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Gravitational dynamics
Collisionless Boltzmann equation:
Jf J f df

7+V' _V .
0t or v v

=0

e Distribution function f (r,v,?).

e Gravitation with potential:

v =-G- <g*/fdv>,

solving Poisson eq: Ay = 4nG /fdv.
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Gravitational dynamics

Collisionless Boltzmann equation:

d f Jf J f
Ve VY —— =0
dt or ov
e Distribution function f (r,v,?). e No collision
e Gravitation with potential: since t < T.pody relax iN SGS.

v =-G- <g*/fdv>,

solving Poisson eq: Ay = 4nG /fdv.

N——
density, p
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NGC362 — Source: Hubble
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NGC362 — Source: Hubble
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Globular clusters

NGC362 — Source: Hubble
Which y ?

1. From observations: mass-luminosity relation v «< p and Poisson’s
equation Ay = p.
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Globular clusters

NGC362 — Source: Hubble

Which vy ?
1. From observations: mass-luminosity relation v «< p and Poisson’s
equation Ay = p.
2. From theoretical models of GCs’ evolution.
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Globular clusters

NGC362 — Source: Hubble

Which ¢y ? Ay = p with

1
® p=cst = Y, (r) = 5(;)Zrz,
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NGC362 — Source: Hubble

Which ¢y ? Ay = p with

1
® p=cst = Y, (r) = 5(;)Zrz,

GM
® p= “6(1‘0)”M — VWke (r) = —T,
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NGC362 — Source: Hubble
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1 2n

. p:CSt:>\|Iha(r):§0)2r2, ]76
GM
® p= “S(TQ)”M — Yke (I") = —7” ,
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NGC362 — Source: Hubble

Which y ? Ay = p with
1 . 2m
® p=ocst = Y (r) = Emzrz, r==-
GM
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Isochrone potentials

1 dr\> A2
E: = — J— JR—
s 2m[<dt) ta2

provides the radial equation of motion in the trajectory plane given by

A
1 /dr\? A2
2<dt> +ﬁ_(§_‘”):0 (M)

Energy:

+my
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Isochrone potentials

Radial equation of motion in the trajectory plane given by A :

1 /dr\? A2
2<dt> +ﬁ—(§—\|’)=0 (M)
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Isochrone potentials

Radial equation of motion in the trajectory plane given by A :

1 (dr\> A?
2<dt> +ﬁ—(§—\l’):0 M)

® For a given \, the set of radially periodic orbits is given by

Oy = {(§,A) € R?, s.t. r(-) solving (M) and periodic} .

8/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law Self-gravitating dynamics
(e]e]e} 0O@000 000000000000 0000 0000

Isochrone potentials
Radial equation of motion in the trajectory plane given by A :

1 (dr\> A?
2<dt> +to2 G-y =0 M)

® For a given \, the set of radially periodic orbits is given by
Oy = {(§,A) € R?, s.t. r(-) solving (M) and periodic} .

® If (§,A) € Oy, then the period

Fimax dr
wEa) =2 " Vi

2
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Isochrone potentials

Radial equation of motion in the trajectory plane given by A :

1 /dr\* A2
2(0”) +ﬁ—(§—llf):0 (M)

® For a given y, the set of radially periodic orbits is given by
Oy ={(§,A) € R?, s.t. r(-) solving (M) and periodic } .

® If (§,A) € ®y, then the period

VYmax

E,AN) =2 dr <
2 E—w() - &

Look for isochrone potentials
Find all y(r), s.t. @y # 0 and V' (§,A) € Oy, 1.(§,A) =7,(€). J

T (

o0,
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116<dx> A —¥(x).

