Gravitational radiation from a binary black hole coalescence in Einstein-scalar-Gauss-Bonnet gravity

Félix-Louis Julié

Johns Hopkins University, Baltimore

Groupe Relativité et Objets Compacts Seminar Laboratoire Univers et Théories, Observatoire de Meudon

March 5, 2020

The era of gravitational wave astronomy

- GW150914: first observation of a BBH coalescence by LIGO-Virgo
- GW170817: first BNS with EM counterparts (multimessenger astronomy)
- Since April 2019: third observation run (O3) ongoing...

Opportunity of **new tests of general relativity and modified gravities**, in the strong-field regime of a compact binary merger.

"Knowing the chirp to hear it"...

In general relativity: PN theory, self-force calculations, EOB framework, numerical relativity...

How to adapt these tools to derive analytical waveforms in modified gravities ?

Consider the example of **Einstein-scalar-Gauss-Bonnet** (ESGB) theories.

- Félix-Louis Julié, Emanuele Berti, "Post-Newtonian dynamics and black hole thermodynamics in Einstein-scalar-Gauss-Bonnet gravity," Phys.Rev. D100 (2019) no.10, 104061
- Marcela Cardenas, Félix-Louis Julié, Nathalie Deruelle, "Thermodynamics sheds light on black hole dynamics," Phys. Rev. D97, 12, 124021, 2018.
- **Félix-Louis Julié**, "Gravitational radiation from compact binary systems in Einstein-Maxwell-dilaton theories," JCAP 1810, 10, 033, 2018.
- **Félix-Louis Julié**, "Reducing the two-body problem in scalar-tensor theories to the motion of a test particle: a scalar-tensor effective-one-body approach," Phys. Rev. D97, 2, 024047, 2018.
- Félix-Louis Julié, Nathalie Deruelle, "Two-body problem in scalar-tensor theories as a deformation of general relativity: an effective-one-body approach," Phys. Rev. D95, 12, 124054, 2017.

Einstein-Scalar-Gauss-Bonnet gravity

ESGB vacuum action (G = c = 1)

$$I_{\text{ESGB}} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \alpha f(\varphi) \mathcal{R}_{\text{GB}}^2 \right)$$

- Massless scalar field φ
- Gauss-Bonnet scalar $\mathcal{R}_{\mathrm{GB}}^2 = R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} 4R^{\mu\nu}R_{\mu\nu} + R^2$
- Fundamental coupling α with dimensions L^2 and $f(\varphi)$ defines the ESGB theory
- $\int d^D x \sqrt{-g} \, \mathcal{R}_{\mathrm{GB}}^2$ is a boundary term in $D \leqslant 4$ [Myers 87]

Second order field equations

$$\begin{split} R_{\mu\nu} &= 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 4\alpha \left(P_{\mu\alpha\nu\beta} - \frac{g_{\mu\nu}}{2}P_{\alpha\beta}\right)\nabla^{\alpha}\nabla^{\beta}f(\varphi) \\ &\square \varphi = -\frac{1}{4}\alpha f'(\varphi)\mathcal{R}_{\mathrm{GB}}^2 \end{split}$$

with
$$P_{\mu\nu\rho\sigma}=R_{\mu\nu\rho\sigma}-2g_{\mu[\rho}R_{\sigma]\nu}+2g_{\nu[\rho}R_{\sigma]\mu}+g_{\mu[\rho}g_{\sigma]\nu}R$$

Hairy black holes in ESGB gravity

Analytical solutions in the small Gauss-Bonnet coupling α limit

• Einstein-dilaton-Gauss-Bonnet, $f(\varphi) = e^{\varphi}$

Mignemi-Stewart 93 at $\mathcal{O}(\alpha^2)$, Maeda at al. 97 at $\mathcal{O}(\alpha)$, Yunes-Stein 11 at $\mathcal{O}(\alpha)$

Ayzenberg-Yunes 14 at $\mathcal{O}(\alpha^2, S^2)$, Pani et al. 11 at $\mathcal{O}(\alpha^2, S^2)$, Maselli et al. 15 at $\mathcal{O}(\alpha^7, S^5)$

• Shift-symmetric theories, $f(\varphi) = \varphi$

Sotiriou-Zhou 14 at $\mathcal{O}(\alpha^2)$

Generic ESGB theories

Julié-Berti 19 at $\mathcal{O}(\alpha^4)$

Numerical solutions

• Einstein-dilaton-Gauss-Bonnet, $f(\varphi) = e^{\varphi}$

Kanti et al. 95, Pani-Cardoso 09, Kleihaus 15 (includes spins)

• Shift-symmetric theories, $f(\varphi) = \varphi$

Delgado et al. 20 (includes spin)

• Generic ESGB theories

Antoniou et al. 18

• Quadratic couplings, $f(\varphi) = \varphi^2(1 + \lambda \varphi^2)$ and $f(\varphi) = -e^{-\lambda \varphi^2}$

Doneva-Yazadjiev 17, Silva et al. 17, Minamitsuji-Ikeda 18, Macedo et al. 19, etc...

