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Motivations: Solar wind turbulence observations
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Why does spacecraft
measurements of compressive
fluctuations in the solar-wind
turbulence show healthy
Kolmogorov-like power-law
spectra?
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Collisionless plasma: Basic properties and examples

@ Mean free path set by particle wave interactions.

@ Dynamic strongly anisotropic with respect to the magnetic
field.

o | essentially fluid-like = turbulence
o || kinetic = Landau damping.

e Collisionless = Kinetic theory (Vlasov) a priori.
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Phase space turbulent cascade

In the inertial range, energy injected into perturbations can be
thermalised (produce entropy) by:

e Phase mixing (Landau damping), producing fine scales in v;.

@ Turbulent mixing, producing fine scale in real space.

‘Which thermalisation route does the system favour?
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Phase Mixing/Landau damping

Phase Mixing or Landau damping is
related to the formation of
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Plasma Echo. (Gould et al. 1967)

VoLUME 19, NUMBER 5 PHYSICAL REVIEW LETTERS 31 Jury 1967

PLASMA WAVE ECHO*

R. W. Gould
California Institute of Technology, Pasadena, California

and

T, M. O’Neil and J. H. Malmberg

o t =0 first pulse ; e X = fl(V)e(_ikIX-i-iklvt)

o t =7 second pulse; eox =
f‘2(v)e(ikgxfik2v(t77')) + fz(v)f‘l(V)e(i(k27k1)xfik2v7'fi(k27k1)vt)

o t= T[kg/(kz — kl)] = Echo!
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Turbulent spatial mixing

RMHD described fully nonlinear Alfvén waves travelling up and
down the (strong) background magnetic field.

Otzf F VAaZZT + ZI . VJ_ZT =-V.p

Elsasser vector fields zf =v, +b;, b, =B,/ 4np,

VA = Bo/\/47rp
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Critical balance. (Goldreich and Sridhar 1995)

€———— Waves carrying information ey
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8tzf ¥ VA8zzf +z7 - Vsz =-V,.p

Tnl ~ Ta = turbulent eddies elongated along the local magnetic
field.
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Dynamic alignment. (Boldyrev 2006)

8tzf T VAGsz +z7 - VJ_ZT =-V.p

@ nonlinearity reduced by aligning the vector RMHD fields
0z sinf

= Tnl ~
@ aspect ratio of the fluctuations in the L plane ~ sinf

sheetlike 3D anisotropic structures.

Current field VxB
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Tearing Disrupted Cascade. (Mallet et al. + Loueiro et al.

2017)

The tearing instability compete with the nonlinear evolution.
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Theoritical framework: Kinetic reduced MHD

Ordering

@ Plasma near Maxwellian equilibrium: f= Fy + 0f
o Strong (uniform) magnetic field: w < Q;, k| < ki
@ Long wavelength: k| < p;

KRMHD = hybrid fluid-kinetic description of magnetized
weakly collisional plasma.

Fluid part = RMHD
Kinetic part:

dg!)

o T uVig” +vFov ¢

¢' = ai/dV||8J(V||)
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Phase space turbulent cascade

Energy injected into perturbations can be thermalised (produce
entropy) by:

e Phase mixing (Landau damping), producing fine scales in v
and thus making C[g] finite even if the collisionality is small.
82
C[g] th0V2

@ Turbulent mixing, producing fine scale in real space.

%{ +{,L : ng]jL {/|V||g(i) + v”FoV||¢>] = (]

Turbulent Mixing Phase Mixing

Which thermalisation route does the system favour?
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Hermite Space Formulation

Hermite formulation enables a spectral representation of velocity
space. It is natural way to separate the ‘fluid’ part of the problem
from the 'kinetic’ one.

Hm(x) = (-1 )’"e“g—e
Mg
=0 omm o7
u
H]_ = 2X:> 81 = \/ETH m = 07 1’ 2 Corespond
th 1 5T|| to ‘fluid’ moments.
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Hermite Space Formulation

@ makes the numerical scheme spectrally accurate in the v
coordinate.

