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Introduction

- Modified gravity theories: predictions different from GR
- Relevant sector: gravitational waves emitted by black holes

- Propagation is harder to study than in GR due to more involved coupling
terms

- Features of propagation can be used to rule out some theories or
backgrounds
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Modified gravity: Horndeski theory



Necessity for modified gravity Importance of black hols

Motivation for beyond-GR theories

Heuristic approach
- Design new tests of GR beyond a Singularities (Big Bang, black holes)
null hypothesis check Cosmic expansion
- EFT of some high energy theory

= Important to look for extensions of GR
= Need to develop tests of these modified theories



Necessity for modified gravity Importance of black hole

Various theories of modified gravity

Lovelock’s theorem for gravity
- Fourth dimensional spacetime

- Only field is the metric — GR is the
- Second order derivatives in equations

General procedure to construct a modified gravity theory:

Break one of Make sure the Take experimental
Lovelock’s - theory is not - constraints into
hypotheses pathological account



Necessity for modified gravity Importance of black hols

Cubic shift-symmetric Horndeski theory

Add a scalar field ¢ coupled to g, to the action

(Py = Vy(p/ q);w = Vyvv¢r X= q)ﬂgb”

S= fd‘*x JZ[ER + P + QO¢ + 2Fx (¢, ¢"" — O¢?) + GEF'p,,,
1
+ 3Gx(0¢ = 300 ¢ + 2,07 ¢") |
- Most general theory with second order equations of motion and cubic terms

- Shift-symmetric: functions F, P, Q and G depend on X and not ¢
- Quadratic Horndeski: G = 0. GR limit: F = 1, other functions 0



dified gravi Importance of black holes

Tests of modified gravity

Where to look for traces of modified gravity?

Large scale structures Cosmology
New solutions - Different growth rate - Primordial GWs
Different dynamics - Screenings - CMB
smaller larger

BHs: change in theory implies change of background + change of perturbations
= very interesting test system



or modified gravity Importance of black holes

New black holes in Horndeski: stealth solution

Metric sector: Scalar sector
ds? = —(1—p/r) dFf + A —p/r)~ L dr* +12dQ° ¢ =qt + p(r)
.
X = _qz = q)’(r) = qr\/__];

Properties
- Metric sector: similar to Schwarzschild, time-dependant scalar field

- X = cst = functions of X reduced to constants



or modified gravi Importance of black holes

New black holes in Horndeski: EGB theory'

Einstein-Gauss-Bonnet Lagrangian:

S= dex J 8RR+ &' (R, s RIPT — 4R, RF + R2))

Gauss-Bonnet term g

Compactification procedure
a
D -4
Take D — 4: get of parameters of Horndeski given by

dsp” = ds® +e2d® and & =

F(X)=1-2aX P(X)=2aX?, QX)=—-4aX, G(X)=—daln(X)

' Lu, H. and Pang, Y. 2020.



or modified gravity Importance of black holes

New black holes in Horndeski: EGB solution?

Metric sector Scalar sector
1
ds® = —A(r) ar + m dr? + 12 d0? ¢ = P(r)
M(r) 2 —1+VA

P =

1+ \/14—406}{/1’3 A

A(r) :1——7 , M(r) =

Properties

- One horizon atr =1, = 1/2(u + u? — 4a)
- Constant « verifies 0 < & <2

2 Lu, H. and Pang, Y. 2020.



Gravitational waves in modified
gravity




Perturbation setup  Schrodin

Axial modes

Perturbations of the metric
Suv :g]/u/‘l'h]w/ ¢:¢+5¢
G M dx¥ = —A(r) d® + dr” /B(r) + C(r) A, ¢ = p(r)

= Separate the variables in h,,,, with Fourier transform and spherical harmonics
+ fix gauge
Axial modes: odd-parity perturbations
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Perturbation setup  Schrodin

Polar modes

Polar modes: even-parity perturbations

A Yﬂm Yﬂm
hoo| M B0 Y, s
: Yﬂm

sin?(6) Yo,

nge_i“’t

o

Difficulties of polar modes study
- Coupling between scalar mode and gravitational mode

- More free functions

= focus on axial modes for now



Perturbation setup Schrédinger equation ffec

Resulting equations

10 perturbed Einstein’s equations = 2 first-order equations for hy and hy

First-order system
- Change variables: Y{ = hy, wY, =hy+ Yhy
- Use Awith2A =0 +1) —2

dY _ (C/CHiw¥ —iw? +2A®/CY
dr =T A+ iw?

= This system describes the dynamics of one degree of freedom



Perturbation setup  Schrodin

Canonical form

Change of time coordinate
t,o=t— fdr\P(r)
—il’ A

dY c'/C —i 2iAD/C
Newsystem:5:< / lw” + 2%/ )Y

Quadratic case G =0

_F42PFx/A ,  F CqFyy . d
[=—%% % ®~rmy YoT3 o 8- gh(VEAR)

F = —29°Fx + A(F — 2XFx)



Perturbation setup Schrédinger equations Effective metri

Schrodinger equation for a general metric

Constraint equation Dynamical equation
ay, . dy, ¢ (2D
W_—erl +AY2 W—Eyl +1 _C — Y2

- Inject the constraint in the dynamical equation
- Renormalize Y, to remove d/dr term: Y, = NY
- Change coordinate dr/dr, =n

dzg

2
2 [—Z—V(m]g:o, s = il

Physical interpretation

Wave propagation equation atc =1 forn = 1/4T, scattering by potential V._;



) Schrodinger equations  Effe

Case of GR

Canonical functionsin GR(F =1, G =0)

¥=0, ®=A, T=1/AB, A:—iln(\/BTA)

dr
: ) dY ! 2 ]
First-order system in GR: — = C /€ iw” +2IAA/C
dr \-i/(AB) —(A'/A+B'/B)/2

