"Relativity & Compact Objects" team: 2014-2015 report

Jérôme Novak, on behalf of the ROC team

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

Journée du LUTH 2016, January, 20th 2016

WHAT IS ROC?

Originally founded by Silvano Bonazzola & Jean-Alain Marck, with interests in:

- relativistic astrophysics,
- gravitational waves,
- numerical relativity,
- it has grown and evolved with time.

 \Rightarrow 8 permanent researchers, 1 with fixed-term contract & 4 PhD students.

Newer research directions:

- solutions in classical field theory,
- properties of nuclear matter,
- alternative theories of gravity,

• . . .

IN THE LAST COUPLE OF YEARS...

- Microphysics for core-collapse supernovae
- Pulsars and neutron stars
- Hyperons in compact stars
- Gravitational waves
- Compact object binaries
- Rotating boson stars
- Scalar breathers
- SageManifolds *et al.*

CORE-COLLAPSE SUPERNOVAE S. Bonazzola, I. Cordero-Carrión, J. Novak,

M. Oertel & collaborators

Study of local properties of matter for gravitational collapse of massive stars ($\gtrsim 10 M_{\odot}$):


 $p^+ + e^- \to n + \nu_e$

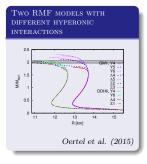
• development of neutrino transport using spectral methods: GR effects taken into account ⇒first proof of principle, able to run on single-CPU in 6D (low resolution)

Peres et al. (2014)

 study of the influence of the presence of more neutrons in nuclei onto the electron capture rates in core-collapse. Modification of nuclear structure and up to 30% of EC rate ⇒quite important impact on dynamics

Raduta et al. (2015)

HYPERONS IN NUCLEAR MATTER

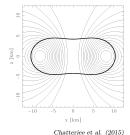

M. Oertel & collaborators

Nuclear physics models prediction:

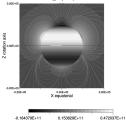
- hyperons appear at $n_B \sim 2 3n_0$,
- maximum neutron star masses of $\sim 1.4 M_{\odot}$

 \Rightarrow need short-range repulsion to stiffen the equation of state:

- With quark matter appearing early (very early!) enough,
- Modify the interaction
 - In microscopic models (BHF) this seems to be a problem
 - In phenomenological models not difficult Here: different RMF models for NS with hyperons
 - Maximum masses above $2M_{\odot}$
 - Large range of radii for intermediate mass stars
 - Considerable hyperon fraction in NS

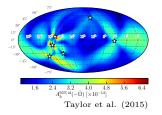


MAGNETIC FIELD IN NEUTRON STARS & AROUND PULSARS S. Bonazzola, D. Chatterjee, E. Gourgoulhon, J. Novak, M. Oertel & collaborators


Magnetic field

New numerical models with magnetic field in neutron stars:

- Mixed poloidal-toroidal magnetic field configurations: formalism & first numerical application in Uryū *et al.* (2014).
- Inclusion of magnetization and magnetic field-dependent equation of state in global models by Chatterjee *et al.* (2015).


Generalised multipole solution for a rotating star with a magnetic field (Bonazzola *et al.* 2015):

- multipole expansion of electric and magnetic fields around a rotating star (without plasma)
- Explicit form of the solution ⇒current closure in pulsar magnetospheres ?

Bonazzola et al. (2015)

PULSAR TIMING ARRAY G. THEUREAU & COLLABORATORS

Limits on supermassive black hole binary gravitational wave background from European Pulsar Timing Array

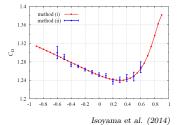
- millisecond pulsars used as probes (clocks) for the detection of nanohertz gravitational waves
- mostly looking at supermassive black hole binaries, which may be few and give anisotropic background

 \Rightarrow study with more general techniques to take into account possible anisotropy.

 \Rightarrow strain amplitude for $\ell > 0$ (spherical harmonics) lower than 40% of the monopole value.

Combination with galaxy catalogues?

Compact object binaries


A. Le Tiec & collaborators

Computations of gravitational waveforms need high-accuracy description of the binary orbits.

- Comparison between post-Newtonian and self-force approximations for binary black hole problem.
- Further link perturbative approach / numerical results: unexpectedly good agreement for equal-mass binaries.
- "First law of mechanics" for black hole binaries: fundamental relations between physical quantities allowing for better analytic model (EOB).

EXAMPLE:

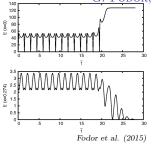
Computation of gravitational self-force for a particle around a Kerr black hole \Rightarrow shift in the frequency of the innermost stable circular orbit.

ROTATING BOSON STARS

É. Gourgoulhon, Ph. Grandclément, C. Somé & collaborators

Self-gravitating complex scalar field in general relativity:

- Stationarity and axisymmetry of the spacetime.
- Ansatz on the scalar field: $\Phi = \phi \left(r, \theta \right) \exp \left[i \left(\omega t - k \varphi \right) \right].$
- Choice of scalar field potential $V\left(|\Phi|^2\right)$: free field, additional repulsive term or solitonic.


