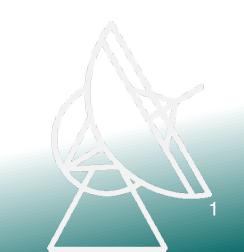
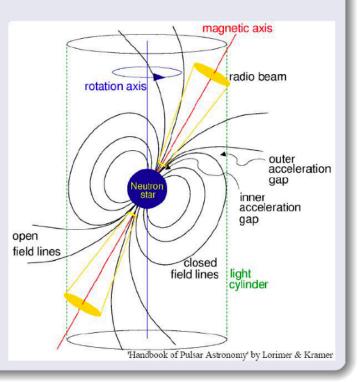
# From pulsar observations to tests of general relativity


#### Gregory Desvignes LESIA / Paris Observatory - MPIfR Bonn LUTH - 12 septembre 2019



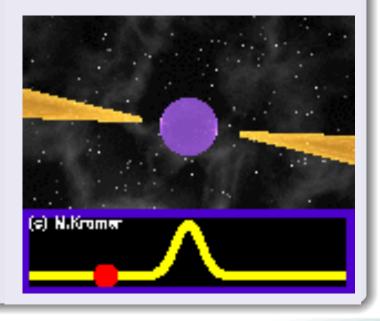









#### Pulsar's characteristics


- Radius ~ 10 km
- Mass: 1.2 2.1 M<sub>☉</sub>
- Surface magnetic field : 10<sup>8</sup> 10<sup>15</sup>G
- Surface temperature : 10<sup>6</sup> K
- Luminosities up to  $10^4 L_{\odot}$
- Radio emission produced at the pulsar's magnetic poles





#### Pulsar's characteristics

- Radius ~ 10 km
- Mass: 1.2 2.1 M<sub>☉</sub>
- Surface magnetic field : 10<sup>8</sup> 10<sup>15</sup>G
- Surface temperature : 10<sup>6</sup> K
- Luminosities up to  $10^4 L_{\odot}$
- Radio emission produced at the pulsar's magnetic poles

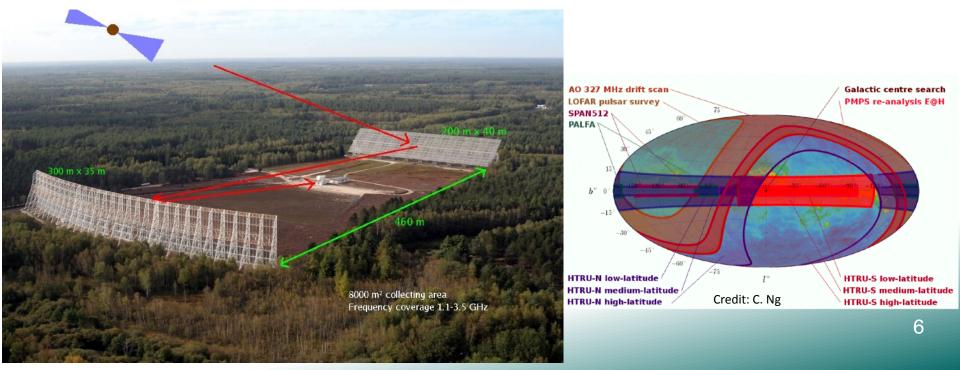




## Part I: Finding new and exotic pulsars with the Nançay Radio Telescope



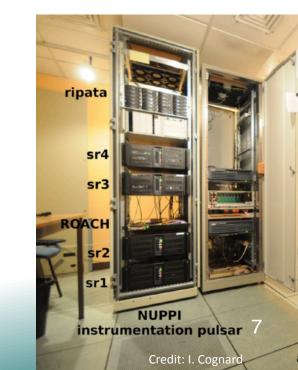
#### Motivations


3 main goals for the proposed survey:

- Find compact binary pulsar (or even triple systems) to perform tests of GR:
- PSR PSR, PSR NS, PSR WD, PSR BH
- Add millisecond pulsars to Pulsar Timing Arrays
- Find more Fast Radio Bursts

