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Introduction

• Modified gravity theories: predictions different from GR
• Relevant sector: gravitational waves emitted by black holes
• Propagation is harder to study than in GR due to more involved coupling
terms

• Features of propagation can be used to rule out some theories or
backgrounds
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Modified gravity: Horndeski theory



Necessity for modified gravity Importance of black holes

Motivation for beyond-GR theories

Heuristic approach
• Design new tests of GR beyond a
null hypothesis check

• EFT of some high energy theory

Issues of GR
• Singularities (Big Bang, black holes)
• Cosmic expansion

⇒ Important to look for extensions of GR
⇒ Need to develop tests of these modified theories



Necessity for modified gravity Importance of black holes

Various theories of modified gravity

Lovelock’s theorem for gravity
• Fourth dimensional spacetime
• Only field is the metric
• Second order derivatives in equations

⇒ GR is the only possible theory

General procedure to construct a modified gravity theory:

Break one of
Lovelock’s
hypotheses

→
Make sure the
theory is not
pathological

→
Take experimental
constraints into

account



Necessity for modified gravity Importance of black holes

Cubic shift-symmetric Horndeski theory

Breaking of Lovelock’s hypotheses
Add a scalar field 𝜙 coupled to 𝑔𝜇𝜈 to the action

𝜙𝜇 = ∇𝜇𝜙 , 𝜙𝜇𝜈 = ∇𝜇∇𝜈𝜙 , 𝑋 = 𝜙𝜇𝜙𝜇

𝑆 = ∫ d4𝑥 √−𝑔[𝐹𝑅 + 𝑃 + 𝑄□𝜙 + 2𝐹𝑋(𝜙𝜇𝜈𝜙𝜇𝜈 − □𝜙2) + 𝐺𝐸𝜇𝜈𝜙𝜇𝜈

+ 1
3𝐺𝑋(□𝜙3 − 3□𝜙𝜙𝜇𝜈𝜙𝜇𝜈 + 2𝜙𝜇𝜌𝜙𝜌𝜈𝜙 𝜇

𝜈 )]

• Most general theory with second order equations of motion and cubic terms
• Shift-symmetric: functions 𝐹, 𝑃, 𝑄 and 𝐺 depend on 𝑋 and not 𝜙
• Quadratic Horndeski: 𝐺 = 0. GR limit: 𝐹 = 1, other functions 0



Necessity for modified gravity Importance of black holes

Tests of modified gravity

Where to look for traces of modified gravity?

Black holes
• New solutions
• Different dynamics

Large scale structures
• Different growth rate
• Screenings

Cosmology
• Primordial GWs
• CMB

smaller larger

BHs: change in theory implies change of background + change of perturbations
⟹ very interesting test system



Necessity for modified gravity Importance of black holes

New black holes in Horndeski: stealth solution

Metric sector: mimic GR

d𝑠2 = −(1−𝜇/𝑟) d𝑡2 +(1−𝜇/𝑟)−1 d𝑟2 +𝑟2 dΩ2

Scalar sector

𝜙 = 𝑞𝑡 + 𝜓(𝑟)

𝑋 = −𝑞2 ⇒ 𝜓′(𝑟) = 𝑞
√𝑟𝜇
𝑟 − 𝜇

Properties
• Metric sector: similar to Schwarzschild, time-dependant scalar field
• 𝑋 = cst ⇒ functions of 𝑋 reduced to constants



Necessity for modified gravity Importance of black holes

New black holes in Horndeski: EGB theory1

Einstein-Gauss-Bonnet Lagrangian:

𝑆 = ∫ d𝐷𝑥 √−𝑔(𝑅 + 𝛼′(𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Gauss-Bonnet term 𝒢

))

Compactification procedure

d𝑠𝐷
2 = d𝑠2 + 𝑒2𝜙 dΣ2 and 𝛼′ = 𝛼

𝐷 − 4
Take 𝐷 ⟶ 4: get motivated choice of parameters of Horndeski given by

𝐹(𝑋) = 1 − 2𝛼𝑋 𝑃(𝑋) = 2𝛼𝑋2 , 𝑄(𝑋) = −4𝛼𝑋 , 𝐺(𝑋) = −4𝛼 ln(𝑋)
1 Lu, H. and Pang, Y. 2020.