Yy

&V

r = —2b2

A—translation: y — y+A, Y(x) =xy(x)
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Isochrone potentials

REDUCED ISOCHRONE PARABOLAS
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b
..... 0] o
+ A 7
- y
| Lt
X ittod
——- ) X
I

Theorem

There are four types of isochrone potentials: e, Wha, Whe and Y.
Any isochrone potential is in the group orbit of {Wke, Wha, Whe, Wbo }
under the group action of A = {& — transvections, A — translations}.
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Isochrone potentials

Theorem

There are four types of isochrone potentials: e, Wha, Whe and Y.
Any isochrone potential is in the group orbit of {Wke, Wha, Whe, Wbo }
under the group action of A = {& — transvections, A — translations}.

o A log(p/po)

A Pre

Pbo

3
PO = T6xGER

-2+ .
-2 —1 0 1

Hénon, bounded potentials. Mass densities.
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Harmonic
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ﬂha—z<pq+q2 +50q

Canonical transformation:

(9,8,pg,p0) — (x,6,px,p0)

with | 94 9Pq | 1.

Self-gravitating dynamics
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From harmonic to Kepler

Harmonic

L( 5 P L
J{ha=2<pq+q2 +50q

Canonical transformation:

(¢,8,pg,p0) — (x,0,px,p0)

ox BZ
- ;. )
with 99 Ipg =1,i.e. px:%sothatx:q?.Then
q

opx Opx

A1, p§ 0/
Hoa = [2(””4)@ TR
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From harmonic to Kepler

Harmonic Kepler
1 u
Wha(q) = 50)6]2 Wie(r) = -

Canonical transformation:

2
CAx[1( 5, pg\ 0P gp L2, Po) K
%a_l{2<px—i_4xz T AT L R
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Wha(q) = quz Wie(r) = —=
r
Canonical transformation:
P R A Pi 0’2 9 LN /)tzp u
ha = [2 <Px+ w) T T\t )
Noting
R R
8 2\ Px 4x2 4x
)
and setting = Hy = e Po = Ig = 7%
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o= | = 2 0 e _ 2 2 Fo _,li
ha ] |:2 <Px + 4,\‘2> + 3 }[ke 5 p;+ o .
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Orbit
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Orbit
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4x |1 p3 o 1 P2
Hoa=— |5 P2+ 5 ) +— L -
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Aka : Goursat, Darboux, Levi-Civita,

Kepler
Orbit
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From harmonic to Kepler

Harmonic Kepler

Aka : Goursat, Darboux, Levi-Civita,

1
Bohlin transformation (z — 522)’ etc.

Kepler

Orbit Total
&x Y(x) =xy(x)
exchange
Harmonic
Orbit
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Bolsts

Partial exchange &x <+ Y(x) preserving isochrony ?

L (LY (3 IPU )

Linear exchanges between &x and y:

Er—y=Ex—-y,

14/34



Self-gravitating systems Isochrony in 3D radial potentials Isochrone relativity Kepler’s third law
000 00000 00®000000000 0000

Bolsts

Partial exchange &x <+ Y(x) preserving isochrony ?

16 \ dr 16 \ dr’

Linear exchanges between &x and y:

()=

Self-gravitating dynamics
0000

L&) irmarw L (E) g v ),
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Bolsts

Partial exchange &x <+ Y(x) preserving isochrony ?

1 /dx\? 1 /dx'\? 2

i i A2 =Ex—Y L faer AV = V' (¥,
16<dt> FAT ==Y (), 16(dt’> +A) =8 V()

Linear exchanges between &x and y:

(3)=15 )
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Bolsts

Partial exchange &x <+ Y(x) preserving isochrony ?

1 /dx\? 1 /dx'\? 2

i i A2 =Ex—Y L faer AV = V' (¥,
16<dt> FAT ==Y (), 16(dt’> +A) =8 V()

Linear exchanges between &x and y:

(V)L 2 [ (5)
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Bolsts

Theorem

When opE’ + 0, the image of a keplerian PRO by By g is an isochrone
o]
up

N2 agr 2 —uPr
() = S
9 ()= g + ——~——arctan [ ﬁ%: tan <§)] :

orbit, with, given y, = , the non-linear relations
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i Bolsts

Partial exchange Ex «+» Y(x) preserving isochrony ?

