

Relativistic effects on redshift-space distortions at quasi-linear scales

Shohei Saga

Kyoto University, YITP (-Aug. 2020) → Observatoire de Paris, LUTh (Sep. 2020-)

Collaborators

•

Atsushi Taruya (Kyoto University, YITP), Yann Rasera (Observatoire de Paris, LUTh), Michel-Andrès Breton (Aix Marseille Univ, LAM)

LUTH seminar

Relativistic effects on redshift-space distortions at quasi-linear scales

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, **S.Saga** [<u>1803.04294</u>] A.Taruya, **S.Saga**, M-A.Breton, Y.Rasera, T.Fujita [<u>1908.03854</u>] **S.Saga**, A.Taruya, M-A.Breton, Y.Rasera [<u>2004.03772</u>] **S.Saga** et al. in prep.

1.1 History of the universe

6 & Redshift z

JX

©SDSS

1.2 Large-scale structure

Large-scale structure of the universe

the inhomogeneous distribution of galaxies and/or matters on very large scales (on scales much larger than individual galaxies)

dominated by the gravity of cold dark matters (CDM) seeded during inflation

Observing large-scale structure would shed light on the dark components, initial condition, and nature of gravity.

1.3 Galaxy redshift surveys

Observed redshift

Cosmological redshift (Hubble flow)

+ Doppler effect (peculiar velocity)

Observed position (inferred from redshift) ≠ Actual position

mapping the universe by measuring

redshift:
$$z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}}$$

angular position:
$$(\theta, \phi)$$

Relativistic effects on redshift-space distortions at quasi-linear scales Shohei Saga

1.4 Redshift space distortions (RSD)

Observed galaxy distribution appears distorted **Redshift space distortions (RSD)**

Primary source: Doppler effect induced by peculiar velocity

1.5 Two-point correlation function Theory vs Observation

 $\xi^{(s)}(s,\mu) = \langle \delta^{(s)}(s_1)\delta^{(s)}(s_2) \rangle \sim \text{galaxy number count with a fixed separation}$

A specific direction: line-of-sight, breaks the statistical isotropy.

 $\xi_{\ell}(s) = \frac{2\ell+1}{2} \int_{-1}^{1} d\mu \ \xi^{(s)}(s,\mu) \mathcal{P}_{\ell}(\mu) \qquad (\mathcal{P}_{\ell}(\mu): \text{Legendre polynomial})$

1.6 Cosmology in RSD

N. Kaiser (<u>1987</u>) **Redshift space** \leftrightarrow **Real space** redshift space $s = r + \frac{1+z}{H(z)} (v \cdot \hat{z}) \hat{z}$ real space (special relativity, $v \ll 1$) \hat{z} : constant line-of-sight vector continuity equation (linear): $\dot{\delta}_{L} + \frac{1}{\alpha} \nabla \cdot \mathbf{v} \simeq 0$ conservation law: $(1 + \delta^{(s)}(s)) d^3s = (1 + \delta(r)) d^3r$ Kaiser formula $\delta^{(s)}(k) = \left(b + f(\hat{k} \cdot \hat{z})^2\right) \delta_{\rm L}(k) \qquad f \equiv \frac{\mathrm{d} \ln \delta_{\rm L}}{\mathrm{d} \ln a} : \text{ linear growth rate}$ 0.8 SDSS MGS Planck 2018 VI [1807.06209 Linear growth rate depends on the gravity theory 0.7 \rightarrow a **probe of gravity** on cosmological scales FastSound SDSS LRG 0.6 VIPERS BOSS DR12 ్ల 0.5 -For ΛCDM : $f \approx \left(\Omega_{\text{m}}(a)\right)^{0.55}$ 0.4 DR14 quasars GAMA 0.3 WiggleZ 0.2 0.8 0.0 0.2 0.4 0.6 1.0 1.2 1.4 1.6Ζ

Relativistic effects on redshift-space distortions at quasi-linear scales

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, **S.Saga** [<u>1803.04294</u>] A.Taruya, **S.Saga**, M-A.Breton, Y.Rasera, T.Fujita [<u>1908.03854</u>] **S.Saga**, A.Taruya, M-A.Breton, Y.Rasera [<u>2004.03772</u>] **S.Saga** et al. in prep.

2.1 General relativistic effects

Observed redshift

Cosmological redshift (Hubble flow)

+ Doppler effect (peculiar velocity)

Other relativistic effects:

- + gravitational redshift (Sachs-Wolfe)
- + integrated Sachs-Wolfe
- + Shapiro time delay
- + gravitational lensing

+ ...

2.2 Relativistic RSD

A.Challinor and A.Lewis [<u>1105.5292</u>] C.Bonvin and R.Durrer [<u>1105.5280</u>] J.Yoo [<u>1409.3223</u>], and many works

How do relativistic effects imprint on redshift space?