How to address (analytically) the motion and gravitational radiation of two coalescing ESGB black holes? See also Yagi et al. 12; and Witek et al. 19, Okounkova 20 for a numerical relativity analysis.

1. ESGB black holes and their thermodynamics

- 2. The post-newtonian (PN) dynamics of an ESGB black hole binary
- 3. Beyond the PN approximation: "EOBization" of an ESGB black hole binary
- 4. Gravitational radiation from an ESGB black hole binary

Static, spherically symmetric ESGB black holes

Just coordinate system

$$ds^{2} = -A(r) dt^{2} + \frac{dr^{2}}{A(r)} + B(r) r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Solve iteratively the field equations around a Schwarzschild spacetime with $e = \frac{\alpha f'(\varphi_{\infty})}{m^2} \ll 1$

$$\epsilon = \frac{\alpha f'(\varphi_{\infty})}{m^2} \ll 1$$

$$A(r) = 1 - \frac{2m}{r} + \sum_{i} \epsilon^{i} A_{i}(r) , \qquad B(r) = 1 + \sum_{i} \epsilon^{i} B_{i}(r) , \qquad \varphi(r) = \varphi_{\infty} + \sum_{i} \epsilon^{i} \varphi_{i}(r)$$

$$\begin{split} R_{\mu\nu} &= 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 4\alpha \left(P_{\mu\alpha\nu\beta} - \frac{g_{\mu\nu}}{2}P_{\alpha\beta}\right)\nabla^{\alpha}\nabla^{\beta}f(\varphi) \\ &\square \varphi = -\frac{1}{4}\alpha f'(\varphi)\mathcal{R}_{\mathrm{GB}}^2 \end{split}$$

with
$$\mathcal{R}_{\mathrm{GB}}^2 = R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} - 4R^{\mu\nu}R_{\mu\nu} + R^2$$

ESGB black hole, at leading order for simplicity:

$$A = 1 - \frac{2m}{r} + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right)^2 , \qquad B = 1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right)^2 , \qquad \varphi = \varphi_{\infty} + \frac{\alpha f'(\varphi_{\infty})}{m^2}\left(\frac{m}{2r} + \frac{m^2}{2r^2} + \frac{2m^3}{r^3}\right) + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right)^2$$

Two integration constants: m and φ_{∞} , at all orders in the Gauss-Bonnet coupling.

ESGB black hole thermodynamics

• Temperature:

$$T = \frac{\kappa}{4\pi} \qquad \text{where } \kappa^2 = -\frac{1}{2} (\nabla_\mu \xi_\nu \nabla^\mu \xi^\nu)_{r_{\rm H}} \quad \text{is the surface gravity}$$

Wald entropy:

$$S_{\rm w} = -\,8\pi\!\int_{r_{\rm H}}\!\!\! d\theta d\phi \sqrt{\sigma} \frac{\partial \mathcal{L}}{\partial R_{\mu\nu\rho\sigma}} \epsilon_{\mu\nu} \epsilon_{\rho\sigma} \qquad \qquad {\rm with} \ \epsilon_{\mu\nu} = n_{[\mu} l_{\nu]}$$

$$S_{\rm w} = \frac{\mathcal{A}_{\rm H}}{4} + 4\alpha\pi f(\varphi_{\rm H})$$
 in ESGB gravity.

• Mass as a global charge:

$$M = m + \int D \, d\varphi_{\infty}$$
 $D \text{ is the scalar "charge" defined as } \varphi = \varphi_{\infty} + \frac{D}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$

[Henneaux et al. 02, Cardenas et al. 16, Anabalon-Deruelle-FLJ 16,...]

The quantities above are calculated in terms of m and φ_{∞} . At leading order for simplicity:

$$T = 8\pi m \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right)^2 \right] \;, \qquad S_{\mathrm{w}} = 4\pi m^2 \left[1 + \frac{\alpha f(\varphi_{\infty})}{m^2} + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right)^2 \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m} \left[1 + \mathcal{O}\left(\frac{\alpha f_{\infty}'}{m^2}\right) \right] \;, \qquad D = \frac{\alpha f'(\varphi_{\infty})}{2m}$$

The variations of $S_{\rm w}$ and M with respect to m and φ_{∞} are such that:

$$T\delta S_{\rm w} = \delta M$$

1. ES	GB black	k holes and	their the	rmodynamics	

2. The post-newtonian (PN) dynamics of an ESGB black hole binary

3. Beyond the PN approximation: "EOBization" of an ESGB black hole binary

4. Gravitational radiation from an ESGB black hole binary

"Skeletonizing" an ESGB black hole

[in GR: Mathisson 1931, Infeld 1950,...]

$$I_{\rm ESGB} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \alpha f(\varphi) \mathcal{R}_{\rm GB}^2 \right) + I_{\rm pp}^A$$

Generic ansatz for compact bodies

$$I_{\rm pp}^A[g_{\mu\nu},\varphi,x_A^\mu] = -\int m_A(\varphi) \, ds_A$$

with
$$ds_A = \sqrt{-g_{\mu\nu}dx_A^\mu dx_A^\nu}$$
 .