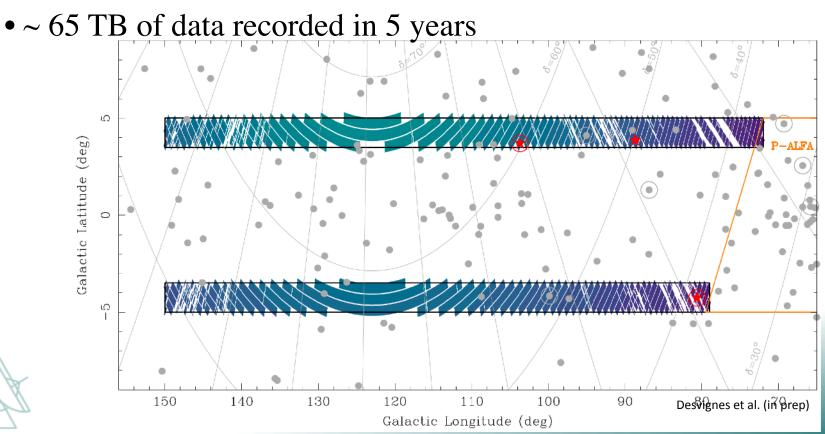



#### The Nançay Radio Telescope


- Northern hemisphere not thoroughly searched at L-band
- Kraus-type radio telescope (94-m equivalent dish) located 1 hr south of Orleans.
- Observing frequency between 1.1 to 3.5 GHz

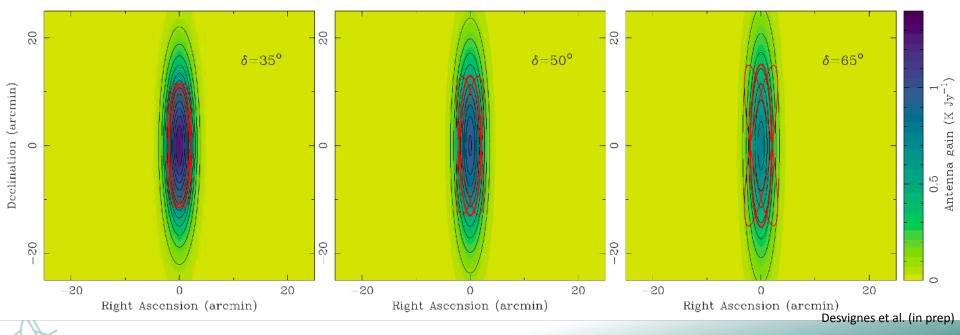


#### The pulsar instrumentation


- A large bandwidth and versatile pulsar backend commissioned in 2011
- Development of a FPGA firmware for ROACH2 hardware (2 GB/s) with UC Berkeley
- Adapt the Green Bank Telescope GPU software for this backend
- Pulsar timing mode, spectrometer mode, baseband recording.






#### The SPAN512 pulsar survey

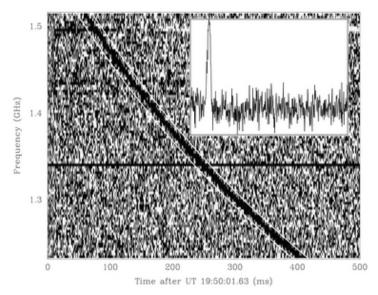
- We proposed in 2012 a ~ 2000 hr to survey the intermediate latitudes for millisecond pulsars and transients (PI Desvignes)
- 18 min scans, 64us, 4bits, 1024 frequency channels between 1.2 and 1.7 GHz



### Study of the beam pattern

- The beam pattern changes as function of declination and hour angle
- This is required to assess the survey sensitivity (thanks to E. Gerard @Paris obs)




### Analysis & results

- Unknown parameters: dispersion by the ISM, spin period, binary -> Dispersion trials, FFT with acceleration searches
- Processing on the IN2P3 and Max-Planck clusters (1 pointing requires processing of ~24 hr on 24 cores)
- 3 new pulsars discovered so far: 2 millisecond pulsars (PSRs J2205+6012, J2055+3837 Guillemot et al. 2019) and one slow pulsar (PSR J2048+4951)

