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Introduction

The era of gravitational wave astronomy

e GW150914: first observation of a BBH coalescence by LIGO-Virgo

e GW170817: first BNS with EM counterparts (multimessenger astronomy)

e Since April 2019: third observation run (O3) ongoing...

Opportunity of new tests of general relativity and modified gravities, in the
strong-field regime of a compact binary merger.



Introduction

“Knowing the chirp to hear it’"...
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[courtesy Alexandre Le Tiec]

In general relativity: PN theory, self-force calculations, EOB framework,

numerical relativity...



Introduction

How to adapt these tools to derive analytical waveforms

in modified gravities ?

Consider the example of Einstein-scalar-Gauss-Bonnet (ESGB) theories.

e Félix-Louis Julié, Emanuele Berti, "Post-Newtonian dynamics and black hole thermodynamics

in Einstein-scalar-Gauss-Bonnet gravity,” Phys.Rev. D100 (2019) no.10, 104061

e Marcela Cardenas, Félix-Louis Julié, Nathalie Deruelle, "Thermodynamics sheds light

on black hole dynamics,” Phys. Rev. D97, 12, 124021, 2018.

e Félix-Louis Julié, "Gravitational radiation from compact binary systems in

Einstein-Maxwell-dilaton theories,” JCAP 1810, 10, 033, 2018.

e Félix-Louis Julié, "Reducing the two-body problem in scalar-tensor theories to the motion

of a test particle: a scalar-tensor effective-one-body approach,” Phys. Rev. D97, 2, 024047, 2018.

e Félix-Louis Julié, Nathalie Deruelle, "Two-body problem in scalar-tensor theories as a deformation

of general relativity: an effective-one-body approach,” Phys. Rev. D95, 12, 124054, 2017.
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Einstein-Scalar-Gauss-Bonnet gravity

ESGB vacuum action (G =c=1)

1
o = e “al“x1 /[—g <R —2¢"0,90,0 + af(w)%éB>

e Massless scalar field ¢

e Gauss-Bonnet scalar &g, = R¥P°R,, ., — 4R"R,, + R?

e Fundamental coupling & with dimensions L? and f(¢) defines the ESGB theory
o [dPx —gR%y is a boundary term in D < 4 [Myers 87]

Second order field equations

8
RW=26ﬂg0aV§0 —4a <P,uowﬂ — %Paﬁ) V¢ Vﬂf((0)

1
(e =-— Zaf’(co)%éB

with Py o6 = Riype = 28,1 pRop + 2801 pRo1u + 8u1p8o1 R



Introduction

Hairy black holes in ESGB gravity

Analytical solutions in the small Gauss-Bonnet coupling a limit
e Einstein-dilaton-Gauss-Bonnet, f(¢p) = e?
Mignemi-Stewart 93 at O(a?), Maeda at al. 97 at O(), Yunes-Stein 11 at O(a)
Ayzenberg-Yunes 14 at O(a?,S?), Pani et al. 11 at O(a?, S%), Maselli et al. 15 at O(a’, S°)

e Shift-symmetric theories, f(¢) = ¢
Sotiriou-Zhou 14 at O(a?)
e Generic ESGB theories
Julié-Berti 19 at O(a*)

Numerical solutions

e Einstein-dilaton-Gauss-Bonnet, f(¢p) = e?
Kanti et al. 95, Pani-Cardoso 09, Kleihaus 15 (includes spins)
e Shift-symmetric theories, f(p) = ¢

Delgado et al. 20 (includes spin)
e Generic ESGB theories
Antoniou et al. 18

2

e Quadratic couplings, f(@) = goz(l + Aq)z) and f(@) = — e~
Doneva-Yazadjiev 17, Silva et al. 17, Minamitsuji-lkeda 18, Macedo et al. 19, etc...

How to address (analytically) the motion and gravitational radiation of two coalescing ESGB black holes?

See also Yagi et al. 12; and Witek et al. 19, Okounkova 20 for a numerical relativity analysis.
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1. ESGB black holes and their thermodynamics

Static, spherically symmetric ESGB black holes

Just coordinate system )

d
ds®> = — A(r)dt* + d
A(r

+ B(r) r’(d6? + sin’0 dp?)

