
Isochrony and self-gravitating systems dynamics

Alicia Simon-Petit, Jérôme Perez, Guillaume Duval

June 28, 2018

1/34



References

2018, Communication in Mathematical Physics,
Alicia Simon-Petit, Jérôme Perez, Guillaume Duval.
Isochrony in 3D radial potentials.
Accepted, preprint: https://arxiv.org/abs/1804.11282.

2/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics

Contents

Self-gravitating systems

Isochrony in 3D radial potentials

Isochrone relativity

Kepler’s third law

Self-gravitating dynamics

3/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics

Contents

Self-gravitating systems

Isochrony in 3D radial potentials

Isochrone relativity

Kepler’s third law

Self-gravitating dynamics NGC362 — Source : Hubble

4/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics

Gravitational dynamics
Collisionless Boltzmann equation:

∂ f

∂ t
+v ·

∂ f

∂ r
�—y ·

∂ f

∂ v
= 0

• Distribution function f (r,v, t).

• Gravitation with potential:

y =�G ·
✓

G ⇤
Z

f dv
◆

,

solving Poisson eq: Dy = 4pG
Z

f dv
| {z }
density, r

.
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• No collision

since t ⌧ T2-body relax in SGS.
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Which y ?
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Globular clusters

NGC362 — Source: Hubble

Which y ?

1. From observations: mass-luminosity relation n µ r and Poisson’s
equation Dy = r.

2. From theoretical models of GCs’ evolution.
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Globular clusters

NGC362 — Source: Hubble

Which y ? Dy = r with

•
r = cst =) y

ha

(r) =
1

2

w

2r2,

•
r = “d(r

0

)”M =) y

ke

(r) =�GM
r
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Isochrone potentials
Energy:

E = mx =
1

2

m

"✓
dr
dt

◆
2

+
L

2

2r2

#
+my

provides the radial equation of motion in the trajectory plane given by
L :

1

2

✓
dr
dt

◆
2

+
L

2

2r2

� (x�y) = 0 (M)

• For a given y, the set of radially periodic orbits is given by

Q

y

=
�
(x,L) 2 R2, s.t. r(·) solving (M) and periodic

 
.

• If (x,L) 2 Q

y

, then the period

tr(x,L) = 2

Z rmax

rmin

drq
2(x�y(r))� L

2

r2

< •.
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Isochrone geometric property

Idea :
✓

r
y

◆
!
✓

x = 2r2

Y(x) = xy(x)

◆
,

1

2

✓
dr
dt

◆
2

= x� L

2

2r2

�y(r) . (M)

x

x�L

2

1

x

x�L

2

0
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Isochrone parabolas

Y(x) = xy(x)
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Isochrone parabolas
1
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✓
1 0

e 1
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x
y

◆
, Y(x) = xy(x)
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Isochrone parabolas
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Isochrone potentials

!

!

!

!

Reduced Isochrone Parabolas
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"
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"
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Hénon, bounded potentials. Mass densities.
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From harmonic to Kepler

Harmonic

H
ha

=
1

2

✓
p2

q +
p2

q

q2

◆
+

1

2

wq2

| {z }
y

ha

(q)= 1

2

wq2
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q +
p2

q

q2

◆
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1

2

wq2

Canonical transformation:

(q,q,pq,pq

)! (x,q,px,pq

)

with

��������

∂x
∂q

∂x
∂pq

∂px

∂q
∂px

∂pq

��������
= 1.
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dx
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�
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Linear exchanges between xx and y:

xx� y = x

0x0 � y0,
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Bolsts

Partial exchange xx $ Y(x) preserving isochrony ?
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dx
dt
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Bolsts

Theorem

When abx

0 6= 0, the image of a keplerian PRO by B
a,b is an isochrone

orbit, with, given c =
pa |x|

µb

, the non-linear relations

�
r0
�

2

=
axr2 �µbr

x

0 ,

j

0 (j) =
j

2

+ cq
(1+c)2�e2

arctan

q
1+c�e
1+c+e tan

⇣
j

2

⌘�
.

!

"

!

Kepler Primary
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Isochrone Bolsted
Orbit

#

#

0

0

15/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics

iBolsts

Partial exchange xx $ Y(x) preserving isochrony ?