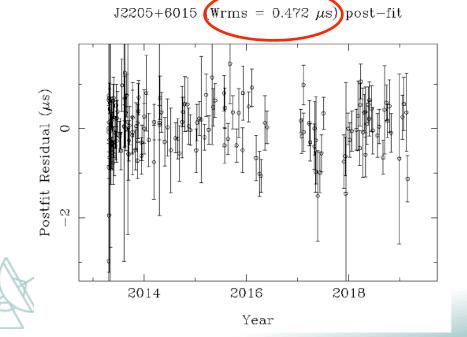


### Analysis & results

• FRB are short duration (ms) radio pulses with extragalactic origin

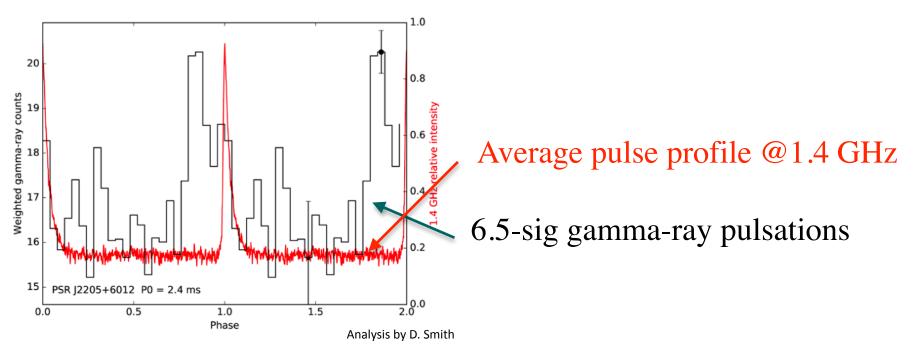


Discovery in 2007 by Lorimer et al.


Can be used as probes for magnetised plasma in host galaxies and IGM

• Analysis for single pulse and Fast Radio Burst (FRB) still underway with matched filtering (PRESTO by Scott Ransom). FRB rate ~  $10^3 - 10^4$  sky<sup>-1</sup> day<sup>-1</sup> (Cordes & Chatterjee 2019) -> ~ 0 - 8 FRBs expected

#### Results: PSR J2205+6012


- Discovered in 2013 and timed with Nançay since then
- Parameters Spin period:  $2.41 \pm 8 \times 10^{-15}$  ms (MJD 56400) Orbital period: ~1.0945513377576 day $\pm 1.1 \mu s$  around a WD Eccentricity: ~  $1 \times 10^{-6}$

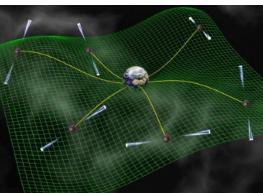
Proper motion:  $5.3266 \pm 0.014576$  mas/yr



- No Post-Keplerian parameters yet
- Good timing precision -> PTA
- We see  $\gamma$ -ray emission

#### Results: PSR J2205+6012




• 10-20% of MSPs with same  $\dot{E} = 4\pi^2 \dot{P}/P^3 = 6.4 \times 10^{34} \text{ erg s}^{-1}$  show gamma-ray pulsations (Smith et al. 2019).

• The gamma-ray peak precedes the radio peak, unusual for young pulsars but typical of the non-aligned MSP

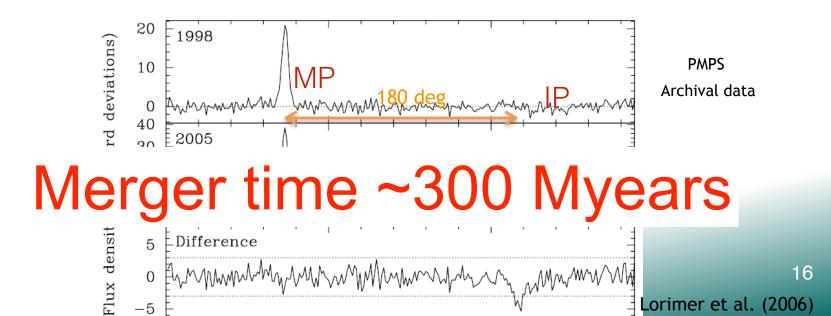
#### Implications for the EPTA

- The European Pulsar Timing Array (EPTA) is a network consisting of the 5 largest radio telescopes in Europe
- Its aim is to detect the low-frequency GWB with an ensemble of pulsars
- Last data release (Desvignes et al. 2016) contained 42 MSPs used for:
- measuring new pulsars masses (Desvignes et al. 2016)
- limit on the isotropic stochastic GWB (Lentati et al. 2015)
- limit on the anisotropic stochastic GWB (Taylor et al. 2015)
- continuous GW from individual sources (Babak et al. 2016)
- Now working towards a new EPTA release with more pulsars and better data with new pulsar backends -> to be added to the International PTA