- $m_A(\varphi)$ is a function of the local value of φ to encompass the effect of the background scalar field on the equilibrium of a body [Eardley 75, Damour-Esposito-Farèse 92].
- Strong equivalence principle violation

Question: How to derive $m_A(\varphi)$ for an ESGB black hole?

Answer: by identifying the BH's fields to those sourced by the particle.

Comparing the asymptotic expansions of the fields

$$R_{\mu\nu} = 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 4\alpha \left(P_{\mu\alpha\nu\beta} - \frac{1}{2}g_{\mu\nu}P_{\alpha\beta}\right)\nabla^{\alpha}\nabla^{\beta}f(\varphi) + 8\pi \left(T_{\mu\nu}^{A} - \frac{1}{2}g_{\mu\nu}T^{A}\right)$$

$$\square\varphi = -\frac{1}{4}\alpha f'(\varphi)\mathcal{R}_{GB}^{2} + 4\pi \frac{ds_{A}}{dt}\frac{dm_{A}}{d\varphi}\frac{\delta^{(3)}(\mathbf{x} - \mathbf{x}_{A}(t))}{\sqrt{-g}}$$

with
$$T_A^{\mu\nu} = m_A(\varphi) \frac{\delta^{(3)}(\mathbf{x} - \mathbf{x}_A(t))}{\sqrt{gg_{\alpha\beta} \frac{dx_A^{\alpha}}{dt} \frac{dx_A^{\beta}}{dt}}} \frac{dx_A^{\mu}}{dt} \frac{dx_A^{\nu}}{dt}$$

Fields of particle A in its rest frame, $x_A^i = 0$

$$g_{\mu\nu} = \eta_{\mu\nu} + \delta_{\mu\nu} \left(\frac{2m_A(\varphi_{\infty})}{\tilde{r}} \right) + \mathcal{O}\left(\frac{1}{\tilde{r}^2} \right)$$
$$\varphi = \varphi_{\infty} - \frac{1}{\tilde{r}} \frac{dm_A}{d\varphi} (\varphi_{\infty}) + \mathcal{O}\left(\frac{1}{\tilde{r}^2} \right)$$

Fields of the ESGB black hole

$$g_{\mu\nu} = \eta_{\mu\nu} + \delta_{\mu\nu} \left(\frac{2m}{\tilde{r}}\right) + \mathcal{O}\left(\frac{1}{\tilde{r}^2}\right)$$
$$\varphi = \varphi_{\infty} + \frac{D}{\tilde{r}} + \mathcal{O}\left(\frac{1}{\tilde{r}^2}\right)$$

Matching

• the identification yields

Matching conditions

$$m_A(\varphi_\infty) = m$$

 $m'_A(\varphi_\infty) = -D$

• For an ESGB black hole with "secondary hair", $D = D(m, \varphi_{\infty})$ yields a first order differential equation.

At leading order, for simplicity:

$$\frac{dm_A}{d\varphi} + \frac{\alpha f'(\varphi)}{2m_A(\varphi)} \left[1 + \mathcal{O}\left(\frac{\alpha f'}{m_A^2}\right) \right] = 0$$

• Its resolution involves a unique integration constant μ_A .

The sensitivity of a hairy ESGB black hole

$$I_{\rm pp}^A[g_{\mu\nu},\varphi,x_A^\mu] = -\int m_A(\varphi) \, ds_A$$

• In an arbitrary ESGB theory, BHs are described by a unique constant parameter:

$$m_A(\varphi) = \mu_A \left(1 - \frac{\alpha f(\varphi)}{2\mu_A^2} + \cdots \right) \qquad \text{where } \mu_A = M_{\text{irr}} = \sqrt{\frac{S_{\text{w}}}{4\pi}}$$

where
$$\mu_A = M_{
m irr} = \sqrt{\frac{S_{
m w}}{4\pi}}$$

• Recall: ESGB first law of thermodynamics:

$$T\delta S_{\rm w} = \delta M$$

where $\delta M = \delta m + D\delta \varphi_{\infty}$.

Matching conditions

(a)
$$m_A(\varphi_\infty) = m$$

(b)
$$m'_A(\varphi_\infty) = -D$$

(a) and (b)
$$\Rightarrow \delta M = 0$$

As a consequence, $\delta S_{\rm w} = 0$

When φ_{∞} varies slowly, the black hole readjusts its equilibrium configuration, i.e. m, in keeping its Wald entropy fixed.