= |dea: identify a value for A, B, C that recreates cubic Horndeski perturbations



>quations  Effective metric

Perturbation s¢

Comparison of canonical systems

GR on arbitrary background

Cubic Horndeski

Y=aY, dY/dr=MY

i (C’/C+o¢’/zx —iw2+2i)\<I>/C) v C//g —éa]2~+ 21~NAA~/C~
—i/(AB) —(A"JA+B'/B)/2

= “equivalence” between cubic Horndeski and GR with a new background:

C=aC with a=FJTB/A

—il’ A+a'/u

A=ad, = =adT,

o3| —

24 C3C?

e 1o =,  GaA
With this choice: V._; = e + °C ED(DC ), D=+yAB/C




Perturbation setup Schrodinger equations Effective metric

Intermezzo: massless spin-2 in GR

Consider massless spin 2 in GR: obtain propagation equation via NP formalism?

Propagation equation

427,

T2 " (W? = V42)Zy =0

204 CC? 1. .. ——
Viez = = + 3¢ - 5D(CY’, D=yAB/C

Correspondance with cubic Horndeski
- V,_, — massless spin 2 in GR with background 4, ...
- V.—1 — axial perturbations at ¢ = 1 in cubic Horndeski with A, ...

- Both potentials are equal
> Arbey, A. et al. 2021.




schrodinger equations  Effective metric

Effective propagation metric

Propagation of
axial perturbations
in cubic Horndeski with
background A, B, C

Effective metric for axial perturbations

Propagation of massless
spin 2 in GR with
background A, B, C

TB
d* = g, o’ dx” = jﬁ’z(—cp dt,? + T dr® + CdO?)




schrodinger equations  Effective metric

Specific case of quadratic Horndeski

Disformal transformation

g;u/ = C(X)g;u/ + d(X)¢y¢v

= is it possible to find ¢ and d such that g, and g,,,, are linked this way?
(restricting to quadratic Horndeski)

- ¢ = FTB/A = |JF(F — 2XFy)
+ ®=A-qg%d/csod=2cFx/(F —2XFx)
- Other relations for ®I' and C are satisfied



schrodinger equations  Effective metric

Disformal effective metric in quadratic Horndeski

Link between background and perturbations

. 2Fx
Suv = VE(F - 2XFX)<gpn/ + m%%)

= axial modes propagate in a metric !
- If matter is coupled to g,,, it will see axial modes propagating as in GR:
5 = SHorn [gyw ¢1+ Sm[gyw ¢]

* In GR both metrics are the same: &, = g, — no problem for Schwarzschild
- Corresponds to a DHOST theory with F, =sign F and A; = A, =0



Effective metric

Summary of results

- Axial modes in cubic Horndeski propagate in an effective metric given by

B
dg? = I\’Z<—<I> At,2 +Td dr” + Cd02>

- In the case quadratic Horndeski (G = 0), this effective metric is a disformal
transformation of the background metric :

N o 2Fx
Suv = F(F —2XFx) guv"'mgby‘pbv

= study the effective metric in order to understand the behaviour of axial modes



Perturbation setup Schrodinger equations Effective metric

Consequences for stability

Constraints on F
No change of signature between g,,, and g, :

I'>0 and >0

Recover results from the literature?

@ Takahashi, K. and Motohashi, H. 2021.

Change of light cone
- Causality of g, and g,,, might be different
- Similar study for a scalar perturbation by Babichev et al?

@ Babichev, E. et al. 2018.

= compute the effective metric for several existing solutions



Application to different black holes
solutions




Stealth solution EGB solutic

Effective metric for stealth Schwarzschild

1
ds® = —AN AP + ——dr* + 240> AG) =1-— g

A(r)
e s\ qs 2 e\ 2
ds™ = 1+§(—m(1—7>dt* +<1—7) dr +r2d02),

=2¢"Fx =cst, re=0+u

Properties
- Corresponds to Schwarzschild BHwith R = (1 + )4rand T = (1 4+ J)~V/4t,
+ Horizon at R = (1 + ¢)>*p, corresponding to r = ry #
- The horizon seen by axial perturbations is displaced?

@ Tomikawa, K. and Kobayashi, T. 2021; Langlois, D., Noui, K, and Roussille, H. 2021.



EGB solution

Effective metric for EGB

1 2
ds® = —A(r) A + —— dr* + r2dQ0? Ar)=1- T

A(r) 1+ y1+4ap/rd
1 A] 203 %) 1 ;,) 6)
058 = -2 g 24 le—sdr%,’ e o
v 73 reNAY 3 A3

- 71 and y3 are nonzero functions

* 7, has a zero at r, = 32au
- Aiszero atr, only




stealth solution EGB solution

Behaviour at the coordinate singularities

Atr=ry

2 1/4 7, 2 €2 2 C3 2
ds" ~ —c;(r =)Vt + —=—dr' + ——=——dQO

= the Ricci scalar is singular at » = r,: curvature singularity at the horizon
Atr=r,
d5% ~ —cy(r — 1) V2 At % + c5(r — 19)372 dr* + ¢ (r — 1) 112 a0?

= the Ricci scalar is singular at » = r,: another curvature singularity

Property
The axial modes propagate in a metric with naked singularities



Conclusion

- Study of propagation of axial gravitational perturbations in cubic Horndeski
theory

- Computation of the effective metric in which perturbations propagate

- Disformal link between this metric and the background: useful for coupling
with matter

- Structure of effective metric computed for two background solutions
- New behaviour is found: horizon displaced, naked singularities

- Does not necessarily mean these theories are pathological yet



Thank you for your attention!
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