

Propagating light through the large-scale structure of the Universe

Michel-Andrès Breton

Institut of Space Sciences, Laboratoire d'Astrophysique de Marseille

16/12/2021

 $\rm FIGURE$ – $\rm Planck$ (2018) assuming ΛCDM

 $\rm FIGURE$ – $\rm Planck$ (2018) assuming ΛCDM

Nature of dark sector is unknown

• Dark sector not directly observable

 $\rm FIGURE$ – $\rm Planck$ (2018) assuming ΛCDM

• Dark sector not directly observable

Indirect observations :

- Galaxy rotation curves
- CMB
- etc...

FIGURE – Planck (2018) assuming ACDM

Need additional probes or refine existing ones

Question

What are these dark matter and dark energy components which dominate the energy content of our universe?

Impact of the dark components on

Michel-Andrès Breton

Michel-Andrès Breton

LUTH Seminar

16/12/2021 6 / 43

These distortions blur the original signal BUT they also give informations about our universe!

These distortions blur the original signal BUT they also give informations about our universe!

Problematic

How to properly map the *'real'* universe to the *observed* universe in order to extract relevant cosmological information?

These distortions blur the original signal BUT they also give informations about our universe!

Problematic

How to properly map the *'real'* universe to the *observed* universe in order to extract relevant cosmological information?

Program

•	Initial conditions -	\rightarrow Matter	${\rm dynamics}$	\rightarrow Structure	formation	(HPC Sin	ı)
---	----------------------	----------------------	------------------	-------------------------	-----------	----------	----

- Kinematics of photons \rightarrow What we observe
- $\, \circ \,$ Statistical tools $\, \rightarrow \, {\rm Comparison}$ to theory
- Likelihood analysis & parameter constraints

(HPC Sim)

(Stats/Theory)

(Stats)

Numerical simulations

- Early universe
- Small density fluctuations
- Gaussian distribution

 \searrow Non-linear evolution \searrow

- Late universe
- Virialised structures
- Non-gaussian distribution

N-body or Hydrodynamical simulation?

N-body simulation

Compute the dynamics for dark matter particles

- Compute force and equation of motion
- $\circ\,$ Fast Largest simulations with $\sim 16.364^3$ particles
- Physics well understood
- Not realistic at small scales (< 1 Mpc)

Hydro simulation

Compute the dynamics for dark matter and baryons

- Compute the moments of Boltzmann equation
- $\,$ slow Largest simulations with $\sim 4096^3$ particles
- Realistic (but baryonic processes poorly understood and difficult to model)

N-body or Hydrodynamical simulation?

N-body simulation

Compute the dynamics for dark matter particles

- Compute force and equation of motion
- $\,$ $\,$ Fast Largest simulations with $\sim 16.364^3$ particles
- Physics well understood
- Not realistic at small scales (< 1 Mpc)

Hydro simulation

Compute the dynamics for dark matter and baryons

- Compute the moments of Boltzmann equation
- $\,$ $\,$ Slow Largest simulations with $\sim 4096^3$ particles
- Realistic (but baryonic processes poorly understood and difficult to model)

Different methods to compute the force

Particle-Particle (PP)

Direct pair-counting algorithm. Scales as $O(N^2)$

Particle-Mesh (PM)

Compute Poisson equation on a grid. Scales as $O(N \log N)$

Particle-Particle Particle-Mesh (P³M)

PP at short range, PM at large range. Scales as $O(N^2 \text{ and } N \log N)$

Tree methods

Far enough particles (or cells) are aggregated. Scales as $O(N \log N)$

Fast-multipole method (FMM)

Decompose the potential as multipoles. Scales as O(N)

Michel-Andrès Breton

Different methods to compute the force

Particle-Particle (PP)

Direct pair-counting algorithm. Scales as $O(N^2)$

Particle-Mesh (PM)

Compute Poisson equation on a grid. Scales as $O(N \log N)$

Particle-Particle Particle-Mesh (P³M)

PP at short range, PM at large range. Scales as $O(N^2 \text{ and } N \log N)$

Tree methods

Far enough particles (or cells) are aggregated. Scales as $O(N \log N)$

Fast-multipole method (FMM)

Decompose the potential as multipoles. Scales as O(N)

Michel-Andrès Breton

Particle-Mesh (PM)