1

16

✓
dx
dt

◆
2

+L

2 = xx�Y (x) ,
1

16

✓
dx0

dt0

◆
2

+
�
L

0�2

= x

0x0 �Y 0 �x0
�

Symmetric linear exchanges between xx and y:
✓

x

0x0

y0

◆
=

1

2


g+1 g�1

g�1 g+1

�

| {z }
B

g

✓
xx
y

◆
,

where B
g

invertible , g = a+b 6= 0.
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Keplerian iBolst group orbit

Proposition
Any isochrone potential is in the group orbit of the kepler potential
under the action of the iBolst group B=

�
B

g

,g 2 R⇤ .
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iBolsts

Additive representation of B:

B
c

= ec


cosh(c) sinh(c)
sinh(c) cosh(c)

�
when g > 0,

with g = e2c.
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iBolsts action
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iBolsts action

!

i"
j j# $

j
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iBolsts action
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iBolsts action
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iBolsts action
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iBolsts action
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iBolsts action
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iBolsts action
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iBolsts action
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iBolsts action
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Reference frames

Definition

The reference frame of a given parabola P is the frame (O, t,n) where
the tangent to the parabola at the origin is TO (P ) = Rt and the
symmetry axis is S (P ) = Rn.
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Isochrony is keplerian in reference frames

Theorem

An orbit is isochrone , it is the iBolsted image of a keplerian orbit.
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iBolsts . . .

Consider k =
1p
2

(i� j) and l = 1p
2

(i+ j) the two eigenvectors of

the iBolst B
g

such that

B
g

(k) = k and B
g

(l) = g l.

With the affine coordinates system (w
1

= xx,w
2

= y) and setting
w0 = B

g

(w), then

⇢
x

0x0 � y0 = xx� y
x

0x0+ y0 = g(xx+ y)
=)

�
x

0x0
�

2 � y02 = g

h
(xx)2 � y2

i
.
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Isochrone relativity and special relativity

• Einstein principle of special relativity: the laws of physics are
written in the same way in all galilean frames;

• The length of any space-time interval, c2dt2 � x2, is conserved
through changes of galilean frames.

23/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics

Isochrone relativity and special relativity

• Isochrone principle of relativity: the laws of motion are written in
the same way in all reference frames;

• The length of the "isochrone interval", xx� y, is conserved
through changes of reference frames.
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Isochrone relativity and special relativity

Isochrone principle of relativity
In the canonical frame RO, with proper time dt = xdt, a keplerian orbit
(x,L2) in the affine coordinates (xx,y) verifies

1

16


d
dt

(w|i)
�

2

= (w|i� j)+(w
L

|j)

where w
L

=�L

2j.
In the bolsted frame R 0

O with affine coordinates (x0x0,y0) and proper
time dt

0 = x

0dt0, the bolsted orbital differential equation reads

1

16


d

dt

0
�
w0|u

��2

=
�
w0|u�v

�
+
�
w0

L

|v
�

with w0
L

=�L

2v.
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Kepler’s third law

J. Kepler, Harmonices Mundi, 1619
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Isochrone semi-major axes

In y

ke

(r) =�µ
r

, define a =
1

2

(ra + rp).

In y

he

(r) =� µ

b+
p

b2 + r2

, define a =
1

2

✓q
b2 + r2

a +
q

b2 + r2

p

◆
.

In y

bo

(r) =
µ

b+
p

b2 � r2

, define a =
1

2

✓q
b2 � r2

a +
q

b2 � r2

p

◆
.

In y

R
ha

, a homogeneous box of radius R, define a = (1/2)2/3 R.
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Kepler’s third law for isochrones

Theorem

For any radially period orbit in an isochrone potential, the square of the
radial period is proportional to the cube of the isochrone semi major
axis:

t

2

r =
4p

2

µ
a3

where µ is the mass parameter of y

ke

, y

he

, y

bo

and µ = w

2R3 for y

R
ha

.
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Mass density analysis
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H: Hénon sphere (t = 100Td),
i: isochrone model,
K: computed King model,
k: King model (W

0

= 9).
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Isochrone analysis of a gravitational collapse
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Isochrone analysis of a gravitational collapse
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Isochrone analysis of a King system
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Isochrone analysis of a King system

7

6

5

4

3

-1 10 2

! = log (")# = 1$13!+4$36

# = log (% )

NOT isochrone !

31/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics

Conclusion

• Geometrical characterization and classification of the completed
isochrone set.

• Generalization of Bohlin transformation: (x
iso

,y
iso

)
B

g$ (x
ke

,y
ke

)

• Isochrone relativity: any isochrone is keplerian in his reference
frame.

• Consequences: generalized Kepler’s Third Law, Bertrand’s
theorem.

• Isochrone analysis: SGS are dynamically isochrone after
gravitational collapse.
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