Part II: PSR J1906+0746 From relativistic spin-precession to mapping a pulsar beam




#### PSR J1906+0746: background

- A DNS discovered in 2004 with Arecibo (Lorimer et al., 2006)
- Young pulsar with spin period of 144 ms that shows large timing noise Orbital period ~ 4hr, 3 PK parameters measured

$${
m M}_p = 1.29 \pm 0.01 \, {
m M}_\odot, {
m M}_c = 1.32 \pm 0.01 \, {
m M}_\odot$$
 van Leeuwen et al. (2015)  
 $\Omega_p \sim 2.23^\circ \, {
m yr}^{-1}, i \sim 43^\circ$ 

• Hints of spin-precession effects showed in the discovery paper



#### PSR J1906+0746: the observations

- The 2005-2009 campaign: Nançay - BON, Arecibo - ASP, GBT - GASP
- The 2012-2018 campaign:

Monthly monitoring with Arecibo - PUPPI

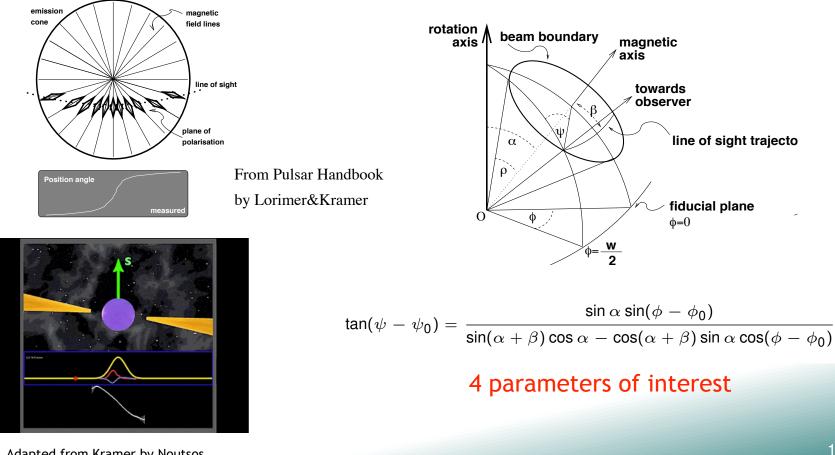
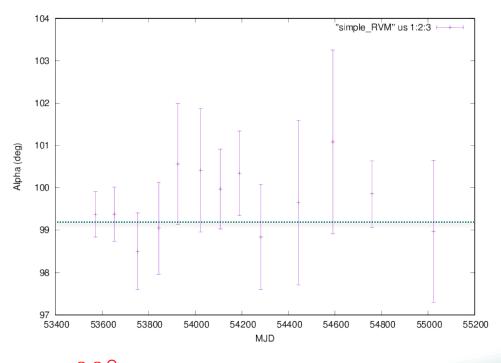

- Calibrate the data (MTM calibration for Nancay)
- Measure and correct for Faraday effect (rotation of the plane of linear polarisation as a function of frequency)  $RM = 152 \pm 1 \text{ rad m}^{-2}$



