d s^{2}=h_{a b} d x^{a} d x^{b}+\gamma_{A B}\left(d \sigma^{A}-U_{a}^{A} d x^{a}\right)\left(d \sigma^{B}-U_{b}^{B} d x^{b}\right)
$$

One defines $Y^{A}=\left.\xi^{A}\right|_{x^{a}=0}, W_{a}^{b}=\left.\partial_{a} \xi^{b}\right|_{x^{a}=0}, T^{a}=\left.\xi^{a}\right|_{x^{a}=0}$ and the associated charges

$$
\begin{gathered}
P_{A}=\frac{1}{2} \gamma_{A B} \epsilon^{a b}\left(\partial_{a}+U_{a}^{A} \partial_{A}\right) U_{b}^{B}, \quad N_{b}^{a}=\frac{1}{2} h_{b c} \epsilon^{c a} \\
Q_{a}=\frac{1}{2} \epsilon^{c b}\left(\partial_{b}+U_{b}^{A} \partial_{A}\right) h_{a c}-U_{a}^{B} P_{B}-D_{C}\left(N_{a}^{b} U_{b}^{c}\right),
\end{gathered}
$$

Pushing these charges to scri, one gets (after renormalization) the $\mathfrak{b m s w}$ algebra

$$
\mathfrak{g}_{S^{2}}^{\text {ext }}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathfrak{s l}(2, \mathbb{R})\right) \oplus \mathbb{R}^{2} \quad \xrightarrow{r \rightarrow \infty} \quad \mathfrak{b m s w}=\left(\operatorname{diff}\left(S^{2}\right) \oplus \mathbb{R}_{W}\right) \oplus \mathbb{R}_{T}
$$

The factor $\mathfrak{s l}(2, \mathbb{R})$ is typical of $G R$; it might change in modified theories of gravity.
Deformation/extension of $\operatorname{diff}\left(S^{2}\right)$? [Rojo-Prochazka-Sachs, 2021]

Conclusions

Conclusions

Recap:

- new asymptotic symmetries in GR: the BMSW group;
- derivation of (asymptotic) Einstein's equations from first principles;
- phase-space renormalization (not discussed here, only mentioned!);
- vacua labelled by diff(S), in addition to super-translations and Weyl labels

Conclusions

Recap:

- new asymptotic symmetries in GR: the BMSW group;
- derivation of (asymptotic) Einstein's equations from first principles;
- phase-space renormalization (not discussed here, only mentioned!);
- vacua labelled by diff(S), in addition to super-translations and Weyl labels

Follow-ups:

- relax also $\partial_{u} \bar{q}_{A B}=0$;
- find an extension of BMSW to derive the missing Einstein's equations $G_{\langle A B\rangle}=0$;
- explore the consequences of BMSW for memory effects and soft theorems;

Conclusions

Recap:

- new asymptotic symmetries in GR: the BMSW group;
- derivation of (asymptotic) Einstein's equations from first principles;
- phase-space renormalization (not discussed here, only mentioned!);
- vacua labelled by diff(S), in addition to super-translations and Weyl labels

Follow-ups:

- relax also $\partial_{u} \bar{q}_{A B}=0$;
- find an extension of BMSW to derive the missing Einstein's equations $G_{\langle A B\rangle}=0$;
- explore the consequences of BMSW for memory effects and soft theorems;

Other interesting directions:

- study asymptotically spatially flat FLRW
[Bonga-Prabhu, 2020], [Rojo-Heckelbacher, 2020, 2021], [Rojo-Heckelbacher-RO, 2022]
- investigate the "triangle" in the cosmological setting (adiabatic modes, squeezed limits)
- make advantage of the asymptotic symmetries to improve gravitational waveforms e.g., [Mitman et al, 2020, 2021a,b
- explore the role of asymptotic symmetries in modified theories of gravity [handful works on scalar-tensor theories]

Conclusions

Recap:

- new asymptotic symmetries in GR: the BMSW group;
- derivation of (asymptotic) Einstein's equations from first principles;
- phase-space renormalization (not discussed here, only mentioned!);
- vacua labelled by diff(S), in addition to super-translations and Weyl labels

Follow-ups:

- relax also $\partial_{u} \bar{q}_{A B}=0$;
- find an extension of BMSW to derive the missing Einstein's equations $G_{\langle A B\rangle}=0$;
- explore the consequences of BMSW for memory effects and soft theorems;

Other interesting directions:

- study asymptotically spatially flat FLRW
[Bonga-Prabhu, 2020], [Rojo-Heckelbacher, 2020, 2021], [Rojo-Heckelbacher-RO, 2022]
- investigate the "triangle" in the cosmological setting (adiabatic modes, squeezed limits)
- make advantage of the asymptotic symmetries to improve gravitational waveforms e.g., [Mitman et al, 2020, 2021a,b
- explore the role of asymptotic symmetries in modified theories of gravity [handful works on scalar-tensor theories]