_af (@)
€ =

<1
m2

Solve iteratively the field equations around a Schwarzschild spacetime with

2m . . .
A(r)=1—7+;€Ai(r), B(r)=1+zi:€Bl-(r), (p(r)=(poo+;€(pi(r)

8w
; Paﬂ> VeVPf(g)

Rﬂyz ZGMgoﬁyq) —4a <Pﬂ0”/ﬂ —

1
Lo =—-Zaf (PR

with Rgp = R¥R,, , — 4R"R,, + R*

ESGB black hole, at leading order for simplicity:

2 2 2
2m af’, af’, af (p) (( m m*  2m? afs,
A=1—-——+0— , B=1+0|—— , = @t — + + + 0| —
r < m? ) < m? ) v= m? 2r  2r2 3 m?

Two integration constants: m and ¢, at all orders in the Gauss-Bonnet coupling.



1. ESGB black holes and their thermodynamics

ESGB black hole thermodynamics

e Temperature:

1
T=— where x> = — E(Vﬂfy V”éj’“)rH is the surface gravity

e Wald entropy:

0F |
S, =-— Sanqub\/; o with €, = np,l,,
g HLUPO

Ay . :
Sy = e + 4arxf(py) in ESGB gravity.

e Mass as a global charge:

D 1
M=m+ JD do., D is the scalar “charge” defined as ¢ =, +—+ O (—2>
r r

[Henneaux et al. 02, Cardenas et al. 16, Anabalon-Deruelle-FLJ 16,...]

The quantities above are calculated in terms of m and ¢_,. At leading order for simplicity:

y 2 / 2 / /
T = 8zm [1+@<%>] S = [Haf(q;oo)m(%)] ACS [1+@(am>]
m m m 2m m?

The variations of S, and M with respect to m and ¢, are such that:

TsS, = 6M
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2. The post-newtonian (PN) dynamics of an ESGB black hole binary

“Skeletonizing” an ESGB black hole

[in GR: Mathisson 1931, Infeld 1950,...]

1

Tesan = 7— Jd“x\/ —8 (R — 280,00, + af(é")*%éla) + I

Generic ansatz for compact bodies

L8, . x] = — JmA(cv) ds,

with ds, = \/—gﬂydxf’“dxA” .

o m,(@) is a function of the local value of ¢ to encompass the effect of the background scalar
field on the equilibrium of a body [Eardley 75, Damour-Esposito-Farése 92].

e Strong equivalence principle violation

Question: How to derive m,(¢) for an ESGB black hole?

Answer: by identifying the BH's fields to those sourced by the particle.



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Comparing the asymptotic expansions of the fields

1 1
R,, = 20,00, — 4a (Pﬂayﬂ -3 gWPaﬁ> VeV f(p) + 8x <T;‘y -5 gWTA>

ds, dm, 6P(x —x,(1))

dt do \/—g

1
O =- Zaf’(go)gééB +4n

SI(x — x,(1)) dx¥ dx¥

with T = m,(p)
A ! dxg dxf At dt

88ap dt  dt

Fields of particle A in its rest frame, xj‘ =0 Fields of the ESGB black hole

uv = My + 5/41/ ( = > +0 <ﬁ> Suw = M + 5,Ltl/ (7) +0 (ﬁ)



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Matching

e the identification yields

Matching conditions

My(P,) = M

my(@Pe,) = =D

e For an ESGB black hole with “secondary hair”, D = D(m, ¢_,) yields a first order differential equation.

At leading order, for simplicity:

Wy TD Ny o 2] =0
dep  2my(@)

e lts resolution involves a unique integration constant .



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

The sensitivity of a hairy ESGB black hole

Iép[g/,tw Q, xX] - - J'mA((p) dSA

e In an arbitrary ESGB theory, BHs are described by a unique constant parameter:

2u3 4n

a S
my(@) = py (1 - /) + > where pu, =M, = =

e Recall: ESGB first law of thermodynamics: 15S,, = oM

where M = om + Dog.,.

Matching conditions
(a)and (b) => oM =0

(@) my(@) =m

As a consequence, 0S5, =0

When ¢, varies slowly, the black hole readjusts its equilibrium configuration, i.e. m,

in keeping its Wald entropy fixed.