Perturbed FLRW:
$$ds^2 = \left[-(1+2\Phi)dt^2 + a^2(1-2\Psi)dx^2\right]$$

Solve the geodesic eq.: $\frac{dk^{\mu}}{d\lambda} + \Gamma^{\mu}_{\alpha\beta}k^{\alpha}k^{\beta} = 0$
Define observed redshift including all effects: $1 + z = \frac{(k_{\mu}u^{\mu})_{\rm S}}{(k_{\mu}u^{\mu})_{\rm O}}$
- **Redshift space including possible relativistic effects**
 $\frac{1+z}{H}(\mathbf{v}\cdot\hat{\mathbf{r}})\hat{\mathbf{r}}$ (Doppler effect) (weak field approx.)
 $\frac{1+z}{H}\left(-\Phi + \frac{1}{2}v^2 - \int_{t}^{t_0} (\dot{\Phi} + \dot{\Psi}) dt'\right)\hat{\mathbf{r}} - \int_{0}^{\chi} (\Psi + \Psi)d\chi' \hat{\mathbf{r}} - \int_{0}^{\chi} (\chi - \chi') \nabla_{\perp}(\Phi + \Psi)d\chi'$

- gravitational redshift
- Transverse Doppler

- Shapiro time delay
- integrated Sachs-Wolfe
- gravitational lensing

What is the unique signature of relativistic effects?

2.3 Recalling Doppler effects

(line-of-sight vector)² \rightarrow Quadrupole anisotropy

2.4 Linear theory of relativistic RSD

- Observed redshift including possible relativistic effects -

$$s = r + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}$$
$$+ \frac{1+z}{H} \left(-\Phi + \frac{1}{2} v^2 - \int_t^{t_0} \left(\dot{\Phi} + \dot{\Psi} \right) dt' \right) \hat{\mathbf{r}} - \int_0^{\chi} (\Psi + \Psi) d\chi' \hat{\mathbf{r}} - \int_0^{\chi} (\chi - \chi') \nabla_{\perp} (\Phi + \Psi) d\chi'$$

c.f. Kaiser formula

conservation law: $(1 + \delta^{(S)}(s)) d^3s = (1 + \delta(r)) d^3r$

(linear approximation)

Linear density field with relativistic effects

 $\delta^{(s)} = b\delta - \frac{1}{\mathcal{H}}\hat{\boldsymbol{r}} \cdot \frac{\partial}{\partial \boldsymbol{r}} \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{v}\right) \qquad \text{(the line-of-sight vector is highlighted by red)} \\ - \left(\frac{2}{r\mathcal{H}} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2}\right)\hat{\boldsymbol{r}} \cdot \boldsymbol{v} + \frac{1}{\mathcal{H}}\left(\hat{\boldsymbol{r}} \cdot \frac{\partial}{\partial \boldsymbol{r}}\Psi + \mathcal{H}\hat{\boldsymbol{r}} \cdot \boldsymbol{v} + \hat{\boldsymbol{r}} \cdot \dot{\boldsymbol{v}}\right) \\ - 2\Phi + \Psi + \frac{\dot{\Phi}}{\mathcal{H}} + \frac{1}{r}\int_0^r dr' \left(2 - \frac{r - r'}{r'}\Delta_\Omega\right)(\Phi + \Psi) + \left(\frac{2}{r\mathcal{H}} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2}\right)\left(\Psi + \int_0^r dr' \left(\dot{\Psi} + \dot{\Phi}\right)\right) \right)$

 $(line-of-sight vector)^{odd} \Rightarrow odd multipole anisotropies$

2.5 Odd multipole anisotropies

Small scale: virial motion Large scale: coherent infall 🔨 🚽 🦯 [•] The peculiar velocity induces the **even multipoles** in RSD (Actual position) (Apparcint position)Relativistic effects induces the **odd multipoles** in RSD¹ **Observer Ubserver**

Linear theory A.Challinor and A.Lewis [<u>1105.5292</u>], C.Bonvin and R.Durrer [<u>1105.5280</u>], J.Yoo [<u>1409.3223</u>], ...

implies $\xi_1 \propto (b_1 - b_2) \Rightarrow$ Cross-correlating with different biased object is essential.

Remark:

beyond the distant-observer limit, the Doppler effect also leads to the dipole, called wideangle effect

Relativistic effects on redshift-space distortions at quasi-linear scales Shohei Saga

2.7 Evidence of relativistic effects?

Relativistic effects on redshift-space distortions at quasi-linear scales

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, **S.Saga** [<u>1803.04294</u>] A.Taruya, **S.Saga**, M-A.Breton, Y.Rasera, T.Fujita [<u>1908.03854</u>] **S.Saga**, A.Taruya, M-A.Breton, Y.Rasera [<u>2004.03772</u>] **S.Saga** et al. in prep.

3.1 N-body simulations

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, S.Saga [1803.04294]

• Using cosmological N-body code RAMSES.