2. The post-newtonian (PN) dynamics of an ESGB black hole binary

$$I_{\rm ESGB} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \alpha f(\varphi) \mathcal{R}_{\rm GB}^2 \right) \\ - \sum_A \int m_A(\varphi) ds_A$$

ESGB two-body Lagrangian at 1PN order

- Harmonic gauge $\partial_{\mu}(\sqrt{-g}g^{\mu\nu}) = 0$
- Conservative 1PN dynamics: $\mathcal{O}\left(\frac{v}{c}\right)^2 \sim \mathcal{O}\left(\frac{GM}{r}\right)$ corrections to Newtonian dynamics
- Solve iteratively the field equations with point particle sources around

$$g_{00} = -e^{-2U} + \mathcal{O}(v^6) \qquad \varphi = \varphi_0 + \delta \varphi$$

$$g_{0i} = -4g_i + \mathcal{O}(v^5)$$

$$g_{ij} = \delta_{ij}e^{2U} + \mathcal{O}(v^4)$$

$$\begin{split} R_{\mu\nu} &= 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 4\alpha\left(P_{\mu\alpha\nu\beta} - \frac{1}{2}g_{\mu\nu}P_{\alpha\beta}\right)\nabla^{\alpha}\nabla^{\beta}f(\varphi) + 8\pi\sum_{A}\left(T_{\mu\nu}^{A} - \frac{1}{2}g_{\mu\nu}T^{A}\right) \\ \Box\varphi &= -\frac{1}{4}\alpha f'(\varphi)\mathcal{R}_{\mathrm{GB}}^{2} + 4\pi\sum_{A}\frac{ds_{A}}{dt}\frac{dm_{A}}{d\varphi}\frac{\delta^{(3)}(\mathbf{x} - \mathbf{x}_{A}(t))}{\sqrt{-g}} \end{split}$$

ullet The sensitivities $m_A(\varphi)$ and $m_B(\varphi)$ are expanded around φ_0

$$\ln m_A(\varphi) = \ln m_A^0 + \alpha_A^0 (\varphi - \varphi_0) + \frac{1}{2} \beta_A^0 (\varphi - \varphi_0)^2 + \cdots$$

$$\ln m_B(\varphi) = \ln m_B^0 + \alpha_B^0 (\varphi - \varphi_0) + \frac{1}{2} \beta_B^0 (\varphi - \varphi_0)^2 + \cdots$$

Gauss-Bonnet contributions

 $\Delta h(\mathbf{x}) = \Delta \frac{1}{|\mathbf{x} - \mathbf{y}|} \Delta \frac{1}{|\mathbf{x} - \mathbf{y}|} - \partial_{ij} \frac{1}{|\mathbf{x} - \mathbf{y}|} \partial_{ij} \frac{1}{|\mathbf{x} - \mathbf{y}|}$

(i) Introduce $\mathbf{y}_1 \neq \mathbf{y}_2$

$$\Delta h_{12} = \Delta \frac{1}{|\mathbf{x} - \mathbf{y}_1|} \Delta \frac{1}{|\mathbf{x} - \mathbf{y}_2|} - \partial_{ij} \frac{1}{|\mathbf{x} - \mathbf{y}_1|} \partial_{ij} \frac{1}{|\mathbf{x} - \mathbf{y}_2|}$$
$$= \left(\frac{\partial^2}{\partial y_1^i \partial y_1^i} \frac{\partial^2}{\partial y_2^j \partial y_2^j} - \frac{\partial^2}{\partial y_1^i \partial y_2^i} \frac{\partial^2}{\partial y_1^j \partial y_2^j} \right) \frac{1}{|\mathbf{x} - \mathbf{y}_1| |\mathbf{x} - \mathbf{y}_2|}$$

(ii) Use Fock's "perimeter formula" (1939)

$$\Delta^{-1}\left(\frac{1}{|\mathbf{x} - \mathbf{y}_1| |\mathbf{x} - \mathbf{y}_2|}\right) = \ln(|\mathbf{x} - \mathbf{y}_1| + |\mathbf{x} - \mathbf{y}_2| + |\mathbf{y}_1 - \mathbf{y}_2|)$$

(iii) Take the limit $\epsilon = |\mathbf{y}_2 - \mathbf{y}_1| \to 0$

$$h_{12}(\mathbf{x}) = \frac{1 - 3(\mathbf{n}_{12} \cdot \mathbf{n}_1)^2}{2 |\mathbf{x} - \mathbf{y}_1|^3 \epsilon} + \frac{2 - 9(\mathbf{n}_{12} \cdot \mathbf{n}_1) + 15(\mathbf{n}_{12} \cdot \mathbf{n}_1)^3}{4 |\mathbf{x} - \mathbf{y}_1|^4} + \mathcal{O}(\epsilon)$$

$$\langle n_{12}^i\rangle=0\ ,\quad \langle n_{12}^in_{12}^j\rangle=\delta_{ij}/3\ ,\quad \langle n_{12}^in_{12}^jn_{12}^k\rangle=0$$

Finite Gauss-Bonnet contribution

$$h(\mathbf{x}) = \frac{1}{2|\mathbf{x} - \mathbf{y}|^4}$$

ESGB two-body Lagrangian at 1PN order

[FLJ-Berti 2019)]