Necessity for modified gravity Importance of black holes

New black holes in Horndeski: EGB solution2

Metric sector

d𝑠2 = −𝐴(𝑟) d𝑡2 + 1
𝐴(𝑟) d𝑟2 + 𝑟2 dΩ2

𝐴(𝑟) = 1 − 𝑀(𝑟)
𝑟 , 𝑀(𝑟) = 2𝜇

1 + √1 + 4𝛼𝜇/𝑟3

Scalar sector

𝜙 = 𝜓(𝑟)

𝜓′(𝑟) = −1 + √𝐴
𝑟√𝐴

Properties

• One horizon at 𝑟 = 𝑟ℎ = 1/2(𝜇 + √𝜇2 − 4𝛼)
• Constant 𝛼 verifies 0 ≤ 𝛼 ≤ 𝑟2

ℎ

2 Lu, H. and Pang, Y. 2020.



Gravitational waves in modified
gravity



Perturbation setup Schrödinger equations Effective metric

Axial modes

Perturbations of the metric

𝑔𝜇𝜈 = ̄𝑔𝜇𝜈 + ℎ𝜇𝜈 , 𝜙 = ̄𝜙 + 𝛿𝜙

̄𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 = −𝐴(𝑟) d𝑡2 + d𝑟2 /𝐵(𝑟) + 𝐶(𝑟) dΩ2 , ̄𝜙 = 𝜓(𝑟)

⇒ Separate the variables in ℎ𝜇𝜈 with Fourier transform and spherical harmonics
+ fix gauge

Axial modes: odd-parity perturbations

ℎ𝜇𝜈 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
sin 𝜃 ℎ0(𝑟) 𝜕𝜑𝑌ℓ𝑚 − sin 𝜃 ℎ0(𝑟) 𝜕𝜃𝑌ℓ𝑚

1
sin 𝜃 ℎ1(𝑟) 𝜕𝜑𝑌ℓ𝑚 − sin 𝜃 ℎ1(𝑟) 𝜕𝜃𝑌ℓ𝑚

sym sym
sym sym

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑒−𝑖𝜔𝑡 , 𝛿𝜙 = 0



Perturbation setup Schrödinger equations Effective metric

Polar modes

Polar modes: even-parity perturbations

ℎ𝜇𝜈 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐴 𝐻0(𝑟) 𝑌ℓ𝑚 𝐻1(𝑟) 𝑌ℓ𝑚
sym 𝐵−1 𝐻2(𝑟) 𝑌ℓ𝑚

𝐾(𝑟) 𝑌ℓ𝑚
sin2(𝜃) 𝐾(𝑟) 𝑌ℓ𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑒−𝑖𝜔𝑡 ,

𝛿𝜙 = 𝛿𝜑(𝑟) 𝑌ℓ𝑚𝑒−𝑖𝜔𝑡

Difficulties of polar modes study
• Coupling between scalar mode and gravitational mode
• More free functions

⇒ focus on axial modes for now



Perturbation setup Schrödinger equations Effective metric

Resulting equations

10 perturbed Einstein’s equations ⇒ 2 first-order equations for ℎ0 and ℎ1

First-order system
• Change variables: 𝑌1 = ℎ0 , 𝜔𝑌2 = ℎ1 + Ψℎ0

• Use 𝜆 with 2𝜆 = ℓ(ℓ + 1) − 2

d𝑌
d𝑟 = ⎛⎜

⎝
𝐶′/𝐶 + 𝑖𝜔Ψ −𝑖𝜔2 + 2𝑖𝜆Φ/𝐶

−𝑖Γ Δ + 𝑖𝜔Ψ
⎞⎟
⎠

𝑌

⇒ This system describes the dynamics of one degree of freedom



Perturbation setup Schrödinger equations Effective metric

Canonical form

Change of time coordinate

𝑡∗ = 𝑡 − ∫ d𝑟 Ψ(𝑟)