 \Rightarrow alternative model to black hole for the central region of our Galaxy (tests with GRAVITY); \Rightarrow computation of accretion torus images, to see possible observable differences with black holes

Vincent et al. (2016)

Scalar breathers

G. Fodor, Ph. Grandclément & collaborators

Scalar field soliton-like configuration in anti-de Sitter (AdS) spacetime or self-gravitating asymptotically AdS in D-dimensions.

 \Rightarrow spatially localized, spherically symmetric & time periodic solutions

"SELF-GRAVITATING SCALAR BREATHERS"

- KADATH library: spectral methods both in space and time (Fourier transform), to build initial models
- discrete family of solutions, labelled by their frequency
- time evolution to look for stability ⇒unstable branch beyond critical central density

SAGEMANIFOLDS

É. GOURGOULHON & COLLABORATORS

- Package used with the mathematics software SageMath
- Implements differential geometry and tensor calculus on real differential manifolds of arbitrary dimension.

$ \begin{array}{l} \cdot \cdot$	$\frac{a^{5}q^{2}+6a^{3}n}{\nabla^{6}\mathbf{x}^{p}_{k}\mathbf{R}^{5}\mathbf{q}^{2}+\mathbf{\nabla}^{6}}$
<pre>p = lea(arg) DR = nab(R) : print confiction co raise TypeFore(str(self.rank) - * arguments but for is n range(stl.tensor.typeFore(str(self))) if oct isinstanc(self.tensor.typeJol(self.tensor)) raise DypeFore(The separation (self.tensor)) raise DypeFore(The separation (self.tensor)) nab.coef()</pre>	lem(g)' of [:]
for in reactorit tensor tupicity induce dual of $F_{0}(\cdot)$, $\left[\left[\left[\frac{1}{r}, r^{2}\right]\right]$ inclusion tupic or r^{2} and r^{2}) etjstar_F

- Deals with tensor fields and not tensor components: various charts can be used, with corresponding representations of the tensor
- Written in Python under GNU Public License

 \Rightarrow currently being integrated into SageMath and tensor calculus made parallel (M. Mancini)

 \Rightarrow new version 0.9, see http://sagemanifolds.obspm.fr

OPEN NUMERICAL TOOLS

EVERYBOBY?

Longstanding tradition of opening our numerical projects to the whole community (and beyond):

- LORENE: solving Einstein equation, spectral methods & spherical coordinates; open source and freely downloadable since 2001.
- Kadath: inspired from LORENE, more flexible in geometries and physical problems; able to run on 100's of CPUs.
- Gyoto: orbits and ray-tracing computations in analytic or numerical GR spacetimes (F.H. Vincent, T. Paumard, LESIA).

CoCoNuT

General relativistic code for core-collapse supernova simulations ⇒parallel version (thanks to that of LORENE) running up to 512 CPUs (F. Roy, P. Cerdá-Durán & J. Novak).

Compose

Online database with equations of state tables for astrophysics, nuclear physics, ... ⇒operational and publicly accessible ⇒European effort within (New)CompStar frameworks (J.-Y. Giot, T. Klähn, M. Oertel & S. Typel)

All these servers are maintained by LUTH ... Strong support from the LUTH computer team

OPEN NUMERICAL TOOLS

EVERYBOBY?

Longstanding tradition of opening our numerical projects to the whole community (and beyond):

- LORENE: solving Einstein equation, spectral methods & spherical coordinates; open source and freely downloadable since 2001.
- Kadath: inspired from LORENE, more flexible in geometries and physical problems; able to run on 100's of CPUs.
- Gyoto: orbits and ray-tracing computations in analytic or numerical GR spacetimes (F.H. Vincent, T. Paumard, LESIA).

CoCoNuT

General relativistic code for core-collapse supernova simulations ⇒parallel version (thanks to that of LORENE) running up to 512 CPUs (F. Roy, P. Cerdá-Durán & J. Novak).

Compose

Online database with equations of state tables for astrophysics, nuclear physics, ... ⇒operational and publicly accessible ⇒European effort within (New)CompStar frameworks (J.-Y. Giot, T. Klähn, M. Oertel & S. Typel)

All these servers are maintained by LUTH ... Strong support from the LUTH computer team!

WHAT'S NEXT?

Young researchers

- new member: Jean-Philippe Bruneton ⇒alternative theories of gravity and alternative models to black holes.
- Miguel Marques \Rightarrow rotating, hot neutron star models with realistic equation of state
- Grégoire Martinon ⇒numerical models of self-confined gravitational waves (geons)... Models for dark matter?
- Aurélien Sourie ⇒glitches from superfluid models & gravitational waves from oscillating neutron stars.
- Daniela Pérez ⇒black hole mimickers, avoiding the formation of a singularity.

COLLABORATIONS WITH OTHER TEAMS

• Zakaria Meliani ⇒accretion disks and tori around boson stars.

• . . .

GIGONDAS Appellation Gigondas Contrôlée

14% VOL.

750 ML

Mis en bouteilles au Domaine par Earl Gras Edmond et Fils Yves Gras et Rémy Pédréno, 84190 Gigondas, Vaucluse.

Thank you!