@ provides an elegant analytical framework to study phase
mixing.

@ the integro-differential kinetic equations becomes a fluid-like
hierarchy of equations.

dgo 8
7 + Vthv||71 = 0,

d (1= 1/N
j;+vthv”<g2 ( \/ )86>—7

dg., Im+1 ; ;
% + VthVH ( ngJerl + \/Tng1> =C(Clg,], m=>2.
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Dynamics in Phase space

- B () -

all moments are advected higher moments at Iarge enough
by the same velocity couple to lower  m, free energy
ones =-cascade is removed
in hermite space by collisions

e Landau damping/phase mixing is the transfer of free energy
from low moments (dn, u,dT)) into higer one (g, >3).

o Turbulence is the mixing of (dn, v,0T) by u; and by
transferring their energy to small scales.
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Hermite “Cascade”

How transfer of free energy to high m’s occurs linearly?

<8t +M/> BmtvenV| (\/7 m+t \/7gm 1) = —vmgnm

Let Fourier transform in the z direction (6 — ikj) and introduce:

Em(k)) = (isgnky)" gm(ky)

8”m kv . .
g ‘ H| th[( /7 gm+1 \/Egm—l)]: —vmgm

8t V?2
Bt T " om | Bm= TVMEm ’

romain.meyrand@Ipp.polytechnique.fr



Hermite “Cascade”

How transfer of free energy to high m’s occurs linearly?

1
Com =

0C, 0
7at£+|k||vtharn\/2mc = —l/mCm

[Zocco & AAS PoP 18, 102309
(2011)]

<|gm|2> satisfies:

N |

Hermite spectrum C,,,

. i
e m 1/2

Chyy 7wt

1, (m/mr}}z‘

m

Linearly all the energy that is injected will dissipate at the rate ~ |kj|vis J
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“Un-phase-mixing” AAS et al. 2016, JPP 82, 905820212

Em=8hL+ (-1)"E,

% + \f2|k||\vthm1/4iml/4éitn = —vmgt
ot om

Phase Mixing Un-Phase-Mixing

En= %, propagate g = (—1)mEm —_Emil
from low to high m. propagate from high to low m.

In energy terms: C,, = C! + C,, satisfies:

0Cm

) _
or g Kilvnv2m (G = Cp) = —2vmG,

Hermite flux to high m can be cancelled by the ‘'—' modes
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“Un-phase-mixing” AAS et al. 2016, JPP 82, 905820212

(E) -

Pi+a) =k

ui(p)) Vi

Of a8 (a)) + 0y g B (CI||)] ,

‘Hermite flux to high m can be cancelled by the ‘—’modes‘

Collisional cutoff = ion heating

Hermite m

IS

Turbulent Cascade

k1pi

Hermite m

no ion heating

Landau
damping
+ Echo
=0

Turbulent Cascade

ki pi
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umerical Code
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A Fourier-Hermite pseudo-spectral code for strongly

magnetised fluid-kinetic plasma dynamics

Extension of an incompressible MHD Open
Source solver (http://aqua.ulb.ac.be/turbo)

FFTW

Runge-Kutta RK4

Parallelized in one direction using MPI
Shift dealiasing
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Parallel cascade of compressible fluctuations

If kj remains small, compressive fluctuations are not strongly damped.
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Parallel cascade
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Perpendicular cascade
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Hermite-Fourier spectra

The steepening of the Hermite spectrum gives rise to free-energy
dissipation which vanish as ve; — 0.

101N P
10

Forcing

m+1
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Hermite-Fourier flux

Olgn(k ) OM(ke,m) O (ky,m) J

‘1 m»
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Conclusions

@ Nonlinear cascade scatters energy in the phase space so as to
generate a stochastic version of the plasma echo.

@ Stochastic echo impede Landau damping by reducing the net
flux to small velocity space scales.

o Collisionless plasma turbulence in the solar wind behave
in a more “fluid-like” fashion than expected.
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