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Iggop = —Jd4x\/_ <R 28" 0 q,ayq) + af(go)gi%B> — Z [mA(¢)dsA
A

ESGB two-body Lagrangian at 1PN order

e Harmonic gauge d,(1/—gg") =0

2
1% GM
e Conservative 1PN dynamics: 0 <—> ~ O (—) corrections to Newtonian dynamics

c r

e Solve iteratively the field equations with point particle sources around
g =— ¢V 4+ 0(v° @ = @ytop
goi = — 48+ O(v)

1 1
R,, = 20,00, — 4a <P/mﬂ -3 gWPaﬂ> VeVif(p) + 87:2 <T/‘;‘y -3 gWTA>
ds, dm, §Vx —x,(1)

o dp  \/-g

e The sensitivities m,(¢) and mg(@) are expanded around ¢,

1
(o =— Zaf’((p)gzz 2+ 47:2

Inm, (@) = lnmA+aA(§0 Po) + = ﬁX(ca Po)” +

In mg(p) = Inm +aB((p @p) + ﬁ (@ — %)2 +



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Gauss-Bonnet contributions

1 1 1
AR(X) = A A - 9; 9;
Ix-y| [|x-Y] Ix—-y| *[x-Y]
(i) Introduce y; #y,
Ahy, = A At gL 5 1
2T x—yl Ix=yv2l Ux=yl VIx-y,l
f o 2 0> 0’ 1
ay{oy} aylayj  9yioyi ayjay] ) Ix=yil1x—y,]
(ii) Use Fock's “perimeter formula” (1939) Y2
1 1
A =In(|x=-y; |+ [x=Y |+ |y, = ¥2])
X =y ||x—=y,]
X ny;
(iii) Take the limit e = |y, —y,;| = 0
n; Y1
1-3(m,-n)*> 2-9m,,-n;)+ 15, -n,)’
h12(X)= 12 31 + 12 1 - 12 1 +@(€)
2[x—y, "€ 41x -y |
Finite Gauss-Bonnet contribution
(iv) Average out n, )
h(x) =

. . . 4
(niyy =0, (nnl)y=8;/3, (ninl nk)=0 2|x—y|



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

ESGB two-body Lagrangian at 1PN order [FLJ-Berti 2019)]

1 1 G gmimy
— 0 0 0y2 0y2 AB""AB
Lyp=—m, —my +EmAvA +EmBVB +

r
1 1 G gmimy [ 3
+§mgvi + gmgvg 520 rA & E(Vf\ +v2) — E(VA Vp) — E(H V)M - Vp) + 745(V4 — Vp)?

G2 ,mimY _ _
- ABZ "— [m(1 +2Bp) + mi(1 + 2B,)] + ALFP + 0(/°)
r

e L, has the same structure as the scalar-tensor Lagrangian at 1PN...

Gy = G( + ajap)
o

1 + afa)

1y

ATS (1 + afad)?

Yap = —?2

and (A < B).

where ag = (d Inm,/de) (@) , ﬂX = (dag/dw)(wo)

e ... except for one new and finite Gauss-Bonnet contribution:

/ 2 ~2.0.0
a GM\~ G'mym
LYP = ((j;](\j;)z) < > 4 B [mg(ag +2a))) + m(ay + 2052)]

r 2

e can be regarded as a 3PN correction whenever af'(¢,) < M>.
e In scalar-tensor theories, L,y is known at 2PN [Mirshekari-Will 13] and 3PN [Bernard 19]

e In the regime above, the conservative dynamics in ESGB gravity is hence known at 3PN.



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

aA(eo

0.0 —
-0.3
-0.5}

-0.6 -

Example: Einstein-dilaton-Gauss-Bonnet black holes _ e
= (d Inmy/dp)pg) . 0= (da®ldg)py)

At fourth order in the Gauss-Bonnet coupling a:

0 x 133 A 35947
A 2 T 2407 T 40320
_____ ‘\‘
‘ —
Padé[2,2] W
i
L. ‘1““1““1““1,1‘!“‘1““‘
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

e This pole could be the sign of naked singularities [Kanti at al. 95, Doneva-Yazadjiev 17]

2mﬁﬂ¢g2<<

H

»Qf;)z

4

=

. 474404471

2¢,
x4+@(x5) with x = ae

266112000 22

g2 = (1/2)ln(2xpole U A/a)

T T T T T T T T T T

—
-~
N\

aA Padé(®o)

2¢,
ae
e The (2,2) Padé approximant @2[%] predicts a pole at x_ . = — 5 = 0.445

P 24y

ae’Pu 2
> < for a skeletonized EdGB BH.
23 1+ \/6




1. ESGB black holes and their thermodynamics

2. The post-newtonian (PN) dynamics of an ESGB black hole binary

3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

4. Gravitational radiation from an ESGB black hole binary



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

In general relativity, “effective-one-body” (EOB) :

e Map the two-body PN dynamics to the motion of a test particle in an effective static, spherically symmetric

metric [Buonanno-Damour 98]

HQO,P), €= <

C

H, = frop(H)

2
V) —> H/(q.p) . ds; = ggdx"dx"

e Defines a resummation of the PN dynamics, hence describes analytically the coalescence of 2 compact objects in

general relativity, from inspiral to merger.