$$\begin{split} L_{AB} &= -m_A^0 - m_B^0 + \frac{1}{2} m_A^0 \mathbf{v}_A^2 + \frac{1}{2} m_B^0 \mathbf{v}_B^2 + \frac{G_{AB} m_A^0 m_B^0}{r} \\ &+ \frac{1}{8} m_A^0 \mathbf{v}_A^4 + \frac{1}{8} m_B^0 \mathbf{v}_B^4 + \frac{G_{AB} m_A^0 m_B^0}{r} \left[\frac{3}{2} (\mathbf{v}_A^2 + \mathbf{v}_B^2) - \frac{7}{2} (\mathbf{v}_A \cdot \mathbf{v}_B) - \frac{1}{2} (\mathbf{n} \cdot \mathbf{v}_A) (\mathbf{n} \cdot \mathbf{v}_B) + \bar{\gamma}_{AB} (\mathbf{v}_A - \mathbf{v}_B)^2 \right] \\ &- \frac{G_{AB}^2 m_A^0 m_B^0}{2r^2} \left[m_A^0 (1 + 2\bar{\beta}_B) + m_B^0 (1 + 2\bar{\beta}_A) \right] + \Delta L_{AB}^{GB} + \mathcal{O}(v^6) \end{split}$$

ullet L_{AB} has the **same structure** as the scalar-tensor Lagrangian at 1PN...

$$\begin{split} G_{AB} &= G(1 + \alpha_A^0 \alpha_B^0) \\ \bar{\gamma}_{AB} &= -2 \frac{\alpha_A^0 \alpha_B^0}{1 + \alpha_A^0 \alpha_B^0} \\ \bar{\beta}_A &= \frac{1}{2} \frac{\beta_A^0 \alpha_B^{0^2}}{(1 + \alpha_A^0 \alpha_B^0)^2} \quad \text{and} \quad (A \leftrightarrow B). \end{split}$$

where
$$\alpha_A^0 = (d \ln m_A/d\varphi)(\varphi_0)$$
, $\beta_A^0 = (d\alpha_A^0/d\varphi)(\varphi_0)$

• ... except for one **new and finite Gauss-Bonnet contribution**:

$$\Delta L_{AB}^{\rm GB} = \frac{\alpha f'(\varphi_0)}{(GM)^2} \left(\frac{GM}{r}\right)^2 \frac{G^2 m_A^0 m_B^0}{r^2} \left[m_A^0 (\alpha_B^0 + 2\alpha_A^0) + m_B^0 (\alpha_A^0 + 2\alpha_B^0) \right]$$

- can be regarded as a 3PN correction whenever $\alpha f'(\varphi_0) \lesssim M^2$.
- ullet In scalar-tensor theories, L_{AB} is known at 2PN [Mirshekari-Will 13] and 3PN [Bernard 19]
- In the regime above, the conservative dynamics in ESGB gravity is hence known at 3PN.

Example: Einstein-dilaton-Gauss-Bonnet black holes

$$\alpha_A^0 = (d \ln m_A/d\varphi)(\varphi_0) , \quad \beta_A^0 = (d\alpha_A^0/d\varphi)(\varphi_0)$$

$$f(\varphi) = \frac{e^{2\varphi}}{4}$$

At fourth order in the Gauss-Bonnet coupling α :

$$\alpha_A^0 = -\frac{x}{2} - \frac{133}{240}x^2 - \frac{35947}{40320}x^3 - \frac{474404471}{266112000}x^4 + \mathcal{O}\left(x^5\right) \quad \text{with } x = \frac{\alpha e^{2\varphi_0}}{2\mu_A^2}$$

- α_A^0 diverges at large φ_0 , with a slope which increases with the truncation order in α .
- The (2,2) Padé approximant $\mathscr{P}_2^2[\alpha_A^0]$ predicts a **pole** at $x_{\text{pole}} = \frac{\alpha e^{2\varphi_0^{\text{pole}}}}{2\mu_A^2} = 0.445$
- This pole could be the sign of **naked singularities** [Kanti at al. 95, Doneva-Yazadjiev 17]

$$\left| 24\alpha^2 f'(\varphi_H)^2 < \left(\frac{\mathscr{A}_H}{4\pi} \right)^2 \right| \quad \Rightarrow \quad \frac{\alpha e^{2\varphi_H}}{2\mu_A^2} < \frac{2}{1+\sqrt{6}} \quad \text{for a skeletonized EdGB BH}.$$

In general relativity, "effective-one-body" (EOB):

 Map the two-body PN dynamics to the motion of a test particle in an effective static, spherically symmetric metric [Buonanno-Damour 98]

$$H(Q,P)$$
, $\epsilon = \left(\frac{v}{c}\right)^2$ \longrightarrow $H_e(q,p)$, $ds_e^2 = g_{\mu\nu}^e dx^\mu dx^\nu$ $H_e = f_{EOB}(H)$

• Defines a resummation of the PN dynamics, hence describes **analytically** the coalescence of 2 compact objects in **general relativity**, from inspiral **to merger**.

• Instrumental to build libraries of waveform templates for LIGO-Virgo

In practice, on the simple example of ESGB at 1PN:

Compute the two-body hamiltonian $H(Q,P)=P_R\dot{R}+P_\phi\dot{\phi}-L_{\!AB}$.