New system:
d𝑌
d𝑟 = ⎛⎜

⎝
𝐶′/𝐶 −𝑖𝜔2 + 2𝑖𝜆Φ/𝐶
−𝑖Γ Δ

⎞⎟
⎠

𝑌

Quadratic case 𝐺 = 0

Γ = 𝐹 + 2𝑞2𝐹𝑋/𝐴
𝐵ℱ

+ 𝜓2 , Φ = ℱ
𝐹 − 2𝑋𝐹𝑋

, Ψ = 2𝑞𝐹𝑋𝜓′

ℱ
, Δ = − d

d𝑟 ln(√𝐵/𝐴ℱ)

ℱ = −2𝑞2𝐹𝑋 + 𝐴(𝐹 − 2𝑋𝐹𝑋)



Perturbation setup Schrödinger equations Effective metric

Schrödinger equation for a general metric

Constraint equation
d𝑌2
d𝑟 = −𝑖Γ𝑌1 + Δ𝑌2

Dynamical equation
d𝑌1
d𝑟 = 𝐶′

𝐶 𝑌1 + 𝑖(2𝜆Φ
𝐶 − 𝜔2)𝑌2

• Inject the constraint in the dynamical equation
• Renormalize 𝑌2 to remove d/d𝑟 term: 𝑌2 = 𝑁𝒴
• Change coordinate d𝑟/d𝑟∗ = 𝑛

d2𝒴
d𝑟2∗

+ [𝜔2

𝑐2∗
− 𝑉(𝑟)]𝒴 = 0 , 𝑛2Γ𝑐2

∗ = 1

Physical interpretation

Wave propagation equation at 𝑐 = 1 for 𝑛 = 1/√Γ, scattering by potential 𝑉𝑐=1



Perturbation setup Schrödinger equations Effective metric

Case of GR

Canonical functions in GR (𝐹 = 1, 𝐺 = 0)

Ψ = 0 , Φ = 𝐴 , Γ = 1/𝐴𝐵 , Δ = − d
d𝑟 ln(√𝐵/𝐴)

First-order system in GR:
d𝑌
d𝑟 = ⎛⎜

⎝
𝐶′/𝐶 −𝑖𝜔2 + 2𝑖𝜆𝐴/𝐶

−𝑖/(𝐴𝐵) −(𝐴′/𝐴 + 𝐵′/𝐵)/2
⎞⎟
⎠

𝑌

⇒ Idea: identify a value for 𝐴, 𝐵, 𝐶 that recreates cubic Horndeski perturbations



Perturbation setup Schrödinger equations Effective metric

Comparison of canonical systems

Cubic Horndeski

𝑌̃ = 𝛼𝑌 , d𝑌̃/d𝑟 = 𝑀̃𝑌̃

𝑀̃ = ⎛⎜
⎝

𝐶′/𝐶 + 𝛼′/𝛼 −𝑖𝜔2 + 2𝑖𝜆Φ/𝐶
−𝑖Γ Δ + 𝛼′/𝛼

⎞⎟
⎠

GR on arbitrary background

𝑀 = ⎛⎜
⎝

̃𝐶′/ ̃𝐶 −𝑖𝜔2 + 2𝑖𝜆 ̃𝐴/ ̃𝐶
−𝑖/( ̃𝐴𝐵̃) −( ̃𝐴′/ ̃𝐴 + 𝐵̃′/𝐵̃)/2

⎞⎟
⎠

⇒ “equivalence” between cubic Horndeski and GR with a new background:

̃𝐴 = 𝛼Φ , 1
𝐵̃

= 𝛼ΦΓ , ̃𝐶 = 𝛼𝐶 with 𝛼 = ℱ√Γ𝐵/𝐴

With this choice: 𝑉𝑐=1 = 2𝜆 ̃𝐴
̃𝐶

+
̃𝐶2 ̃𝐶′2

2𝐶 − 1
2𝐷̃(𝐷̃ ̃𝐶′)′ , 𝐷 = √ ̃𝐴𝐵̃/ ̃𝐶



Perturbation setup Schrödinger equations Effective metric

Intermezzo: massless spin-2 in GR

Consider massless spin 2 in GR: obtain propagation equation via NP formalism3

Propagation equation

d2𝑍2
d𝑟2∗

+ (𝜔2 − 𝑉𝑠=2)𝑍2 = 0

𝑉𝑠=2 = 2𝜆 ̃𝐴
̃𝐶

+
̃𝐶2 ̃𝐶′2

2𝐶 − 1
2𝐷̃(𝐷̃ ̃𝐶′)′ , 𝐷 = √ ̃𝐴𝐵̃/ ̃𝐶

Correspondance with cubic Horndeski
• 𝑉𝑠=2 ⟶ massless spin 2 in GR with background ̃𝐴, ...
• 𝑉𝑐=1 ⟶ axial perturbations at 𝑐 = 1 in cubic Horndeski with 𝐴, ...
• Both potentials are equal

3 Arbey, A. et al. 2021.



Perturbation setup Schrödinger equations Effective metric

Effective propagation metric

Propagation of
axial perturbations

in cubic Horndeski with
background 𝐴, 𝐵, 𝐶

Propagation of massless
spin 2 in GR with
background ̃𝐴, 𝐵̃, ̃𝐶

Effective metric for axial perturbations

d ̃𝑠2 = ̃𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 = ℱ√Γ𝐵
𝐴 (−Φ d𝑡∗

2 + ΓΦ d𝑟2 + 𝐶 dΩ2)



Perturbation setup Schrödinger equations Effective metric

Specific case of quadratic Horndeski

Disformal transformation

̃𝑔𝜇𝜈 = 𝑐(𝑋)𝑔𝜇𝜈 + 𝑑(𝑋)𝜙𝜇𝜙𝜈

⇒ is it possible to find 𝑐 and 𝑑 such that ̃𝑔𝜇𝜈 and 𝑔𝜇𝜈 are linked this way?
(restricting to quadratic Horndeski)

• 𝑐 = ℱ√Γ𝐵/𝐴 = √𝐹(𝐹 − 2𝑋𝐹𝑋)
• Φ = 𝐴 − 𝑞2𝑑/𝑐 so 𝑑 = 2𝑐𝐹𝑋/(𝐹 − 2𝑋𝐹𝑋)
• Other relations for ΦΓ and 𝐶 are satisfied



Perturbation setup Schrödinger equations Effective metric

Disformal effective metric in quadratic Horndeski

Link between background and perturbations

̃𝑔𝜇𝜈 = √𝐹(𝐹 − 2𝑋𝐹𝑋)(𝑔𝜇𝜈 + 2𝐹𝑋
𝐹 − 2𝑋𝐹𝑋

𝜙𝜇𝜙𝜈)

⇒ axial modes propagate in a metric disformally linked to the background metric!

• If matter is coupled to ̃𝑔𝜇𝜈 , it will see axial modes propagating as in GR:

𝑆 = 𝑆Horn[𝑔𝜇𝜈, 𝜙] + 𝑆𝑚[ ̃𝑔𝜇𝜈, 𝜙]

• In GR both metrics are the same: ̃𝑔𝜇𝜈 = 𝑔𝜇𝜈 ⟶ no problem for Schwarzschild
• Corresponds to a DHOST theory with 𝐹2 = sign 𝐹 and 𝐴1 = 𝐴2 = 0



Perturbation setup Schrödinger equations Effective metric

Summary of results

• Axial modes in cubic Horndeski propagate in an effective metric given by

d ̃𝑠2 = ℱ√Γ𝐵
𝐴 (−Φ d𝑡∗

2 + ΓΦ d𝑟2 + 𝐶 dΩ2)

• In the case quadratic Horndeski (𝐺 = 0), this effective metric is a disformal
transformation of the background metric :

̃𝑔𝜇𝜈 = √𝐹(𝐹 − 2𝑋𝐹𝑋)(𝑔𝜇𝜈 + 2𝐹𝑋
𝐹 − 2𝑋𝐹𝑋

𝜙𝜇𝜙𝜈)

⇒ study the effective metric in order to understand the behaviour of axial modes



Perturbation setup Schrödinger equations Effective metric

Consequences for stability

Constraints on 𝐹
No change of signature between 𝑔𝜇𝜈 and ̃𝑔𝜇𝜈 :

Γ > 0 and Φ > 0

Recover results from the literaturea
a Takahashi, K. and Motohashi, H. 2021.