Z2/M h

AN

A A

e Instrumental to build libraries of waveform templates for LIGO-Virgo

e U



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

In practice, on the simple example of ESGB at 1PN:

Compute the two-body hamiltonian H(Q, P) = PRR + P(pq/} —L,p .

In the center-of-mass frame :

—

?A+FB= 0

7 coefficients (polar coordinates)

HIPN

1PN
with = (WP 4 IPNBBY 4 BINPY) +— (fPNE 4 hIPNAY ) + s
7 R R

The 7 hl.NPN coefficients are computed explicitly and depend on the 6

parameters (mg, ag, ﬂg) and (mg, ag,ﬁg) built from m,(¢) and myz(p)



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

The effective Hamiltonian H,

Geodesic motion in a static, spherically symmetric metric

In Schwarzschild-Droste coordinates (equatorial plane 8 = 1t/2) :

a’se2 = — A(r)dt* + B(r)dr?* + r’d¢?

A(r) and B(r) are arbitrary

Effective Hamiltonian H, (g, p) :

) 2
H,(q.p) = A<ﬂ2+—p +—fb> with p,=—, p,=
B 7

Can be expanded :

a dp
A(r)=1+—+—2+---

r r

b,
Br)y=1+—+---

r

i.e. depends on 3 effective parameters at 1PN order, to be determined.



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

EOB mapping [Buonanno-Damour 98]

(i) Canonically transform H :

H(Q,P) — H(q,p)

Generic ansatz G(Q, p) that depends on 3 parameters at 1PN order :

G(Qap) — Rpr <alg)2 +ﬁ1p\% +% + >

(ii) Relate H to H, through the quadratic relation [Damour 2016]

Hq.p) | _ (H(q,p)—M> 1LY (H(q,p)—M>
H H 2 H

0,..0 0,,,0
muympg 0 0 mampg
where U= , M=m; +myg, U=
(m§ + my)? M



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

ds? = — A(r)dt + B(r)dr? + r’d¢p?

It works, i.e., it yields a unique solution in ESGB theories:

FLJ, N. Deruelle [PRD 95, 12, 124054, 2017]

A(r)=1—2<GABM> +2

r

2
(B) — 7AB] <GAfM> + -

G M
( ap >+
r

we recognize the PPN Eddington metric written in Droste coordinates, with :

Bir)=1+2|1+74

pr4=1+(B), r*=1+74

where

Q Q 0.0 0\2
maBp + mpp, 5= — 20403 - _ 1 Palap)
AT + aal 472 (1 + aal)?

(B) =

0 0
mA+mB

(See also [Damour, Jaranowski, Schaefer 15] at 4PN in GR; and [FLJ, N.Deruelle 17] at 2PN in scalar-tensor theories.)



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

A resummed dynamics

e The inversion of H4q.p) — 1= <H(q,p) _M> [1 +K (H(q,p) _M>]
H p 2 H

defines a “resummed’ EOB Hamiltonian :

H 2 p?
HEOBzM\/1+2V<_e—1> , Where H, = A<ﬂ2+p—r+_¢>
H B r?

e HEOB hence defines a resummed dynamics, e.g., up to the innermost stable circular orbit (ISCO) or light-ring (LR).

P OHgop b= — 0Hgop b = 0Hgop b, = 0Hgop
op, " or py % Y
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4. Gravitational radiation from an ESGB black hole binary

Radiated energy fluxes at infinity

— =F +F with & = JdeIgl (fOO + T&% + T?n%)

7 0i , 2702 oz 0i 2 102
F —Jt nx-dQ- Jf(p—J T(q))nix dQ- |

X—> 00 X—> 0

e F, is given by Einstein's 2nd quadrupole formula at leading order, #** reduces to the Landau-Lifshitz pseudo-tensor

° %p is the extra scalar flux.

In the center-of-mass frame (Pf"‘ + P, = 0) and for circular orbits: [Yagi-Stein-Yunes-Tanaka 2012
& FLJ 2018]
e Metric flux (“dressed up” quadrupole formula)

(GusMp)*P = O0(v?)