 Particle distribution in snapshot

- Particle distribution in snapshot
- Compute density in cells

- Particle distribution in snapshot
- Compute density in cells
- $\circ \ \Delta \Phi \propto \rho$

- Particle distribution in snapshot
- Compute density in cells
- $\Delta \Phi \propto \rho$

•
$$\Phi \to \nabla_x \Phi, \nabla_y \Phi, \nabla_z \Phi$$

- Particle distribution in snapshot
- Compute density in cells
- $\circ \ \Delta \Phi \propto \rho$
- $\Phi \to \nabla_x \Phi, \nabla_y \Phi, \nabla_z \Phi$
- Equation of motion

Particle-Mesh with Adaptive Mesh Refinement (PM-AMR)

- Particle distribution in snapshot
- Compute density in cells
- $\Delta \Phi \propto \rho$
- $\Phi \to \nabla_x \Phi, \nabla_y \Phi, \nabla_z \Phi$
- Equation of motion
- And same with AMR ! (multigrid method, Guillet & Teyssier 2011)

Particle-Mesh with Adaptive Mesh Refinement (PM-AMR)

- Particle distribution in snapshot
- Compute density in cells
- $\Delta \Phi \propto \rho$
- $\Phi \to \nabla_x \Phi, \nabla_y \Phi, \nabla_z \Phi$
- Equation of motion
- And same with AMR ! (multigrid method, Guillet & Teyssier 2011)
- Particles : $\{\mathbf{x}_{p}, \mathbf{v}_{p}\}$ Cells : $\{\mathbf{x}_{c}, \Phi, \nabla_{r}\Phi, \rho\}$

N-body simulation outputs

Snapshots : Particles + cells at some given constant redshifts (or time)

N-body simulation outputs

Snapshots : Particles + cells at some given constant redshifts (or time)

Lightcone : Particles + cells in concatenated shells from each step

Ray-tracing

The inhomogeneous universe

Light propagation in a perturbed FLRW metric : $ds^{2} = -(1+2\Psi)dt^{2} + a(t)^{2}(1-2\Phi)[dx^{2} + dy^{2} + dz^{2}]$ $1 + z = \frac{(g_{\mu\nu}k^{\mu}k^{\nu})_{s}}{(g_{\mu\nu}k^{\mu}k^{\nu})_{s}} \neq \text{homogeneous FLRW redshift (Redshift-space distortions)}$

apparent angles \neq true angles (Lensing)

15 / 43

Weak Lensing (WL)

Lens equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$ • $\vec{\beta}$ true angle • $\vec{\theta}$ angle seen • $\vec{\alpha}$ deflection angle Approximation : $\vec{\alpha} \ll 1$

Distortion matrix $A_{ij} = rac{\partial eta_i}{\partial heta_i} = ext{convergence} + ext{shear}$ convergence : $(1 - \kappa) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ shear : - $\gamma \begin{pmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{pmatrix}$

LUTH Seminar

Standard approach for raytracing : The Born approximation

 \rightarrow Line of sight

• Get the particle distribution in a lightcone pencil beam

Standard approach for raytracing : The Born approximation

ightarrow Line of sight

- Get the particle distribution in a lightcone pencil beam
- Project the density onto a plane (the lens!)

Standard approach for raytracing : The Born approximation

 \rightarrow Line of sight

- Get the particle distribution in a lightcone pencil beam
- Project the density onto a plane (the lens!)
- Compute the Poisson equation to estimate the potential at the lens

Standard approach for raytracing : The Born approximation

 \rightarrow Line of sight

- Get the particle distribution in a lightcone pencil beam
- Project the density onto a plane (the lens!)
- Compute the Poisson equation to estimate the potential at the lens
- Sum the contributions of lenses along a given direction

Michel-Andrès Breton

Improved model : Post-Born

FIGURE - Hilbert et al. (2009)

Some limitations of standard approaches

- Approximations (Born, Post-Born, Lens equation, Flat sky...)
- Need to assume Ω_m to compute distances between lenses
- Restricted to "usual" weak lensing analysis

Ray-tracing : the $\operatorname{Magrathea-Pathfinder}$ code

A code for 3D AMR ray-tracing [Reverdy 2014 (thesis), MAB & Reverdy (2021)]