Change of light cone
• Causality of 𝑔𝜇𝜈 and ̃𝑔𝜇𝜈 might be different
• Similar study for a scalar perturbation by Babichev et ala

a Babichev, E. et al. 2018.

⇒ compute the effective metric for several existing solutions



Application to different black holes
solutions



Stealth solution EGB solution

Effective metric for stealth Schwarzschild

d𝑠2 = −𝐴(𝑟) d𝑡2 + 1
𝐴(𝑟) d𝑟2 + 𝑟2 dΩ2 𝐴(𝑟) = 1 − 𝜇

𝑟

d ̃𝑠2 = √1 + 𝜁⎛⎜
⎝

− 1
1 + 𝜁 (1 −

𝑟𝑔
𝑟 ) d𝑡∗

2 + (1 −
𝑟𝑔
𝑟 )

−1
d𝑟2 + 𝑟2 dΩ2⎞⎟

⎠
,

𝜁 = 2𝑞2𝐹𝑋 = cst , 𝑟𝑔 = (1 + 𝜁)𝜇

Properties
• Corresponds to Schwarzschild BH with 𝑅 = (1 + 𝜁)1/4𝑟 and 𝑇 = (1 + 𝜁)−1/4𝑡∗

• Horizon at 𝑅 = (1 + 𝜁)5/4𝜇, corresponding to 𝑟 = 𝑟𝑔 ≠ 𝜇
• The horizon seen by axial perturbations is displaceda

a Tomikawa, K. and Kobayashi, T. 2021; Langlois, D., Noui, K., and Roussille, H. 2021.



Stealth solution EGB solution

Effective metric for EGB

d𝑠2 = −𝐴(𝑟) d𝑡2 + 1
𝐴(𝑟) d𝑟2 + 𝑟2 dΩ2 𝐴(𝑟) = 1 − 2𝜇/𝑟

1 + √1 + 4𝛼𝜇/𝑟3

d ̃𝑠2 = − 1
𝑟2

√
√√
⎷

𝐴1/2𝛾3
1𝛾2

𝛾3
3

d𝑡∗
2 + 1

𝑟2

√
√√
⎷

𝛾1𝛾3
2

𝐴5/2𝛾5
3

d𝑟2 + √
𝛾1𝛾2

𝐴1/2𝛾3
dΩ2

• 𝛾1 and 𝛾3 are nonzero functions
• 𝛾2 has a zero at 𝑟2 = 3√2𝛼𝜇
• 𝐴 is zero at 𝑟ℎ only



Stealth solution EGB solution

Behaviour at the coordinate singularities

At 𝑟 = 𝑟ℎ

d ̃𝑠2 ∼ −𝑐1(𝑟 − 𝑟ℎ)1/4 d𝑡∗
2 + 𝑐2

(𝑟 − 𝑟ℎ)5/4 d𝑟2 + 𝑐3
(𝑟 − 𝑟ℎ)1/4 dΩ2

⇒ the Ricci scalar is singular at 𝑟 = 𝑟ℎ: curvature singularity at the horizon

At 𝑟 = 𝑟2

d ̃𝑠2 ∼ −𝑐4(𝑟 − 𝑟2)1/2 d𝑡∗
2 + 𝑐5(𝑟 − 𝑟2)3/2 d𝑟2 + 𝑐6(𝑟 − 𝑟2)1/2 dΩ2

⇒ the Ricci scalar is singular at 𝑟 = 𝑟2: another curvature singularity

Property
The axial modes propagate in a metric with naked singularities



Conclusion

• Study of propagation of axial gravitational perturbations in cubic Horndeski
theory

• Computation of the effective metric in which perturbations propagate
• Disformal link between this metric and the background: useful for coupling
with matter

• Structure of effective metric computed for two background solutions
• New behaviour is found: horizon displaced, naked singularities
• Does not necessarily mean these theories are pathological yet



Thank you for your attention!
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