) \ 1073
3V (GABMCI")
g?g — > + ...
S G (1+ afad)

e Scalar flux (with dipolar contribution if @} # ay)

8/3
v? (GABM¢}> 0.0, , 00\
1 A\23 | 16 [ myag + mya 2 _
F, = —(a¥ - ad)? + (GABM¢> AT T ) 4 Z(af - ag)2<1/ 3 f— 2(ﬂ)>
213 15 M 9
G: (1 + adal)

+2(ag — ag)

(m)’ay — (mp)*al N my [ag +a) (a9)* + ﬂgag] — (A < B) ‘o
5M? 3M(1 + afad)



4. Gravitational radiation from an ESGB black hole binary

EOB dynamics including the radiation reaction force

e On quasi-circular orbits : tangential force | Fy =

. aPIEOB . . aPIEOB i aPIEOB . aIiEOB

r = R , = , =
. P or %

’ p¢=_

H, pr2 P(%,
where Hgogg =My [ 1+ 20 — -1 and H,=p A\ 1+—F+—7
Iz =B pr

Example: effective trajectory for two EdGB black holes (f(¢) = ¢2?/4):

Z%/(GM)

' =rcos(p), z°=rsin(¢)

my
Asymmetric binary: — = 2 (v=~0.22)
My
BHs with scalar hair (ag =-04, ag =—1.6)

GR limit in yellow

Note : (#*/r¢h)ioo = 0.01



4. Gravitational radiation from an ESGB black hole binary

Last step : compute the ESGB-EOB waveforms up to the ISCO

e Mirrors follow the geodesics of the Jordan metric (in the solar system)

= of? =A% 1+ 2a580) + hl]| + 0 :
8 (©)8, (1 +2a,6¢) + +O0\ 3

e New “breathing’ mode

dzéi i j i 2 L YTT 1
dlInof
where ag y (pg) and
2G g’ 20;
hiJTT 3 i with @Y = Z mg (3xAxJ 6’JxA>
X

. I _ 0..0..1
with QZS—ZmAanA




4. Gravitational radiation from an ESGB black hole binary

Analytical waveforms for an inspiralling ESGB BH binary

\2/3 1/3
h=(GyyMp)  cos2) 50 = (1/4)af - a)(GasMd ) cos(@)

— CIOA=—0.4 ] 0_15; 0

" - 11
S A A HRD - |

0.00[ 0.001

< | 1 .
~0.05} \/ \/ ] ~0.05-
—0.10} U ] ~0.10[-

_0.15L ] ~0.15[

69

-0.20 ; 1 1 1 1 1 ; ~0:20 ; \\\\\\
1 . . . . . . . . . . . . . . . . . . . . S S S S S S S S |
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
t/(GM) t/(GM)

e On this example, the scalar amplitude is numerically comparable to the tensor one.

e However, its contribution is numerically lowered by [ag| S 1072 in the solar system

e Observed frequency : f = gﬁ/(ﬂ&fQ)



Conclusion

Recap

e Remarkably, the EOB approach can be extended beyond general relativity. In ESGB and scalar-tensor gravity:

ANy = @;[A;ﬁglor + 2epnit” + (Expy + V€51 ]

e Also works in Einstein-Maxwell-dilaton (EMD) theories at 1PN:  [FLJ 18]
1 4 v —2a v
Ievp = Ejd X\ 8 <R —2g* au(ﬂayfﬂ —e K Fuy>

e The ST and EMD examples suggest a generic “parametrized EOB” (PEOB) ansatz:

Tayl
APEOB() = @é[ASIfKI o+ 2(€Pon + V€U + (€3py F U ExppU”]

e \We generalized Eardley’s sensitivites m,(¢) to hairy black holes, and shed light on the role of the cosmological

environment ¢, of a binary on its dynamics.

e Necessity to observe sources emitting from a large range of redshifts, using LISA?



Conclusion

Future developments

Pole in the scalar coupling 0:2 predicted by Padé approximants: to be confirmed and interpreted

using numerical BH solutions.
e Skeletonize “scalarized” black holes to include them in the EOB framework. [Silva et al. 17]

e Refine our waveforms using higher PN order Lagrangians and fluxes; e.g., ST-ESGB at 3PN [Bernard 18|

e Match our waveforms to the quasi-normal modes of the final black hole [Brito-Pacilio 2018]

Ongoing work:
Numerical relativity is crucial to further explore the strong field regime near merger & calibrate EOB templates.

e Existing work in ESGB in the small Gauss-Bonnet coupling a limit [Witek et al. 19, Okounkova 20];
e To be extended to the full, non-perturbative theory?

— 3+1 formalism in ESGB gravity [FLJ-Berti, in prep.]

Thank you for your attention.