In the center-of-mass frame:

$$\overrightarrow{P}_A + \overrightarrow{P}_B = \overrightarrow{0}$$

7 coefficients (polar coordinates)

$$H = M + \left(\frac{P^2}{2\mu} - \mu \frac{G_{AB}M}{R}\right) + H^{1\text{PN}} + \cdots$$
 with
$$\frac{H^{1\text{PN}}}{\mu} = \left(h_1^{1\text{PN}}\hat{P}^4 + h_2^{1\text{PN}}\hat{P}^2\hat{P}_R^2 + h_3^{1\text{PN}}\hat{P}_R^4\right) + \frac{1}{\hat{R}}\left(h_4^{1\text{PN}}\hat{P}^2 + h_5^{1\text{PN}}\hat{P}_R^2\right) + \frac{h_6^{1\text{PN}}}{\hat{R}^2}$$

The 7 $h_i^{N\text{PN}}$ coefficients are computed explicitly and depend on the 6 parameters $(m_A^0, \alpha_A^0, \beta_A^0)$ and $(m_B^0, \alpha_B^0, \beta_B^0)$ built from $m_A(\varphi)$ and $m_B(\varphi)$

The effective Hamiltonian H_e

Geodesic motion in a static, spherically symmetric metric

In Schwarzschild-Droste coordinates (equatorial plane $\theta=\pi/2$) :

$$ds_e^2 = -A(r)dt^2 + B(r)dr^2 + r^2d\phi^2$$

A(r) and B(r) are arbitrary

Effective Hamiltonian $H_e(q, p)$:

$$H_e(q,p) = \sqrt{A\left(\mu^2 + \frac{p_r^2}{B} + \frac{p_\phi^2}{\hat{r}^2}\right)} \quad \text{with} \quad p_r = \frac{\partial L_e}{\partial \dot{r}} \;, \quad p_\phi = \frac{\partial L_e}{\partial \dot{\phi}}$$

Can be expanded:

$$A(r) = 1 + \frac{a_1}{r} + \frac{a_2}{r^2} + \cdots$$
$$B(r) = 1 + \frac{b_1}{r} + \cdots$$

i.e. depends on 3 effective parameters at 1PN order, to be determined.

EOB mapping [Buonanno-Damour 98]

(i) Canonically transform H:

$$H(Q,P) \to H(q,p)$$

Generic ansatz G(Q, p) that depends on **3 parameters** at 1PN order :

$$G(Q,p) = R p_r \left(\alpha_1 \mathcal{P}^2 + \beta_1 \hat{p}_r^2 + \frac{\gamma_1}{\hat{R}} + \cdots \right)$$

(ii) Relate H to H_e through the quadratic relation [Damour 2016]

$$\frac{H_e(q,p)}{\mu} - 1 = \left(\frac{H(q,p) - M}{\mu}\right) \left[1 + \frac{\nu}{2} \left(\frac{H(q,p) - M}{\mu}\right)\right]$$

where
$$\nu = \frac{m_A^0 m_B^0}{(m_A^0 + m_B^0)^2} \;, \qquad M = m_A^0 + m_B^0 \;, \qquad \mu = \frac{m_A^0 m_B^0}{M}$$

$$ds_e^2 = -A(r)dt + B(r)dr^2 + r^2d\phi^2$$

It works, i.e., it yields a unique solution in ESGB theories:

FLJ, N. Deruelle [PRD 95, 12, 124054, 2017]

$$A(r) = 1 - 2\left(\frac{G_{AB}M}{r}\right) + 2\left[\langle \bar{\beta} \rangle - \bar{\gamma}_{AB}\right] \left(\frac{G_{AB}M}{r}\right)^2 + \cdots$$

$$B(r) = 1 + 2\left[1 + \bar{\gamma}_{AB}\right] \left(\frac{G_{AB}M}{r}\right) + \cdots$$

we recognize the PPN Eddington metric written in Droste coordinates, with :

$$\beta^{\mathrm{Edd}} = 1 + \langle \bar{\beta} \rangle , \quad \gamma^{\mathrm{Edd}} = 1 + \bar{\gamma}_{AB}$$

where

$$\langle \bar{\beta} \rangle \equiv \frac{m_A^0 \bar{\beta}_B + m_B^0 \bar{\beta}_A}{m_A^0 + m_B^0} \qquad \bar{\gamma}_{AB} \equiv -\frac{2\alpha_A^0 \alpha_B^0}{1 + \alpha_A^0 \alpha_B^0} \qquad \bar{\beta}_A \equiv \frac{1}{2} \frac{\beta_A^0 (\alpha_B^0)^2}{(1 + \alpha_A^0 \alpha_B^0)^2}$$

(See also [Damour, Jaranowski, Schaefer 15] at 4PN in GR; and [FLJ, N.Deruelle 17] at 2PN in scalar-tensor theories.)