Our approach : Direct geodesic integration of photons

- C++11 Template Metaprogramming, MPI, multi-threading
- Backward integration using the geodesic equations
- RK4 integrator with 4 steps per AMR cell
- 3D interpolation with inverse TSC scheme

Integration and interpolation : TSC scheme [MAB & Reverdy (2021)]

Michel-Andrès Breton

									•				

Geodesics finder

Null-geodesic finder

Find the connection between the observer and a source

 \rightarrow Production of realistic observables ! [MAB et al. (2019)]

Applications

Applications

Usually weak lensing assumes infinitesimal light beams. In reality, these beams are *finite*. Here we study the impact of beam finiteness on the convergence/shear.

The clustering of galaxies

Study the apparent distribution of sources beyond usual distortions dues to peculiar velocities.

Simulation

Simulation

Simulation

The RayGal simulation suite [MAB et al. (2019), Rasera et al. (2021)]

Newtonian N-body simulations of interacting dark matter particles

Code : RAMSES [Teyssier 2002] PM - AMR method Gravity lightcone **BAYGALGROUPSIMS** : 4096^3 particles, 2.625 Gpc/h box size $M_{\rm part} = 1.9 \times 10^{10} M_{\odot}$ Lightcone halo detection : pFoF [Roy et al, 2014] Initial conditions : MPGRAFIC [Prunet+08] Calibrated on WMAP7 [Komatsu et al. 2011] 2 cosmologies : $\Lambda CDM - wCDM$

Weak lensing with finite beams

Geometry of the light beam [MAB & Fleury (2021)]

- Ray-bundle method
- Every photon follows $ds^2 = 0$
- Relevant for extended sources
- Compute

$$A_{ij} = \partial \beta_i / \partial \theta_j$$

Convergence maps with finite beam [MAB & Fleury (2021)]

Michel-Andrès Breton

16/12/2021 28 / 43

Convergence power specrum with finite beam [MAB & Fleury

(2021)]

29 / 43

Shear power specrum with finite beam [MAB & Fleury (2021)]

Michel-Andrès Breton

Galaxy clustering analysis

RayGal simulation light-cone [Rasera et al. (2021)]

RayGal simulation light-cone [Rasera et al. (2021)]

Michel-Andrès Breton

RayGal simulation light-cone [Rasera et al. (2021)]

RayGal simulation light-cone [Rasera et al. (2021)]

RayGal simulation light-cone [Rasera et al. (2021)]

Michel-Andrès Breton

Multipoles of the 2PCF in the RayGal simulation

redshift bins :	[0.8 - 1.0]	and [$f 1$.	6 – 1.9]
-----------------	-------------	---------------	----------

ξ_ℓ	Doppler	Vo	Grav. redshift	Lensing*	T. Doppler	ISW
ξ0	> 20%	3%	< 1%	1 - 10%	< 1%	< 1%
ξ2	> 20%	2%	< 1%	2%	< 1%	< 1%
ξ4	> 20%	-	< 1%	1-10%	< 1%	< 1%

*Angular displacement only

Multipoles of the 2PCF in the RayGal simulation

	redshift bins : $[m{0.8}-m{1.0}]$ and $[m{1.6}-m{1.9}]$									
ξ_ℓ	Doppler	Vo	Grav. redshift	Lensing*	T. Doppler					
ξn	> 20%	3%	< 1%	1-10%	< 1%					

ξ2	> 20%	2%	< 1%	2%	< 1%
ξ_4	> 20%	-	< 1%	1-10%	< 1%

*Angular displacement only

Number counts heavily impacted by peculiar velocities (Doppler effect) and gravitational lensing through the change in observed angular positions and magnified fluxes !