FIR-S Storing gravitat Renal Gotten Ea Porta En IIght cone

• Tracing back the light ray to the source by direct integration of geodesic equation

A Ryald Main Tells and "Iposition and Gedshift

Then, all possible relativistic effects are taking into account

<u>RayGalGroupSims</u> By Michel-Andres Breton and Yann Rasera

3.2 Measurements in RayGalGroupSims

3.3 Measurements in RayGalGroupSims

We make a quasi-linear model taking into account both effects based on Lagrangian PT (Zel'dovich approx.)

A.Taruya, S.Saga, M-A.Breton, Y.Rasera, T.Fujita [<u>1908.03854</u>] S.Saga, A.Taruya, M-A.Breton, Y.Rasera [<u>2004.03772</u>] Related works: Castorina & White [1803.08185] E. Di Dio & Seljak [1811.03054] F.Beutler & E. Di Dio [2004.08014]

Relativistic effects on redshift-space distortions at quasi-linear scales

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, **S.Saga** [<u>1803.04294</u>] A.Taruya, **S.Saga**, M-A.Breton, Y.Rasera, T.Fujita [<u>1908.03854</u>] **S.Saga**, A.Taruya, M-A.Breton, Y.Rasera [<u>2004.03772</u>] **S.Saga** et al. in prep.

4.1 Quasi-linear modelling

All relativistic effects:

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

$$\mathbf{s} = \mathbf{r} + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} + \frac{1+z}{H} \left(-\Phi + \frac{1}{2} v^2 - \int_t^{t_0} \left(\dot{\Phi} + \dot{\Psi} \right) dt' \right) \hat{\mathbf{r}} - \int_0^{\chi} (\Psi + \Psi) d\chi' \hat{\mathbf{r}} - \int_0^{\chi} (\chi - \chi') \nabla_{\perp} (\Phi + \Psi) d\chi'$$

Gravitational redshift	Both effects	Doppler effect (wide-angle effect)
Non-linear regime	Quasi-linear regime	linear regime	scale
Dominant term: Pick up the dominant contributions ✓ Doppler effect ✓ Gravitational redshift effect			
$\mathbf{s} = \mathbf{r} + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} + \frac{1+z}{H} \left(-\Phi + \frac{1}{2} v^2 - \int_t^{t_0} \left(\dot{\Phi} + \dot{\Psi} \right) dt' \right) \hat{\mathbf{r}} - \int_0^{\chi} (\Psi + \Psi) d\chi' \hat{\mathbf{r}} - \int_0^{\chi} (\chi - \chi') \nabla_{\perp} (\Phi + \Psi) d\chi'$			
Doppler effect Gravitational redshift			

4.2 Lagrangian Perturbation Theory (LPT)

- analytical approach to motion of fluid element via Lagrangian picture

Equation of Motion:
$$\ddot{\Psi} + 2H(z)\dot{\Psi} = -\frac{1}{a^2}\nabla_x\phi(x)$$

Poisson equation: $\Delta_x\phi(x) = 4\pi G\bar{\rho}a^2\delta(x,z)$

Zel'dovich approximation (1st order LPT):

 $\nabla_q \cdot \Psi_{ZA}(q, t) = -D_+(t)\delta_L(q)$ ($D_+(t)$: Linear growth factor)

$$\mathbf{s} = \mathbf{r} + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \frac{1+z}{H} \Phi \qquad \mathbf{r} = \mathbf{q} + \Psi_{\text{ZA}}(\mathbf{q}, t)$$

4.3 Modelling gravitational potential

Our model:

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

$$\mathbf{s} = \mathbf{r} + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \frac{1+z}{H} \Phi \qquad \mathbf{r} = \mathbf{q} + \Psi_{ZA}(\mathbf{q}, t)$$

The gravitational potential Φ must be modified by the gravitational potential of haloes

Modelling non-linear potential

Assumptions: Φ_{NL} is a constant value determined by halo masses and redshifts

4.4 Analytical prediction

Our model:
$$s = r + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \frac{1+z}{H} \Phi$$
 $\mathbf{r} = \mathbf{q} + \Psi_{ZA}(\mathbf{q}, t)$
 $\Phi = \Phi_{L} + \Phi_{NL}$

Gravitational redshift

Doppler + Gravitational redshift

4.5 Results (z=0.33)

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

4.6 Detectability

Future surveys:

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772] S.Saga et al. in prep

5. Summary

Our model:

Lagrangian perturbation theory + modelling of non-linear potential

$$\mathbf{s} = \mathbf{r} + \frac{1+z}{H} (\mathbf{v} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \frac{1+z}{H} \Phi \quad \mathbf{r} = \mathbf{q} + \Psi_{ZA}(\mathbf{q}, t)$$
$$\Phi = \Phi_{L} + \Phi_{NL}$$

this quasi-linear model taking into account both **Doppler** and **gravitational redshift** effects

We found

- ✓ our model describes RayGalGroupSims results
- ✓ linear theory is recovered at large scales.
- ✓ non-linear halo potential plays important role at small scales

We expect

- \checkmark the dipole signal can be a new probe to explore gravity theory
- \checkmark we can propose the "best" survey strategy, based on the feasibility study