A resummed dynamics

• The inversion of
$$\frac{H_e(q,p)}{\mu} - 1 = \left(\frac{H(q,p) - M}{\mu}\right) \left[1 + \frac{\nu}{2} \left(\frac{H(q,p) - M}{\mu}\right)\right]$$

defines a "resummed" EOB Hamiltonian:

$$H_{\rm EOB} = M \sqrt{1 + 2\nu \left(\frac{H_e}{\mu} - 1\right)} \ , \quad \text{where} \quad H_e = \sqrt{A \left(\mu^2 + \frac{p_r^2}{B} + \frac{p_\phi^2}{r^2}\right)}$$

• HEOB hence defines a resummed dynamics, e.g., up to the innermost stable circular orbit (ISCO) or light-ring (LR).

$$\dot{r} = \frac{\partial H_{\rm EOB}}{\partial p_r} \; , \qquad \dot{p}_r = -\frac{\partial H_{\rm EOB}}{\partial r} \; , \qquad \dot{\phi} = \frac{\partial H_{\rm EOB}}{\partial p_\phi} \; , \qquad \dot{p}_\phi = -\frac{\partial H_{\rm EOB}}{\partial \phi}$$

- 2. The post-newtonian (PN) dynamics of an ESGB black hole binary
- 3. Beyond the PN approximation: "EOBization" of an ESGB black hole binary
- 4. Gravitational radiation from an ESGB black hole binary

Radiated energy fluxes at infinity

$$-\frac{d\mathscr{E}}{dt} = \mathscr{F}_g + \mathscr{F}_{\varphi} \qquad \text{with} \qquad \mathscr{E} = \int d^3x \, |g| \left(t^{00} + T^{00}_{(\varphi)} + T^{00}_{(\mathrm{m})} \right)$$

$$\mathcal{F}_g = \int_{x \to \infty} t^{0i} n_i x^2 d\Omega^2 , \qquad \mathcal{F}_{\varphi} = \int_{x \to \infty} T^{0i}_{(\varphi)} n_i x^2 d\Omega^2 ,$$

- \bullet \mathscr{F}_g is given by Einstein's 2nd quadrupole formula at leading order, $t^{\mu\nu}$ reduces to the Landau-Lifshitz pseudo-tensor
- ullet $\mathscr{F}_{\!arphi}$ is the extra scalar flux.

In the center-of-mass frame $(P_A^i + P_B^i = 0)$ and for circular orbits:

[Yagi-Stein-Yunes-Tanaka 2012 & FLJ 2018]

• Metric flux ("dressed up" quadrupole formula)

$$(G_{AB}M\dot{\phi})^{2/3} = \mathcal{O}(v^2)$$

$$\mathcal{F}_g = \frac{32}{5} \frac{\nu^2 \left(G_{AB} M \dot{\phi} \right)^{10/3}}{G \left(1 + \alpha_A^0 \alpha_B^0 \right)^2} + \cdots$$

• Scalar flux (with dipolar contribution if $\alpha_A^0 \neq \alpha_B^0$)

$$\mathcal{F}_{\varphi} = \frac{\nu^{2} \left(G_{AB} M \dot{\phi} \right)^{8/3}}{G_{*} \left(1 + \alpha_{A}^{0} \alpha_{B}^{0} \right)^{2}} \left\{ \frac{1}{3} (\alpha_{A}^{0} - \alpha_{B}^{0})^{2} + \left(G_{AB} M \dot{\phi} \right)^{2/3} \left[\frac{16}{15} \left(\frac{m_{A}^{0} \alpha_{B}^{0} + m_{B}^{0} \alpha_{A}^{0}}{M} \right)^{2} + \frac{2}{9} (\alpha_{A}^{0} - \alpha_{B}^{0})^{2} \left(\nu - 3 - \bar{\gamma}_{AB} - 2 \langle \bar{\beta} \rangle \right) \right. \\ \left. + 2(\alpha_{A}^{0} - \alpha_{B}^{0}) \left(\frac{(m_{A}^{0})^{2} \alpha_{B}^{0} - (m_{B}^{0})^{2} \alpha_{A}^{0}}{5M^{2}} + \frac{m_{A}^{0} \left[\alpha_{B}^{0} + \alpha_{A}^{0} (\alpha_{B}^{0})^{2} + \beta_{B}^{0} \alpha_{A}^{0} \right] - (A \leftrightarrow B)}{3M(1 + \alpha_{A}^{0} \alpha_{B}^{0})} \right) \right] + \cdots \right\}$$

4. Gravitational radiation from an ESGB black hole binary

EOB dynamics including the radiation reaction force

 \bullet On quasi-circular orbits : tangential force $\boxed{F_\phi = -\,(\mathcal{F}_g + \mathcal{F}_\phi)/\dot{\phi}}$

$$\dot{r} = \frac{\partial H_{\rm EOB}}{\partial p_r} \; , \qquad \dot{p}_r = -\frac{\partial H_{\rm EOB}}{\partial r} \; , \qquad \dot{\phi} = \frac{\partial H_{\rm EOB}}{\partial p_\phi} \; , \qquad \dot{p}_\phi = -\frac{\partial H_{\rm EOB}}{\partial \phi} + {\color{red} F_\phi}$$

where
$$H_{\rm EOB} = M \sqrt{1 + 2\nu \left(\frac{H_e}{\mu} - 1\right)} \quad \text{and} \quad H_e = \mu \sqrt{A \left(1 + \frac{p_r^2}{\mu^2 B} + \frac{p_\phi^2}{\mu^2 r^2}\right)}$$

Example: effective trajectory for two EdGB black holes $(f(\varphi) = e^{2\varphi}/4)$:

- $z^1 = r \cos(\phi)$, $z^2 = r \sin(\phi)$
- Asymmetric binary: $\frac{m_A^0}{m_B^0} = 2$ $(\nu \simeq 0.22)$
- \bullet BHs with scalar hair ($\alpha_{\!A}^0=-\,0.4\,,\,\alpha_{\!B}^0=-\,1.6)$
- GR limit in yellow
- Note : $(\dot{r}/r\dot{\phi})^2_{\rm ISCO} = 0.01$

Last step: compute the ESGB-EOB waveforms up to the ISCO

Mirrors follow the geodesics of the Jordan metric (in the solar system)

$$\tilde{g}_{\mu\nu} = \mathcal{A}^2(\varphi)g_{\mu\nu} = \mathcal{A}^2_{\odot} \left[\eta_{\mu\nu} (1 + 2\alpha_{\odot}\delta\varphi) + h_{\mu\nu}^{TT} \right] + \mathcal{O}\left(\frac{1}{x^2}\right)$$

• New "breathing" mode

$$\frac{d^2 \xi^i}{dt^2} \simeq -\tilde{R}^i_{0j0} \, \xi^j \quad \text{with} \quad \tilde{R}^i_{0j0} = -\, \mathscr{A}^2_{\odot} \left[\frac{1}{2} \ddot{h}^{TT}_{ij} + \alpha_{\odot} \delta \ddot{\varphi} \left(\delta_{ij} - n_i n_j \right) \right] + \mathcal{O} \left(\frac{1}{x^2} \right)$$

where
$$\alpha_{\odot} = \frac{d \ln \mathcal{A}}{d \varphi}(\varphi_{\odot})$$
 and

$$h_{ij}^{TT} = \frac{2G}{3} \frac{\mathcal{P}_{ij}^{kl} \dot{\mathcal{Q}}_{kl}}{x} \quad \text{with} \quad \mathcal{Q}^{ij} = \sum_{A} m_A^0 \left(3x_A^i x_A^j - \delta^{ij} x_A^2 \right)$$

$$\delta \varphi = \varphi - \varphi_{\odot} = -G \frac{n_i \dot{\mathcal{D}}_S^i}{x} \quad \text{with} \quad \mathcal{D}_S^i = \sum_{A} m_A^0 \alpha_A^0 x_A^i$$

$$\delta \varphi = \varphi - \varphi_{\odot} = -G \frac{n_i \mathcal{D}_S^i}{x}$$
 with $\mathcal{D}_S^i = \sum_A m_A^0 \alpha_A^0 x_A^i$

Analytical waveforms for an inspiralling ESGB BH binary

- On this example, the scalar amplitude is numerically comparable to the tensor one.
- However, its contribution is numerically **lowered** by $|\alpha_{\odot}| \lesssim 10^{-2}$ in the **solar system**
- Observed frequency : $f = \dot{\phi}/(\pi \mathcal{A}_{\odot})$

Recap

• Remarkably, the EOB approach can be extended beyond general relativity. In ESGB and scalar-tensor gravity:

$$A^{2\text{PN}}(u) = \mathcal{P}_{5}^{1} [A_{5\text{PN}}^{Taylor} + 2\epsilon_{1\text{PN}}u^{2} + (\epsilon_{2\text{PN}}^{0} + \nu \,\epsilon_{2\text{PN}}^{\nu})u^{3}]$$

Also works in Einstein-Maxwell-dilaton (EMD) theories at 1PN: [FLJ 18]

$$I_{\text{EMD}} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - e^{-2a\varphi} F^{\mu\nu} F_{\mu\nu} \right)$$

• The ST and EMD examples suggest a generic "parametrized EOB" (PEOB) ansatz:

$$A^{\rm PEOB}(u) = \mathcal{P}_5^1 [A_{\rm 5PN}^{Taylor} + 2(\epsilon_{\rm 1PN}^0 + \nu \, \epsilon_{\rm 1PN}^\nu) u^2 + (\epsilon_{\rm 2PN}^0 + \nu \, \epsilon_{\rm 2PN}^\nu) u^3]$$

- We generalized Eardley's sensitivites $m_A(\varphi)$ to **hairy black holes**, and shed light on the role of the cosmological environment φ_0 of a binary on its dynamics.
- Necessity to observe sources emitting from a large range of redshifts, using LISA?

Future developments

- Pole in the scalar coupling α_A^0 predicted by Padé approximants: to be confirmed and interpreted using numerical BH solutions.
- Skeletonize "scalarized" black holes to include them in the EOB framework. [Silva et al. 17]
- Refine our waveforms using higher PN order Lagrangians and fluxes; e.g., ST-ESGB at 3PN [Bernard 18]
- Match our waveforms to the quasi-normal modes of the final black hole [Brito-Pacilio 2018]

Ongoing work:

Numerical relativity is crucial to further explore the strong field regime near merger & calibrate EOB templates.

- Existing work in ESGB in the small Gauss-Bonnet coupling α limit [Witek et al. 19, Okounkova 20];
- To be extended to the full, non-perturbative theory?
- \rightarrow 3+1 formalism in ESGB gravity [FLJ-Berti, in prep.]

Thank you for your attention.