Symmetric linear exchanges between Ex and y:

(5) =213 3 (%),

By

where By invertible < y= o+ # 0.
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Keplerian i Bolst group orbit

Proposition
Any isochrone potential is in the group orbit of the kepler potential
under the action of the i Bolst group B = { B,y € R*}.
(U™ Vo
R S— o S—
o b e o _®_> £>0
B]':.l,:d qvbke B_y wha ®O By __ E <0
: Vhe . i ;
v N4 A\ Bl
KB K J
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i Bolsts

Additive representation of B:

By — et cosh(y) sinh(y) when v 0

sinh(y) cosh(y)

with y = e,
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Reference frames

Definition

The reference frame of a given parabola 2 is the frame (O, t,n) where
the tangent to the parabola at the origin is Zp (P) = Rt and the
symmetry axis is S (?) = Rn.
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Isochrony is keplerian in reference frames

Theorem

An orbit is isochrone <> it is the i Bolsted image of a keplerian orbit.

583

o> [
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iBolsts ...

1 1
Considerk = — (i—j) and1 = — (i +j) the two eigenvectors of
\@( J) \@( J) g
the i Bolst By such that

With the affine coordinates system (w; = &x,w, = y) and setting
w = By(w), then

Lev ey = @07 =l 2]
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Isochrone relativity and special relativity

® Einstein principle of special relativity: the laws of physics are
written in the same way in all galilean frames;

® The length of any space-time interval, c>dt> — x
through changes of galilean frames.

2 is conserved

22/34
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Isochrone relativity and special relativity

® [sochrone principle of relativity: the laws of motion are written in
the same way in all reference frames;

® The length of the "isochrone interval”, Ex — y, is conserved
through changes of reference frames.
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Isochrone relativity and special relativity

Isochrone principle of relativity

In the canonical frame Ry, with proper time dt = &dt, a keplerian orbit
(€,A?) in the affine coordinates (Ex,y) verifies

Le (wmr = (Wli—J) + (wal)

where wp = —Azj.
In the bolsted frame R/, with affine coordinates (&'x’,y") and proper
time dtv’ = £'df’, the bolsted orbital differential equation reads

11? [ddt, (w’|u)} T (Wla—=v) + (walv)

with w5 = —A%v.
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Isochrone semi-major axes

1
In Wi (r) = —‘g, define a = 7 (ra+r).
N P | I S
IN Whe(r) = n b2+r2,def|nea2<\/b —i—ra+\/b +r5 ).

u . 1
|n\l’bo(l’)=m,deflnea:§ <\/b2—/’3+\/b2—l’1%>.

In y& , a homogeneous box of radius R, define a = (1/2)2/3R.
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Kepler’s third law for isochrones

Theorem

For any radially period orbit in an isochrone potential, the square of the
radial period is proportional to the cube of the isochrone semi major
axis: 5
47
=T
u

where u is the mass parameter of Wie, Whe, Woo and u = ’R> for yk .

T
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Mass density analysis

p/Po

— H
— i
—K
— k

107!

log(p)

H: Hénon sphere (1 = 1007}),
i isochrone model,

K: computed King model,

k: King model (Wy = 9).
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Isochrone analysis of a gravitational collapse

» y = log(7)

“—qy = 1.50x+1.66 x:log(a)

0 1
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Isochrone analysis of a gravitational collapse

» y = log(7)

Isochrone !

‘c20<a3

“—y = 1.50x+1.66 x:log(a)

0 1
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Isochrone analysis of a King system

y = log (7)

3,+y:1.13m+4.36 z = log (a)

10 12
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Isochrone analysis of a King system

y = log (7)

NOT isochrone !

3t4#__y = 1.13x+4.36 z = log (a)

0 12
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Conclusion

Geometrical characterization and classification of the completed
isochrone set.

B
Generalization of Bohlin transformation: (&iso, Wiso) s (Ekes Wie)

Isochrone relativity: any isochrone is keplerian in his reference
frame.

Consequences: generalized Kepler’s Third Law, Bertrand’s
theorem.

Isochrone analysis: SGS are dynamically isochrone after
gravitational collapse.
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