ISW

< 1%

< 1%

< 1%

Galaxy Clustering Redshift-Space Distortions

- Observed galaxy distribution modified by peculiar velocities 0
- Peculiar velocities depend on the growth rate of structures $f(z) = \Omega_m(z)^{\gamma}$ 0
- 0 Ω_m the amount of matter, $\gamma \sim 0.55$ in GR

Impact of lensing on the growth rate [MAB et al. (2021)]

Michel-Andrès Breton

An end-to-end pipeline

- Compute dynamics for the matter field using N-body simulations
- Extract lightcone from the simulation
- Perform ray-tracing on the lightcone to produce realistic observables
- Compare these observables to theoretical predictions
- Infer possible biases on cosmological parameter constraints
- Wide range of applications for our ray-tracing methods

Appendix

Raytracing integration

$$ds^{2} = a(t)^{2}[-(1+2\Phi/c^{2})d\eta^{2} + (1-2\Phi/c^{2})\delta_{ij}dx^{i}dx^{j}]$$

Geodesic equation

$$rac{d^2\eta}{d\lambda^2} = -rac{2a'}{a}rac{d\eta}{d\lambda}rac{d\eta}{d\lambda} - rac{2}{c^2}rac{d\phi}{d\lambda}rac{d\eta}{d\lambda} + 2rac{\partial\phi}{\partial\eta}(rac{d\eta}{d\lambda})^2$$

$$rac{d^2x}{d\lambda^2} = -rac{2a'}{a}rac{d\eta}{d\lambda}rac{dx}{d\lambda} + rac{2}{c^2}rac{d\phi}{d\lambda}rac{dx}{d\lambda} - 2rac{\partial\phi}{\partial x}(rac{d\eta}{d\lambda})^2$$

$$\frac{d^2 y}{d\lambda^2} = -\frac{2a'}{a} \frac{d\eta}{d\lambda} \frac{dy}{d\lambda} + \frac{2}{c^2} \frac{d\phi}{d\lambda} \frac{dy}{d\lambda} - 2\frac{\partial\phi}{\partial y} (\frac{d\eta}{d\lambda})^2$$

$$\frac{d^2z}{d\lambda^2} = -\frac{2a'}{a}\frac{d\eta}{d\lambda}\frac{dz}{d\lambda} + \frac{2}{c^2}\frac{d\phi}{d\lambda}\frac{dz}{d\lambda} - 2\frac{\partial\phi}{\partial z}(\frac{d\eta}{d\lambda})^2$$

Appendix

FIGURE - MAGRATHEA indexing, from Reverdy (2014)

Michel-Andrès Breton

LUTH Seminar

Appendix

Redshift-space number count (linear) decomposition

$$\Delta^{\text{std}} = b\delta - \frac{1}{\mathcal{H}} \nabla_r (\mathbf{v} \cdot \mathbf{n}), \qquad (1)$$

$$\Delta^{\rm acc} = \frac{1}{\mathcal{H}c} \dot{\mathbf{v}} \cdot \mathbf{n}, \tag{2}$$

$$\Delta^{\mathbf{q}} = -\frac{\dot{\mathcal{H}}}{c\mathcal{H}^2} \mathbf{v} \cdot \mathbf{n}, \tag{3}$$

$$\Delta^{\text{div}} = -\frac{2}{\mathcal{H}\chi} \boldsymbol{v} \cdot \boldsymbol{n}, \tag{4}$$

$$\Delta^{\text{pot},(1)} = \frac{1}{\mathcal{H}c} \nabla_r \psi \cdot \boldsymbol{n}, \qquad (5)$$

$$\Delta^{\text{pot},(2)} = \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2c}{\mathcal{H}\chi}\right)\psi/c^2 - \frac{1}{\mathcal{H}c^2}\dot{\psi},\tag{6}$$

$$\Delta^{\text{shapiro}} = (\phi + \psi)/c^2, \tag{7}$$

$$\Delta^{\text{lens}} = -\frac{1}{c^2} \int_0^{\chi} \frac{(\chi - \chi')\chi'}{\chi} \nabla_{\perp}^2 (\phi + \psi) d\chi', \qquad (8)$$

$$\Delta^{\text{isw}} = \frac{1}{\mathcal{H}c^2}(\dot{\phi} + \dot{\psi}), \qquad (9)$$

$$\Delta^{\rm LC} = \mathbf{v} \cdot \mathbf{n}/c, \tag{10}$$

$$\Delta_{\text{neglect}} = \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2c}{\mathcal{H}\chi}\right) \frac{1}{c^2} \int_{\eta}^{\eta_0} \frac{\partial(\phi + \psi)}{\partial\eta} d\eta' + \frac{2}{\chi c^2} \int_{0}^{\chi} (\phi + \psi) d\chi'.$$
(11)

Michel-Andrès Breton

LUTH Seminar

16/12/2021 43 / 43