Image from Wikipedia

#### The rotating vector model (RVM)

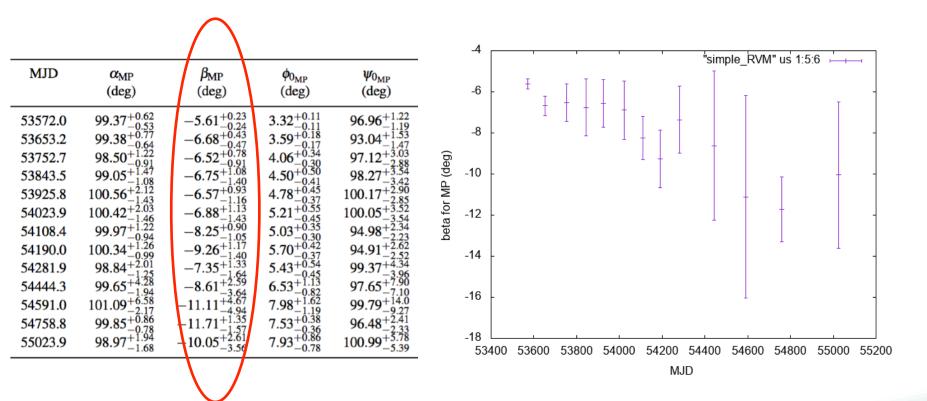

The standard model to interpret the position angle of the linear polarisation is the RVM by Radhakrishnan & Cooke (1969). Hence the correction for Faraday rotation!



Adapted from Kramer by Noutsos

#### Fitting the RVM to the early data

|                                                                                                                       | $\bigcap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MJD                                                                                                                   | α <sub>MP</sub><br>(deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\beta_{MP}$ (deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\phi_{0_{\mathrm{MP}}}$<br>(deg)                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\psi_{0_{\mathrm{MP}}}$<br>(deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 53572.0<br>53653.2<br>53752.7<br>53843.5<br>53925.8<br>54023.9<br>54108.4<br>54190.0<br>54281.9<br>54444.3<br>54591.0 | $\begin{array}{c} 99.37\substack{+0.62\\-0.53}\\ 99.38\substack{+0.64\\-0.64}\\ 98.50\substack{+1.22\\-0.91}\\ 99.05\substack{+1.47\\-1.08}\\ 100.56\substack{+2.12\\-1.48}\\ 100.56\substack{+2.12\\-1.46}\\ 99.97\substack{+1.22\\-0.94}\\ 100.34\substack{+1.26\\-0.99\\-0.94}\\ 100.34+1.26\\-0.99\\-0.94\\100.34\substack{+1.25\\-0.94\\-1.25\\-1.94\\101.09\substack{+6.58\\-1.94\\101.09\substack{+6.58\\-0.217\\-0.94\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95\\-0.95$ | $\begin{array}{r} -5.61\substack{+0.23\\-0.24}\\ -6.68\substack{+0.43\\-0.47}\\ -6.52\substack{+0.78\\-0.91}\\ -6.75\substack{+1.08\\-1.40}\\ -6.57\substack{+1.08\\-1.40}\\ -6.57\substack{+0.90\\-1.16}\\ -6.88\substack{+1.13\\-1.43}\\ -8.25\substack{+0.90\\-1.05\\-9.26\substack{+1.17\\-1.40}\\ -7.35+1.33\\-1.64\\-1.59\\-3.64\\-11.11\substack{+4.67\\-4.94\\-3.54\\-1.43\\-3.54\\-1.43\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.54\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-3.55\\-$ | $\begin{array}{c} 3.32 \substack{+0.11 \\ -0.11} \\ 3.59 \substack{+0.17 \\ -0.30} \\ 4.06 \substack{+0.30 \\ -0.30} \\ 4.50 \substack{+0.50 \\ -0.41} \\ 4.78 \substack{+0.45 \\ -0.41} \\ 5.21 \substack{+0.55 \\ -0.45} \\ 5.03 \substack{+0.35 \\ -0.30} \\ 5.70 \substack{+0.45 \\ -0.45} \\ 5.03 \substack{+0.54 \\ -0.45} \\ 6.53 \substack{+1.62 \\ -0.82} \\ 7.98 \substack{+1.62 \\ -1.19} \\ 7.98 \substack{+1.62 \\ -1.98 \\ -1.98 \\ -1.98 \end{array}$ | $\begin{array}{c} 96.96\substack{+1.22\\-1.19}\\ 93.04\substack{+1.53\\-1.47}\\ 97.12\substack{+3.03\\-2.88}\\ 98.27\substack{+3.54\\-3.54}\\ 100.17\substack{+2.90\\-3.54}\\ 100.05\substack{+3.52\\-3.54}\\ 94.98\substack{+2.34\\-2.23}\\ 94.91\substack{+2.62\\-2.52}\\ 99.37\substack{+4.34\\-3.96}\\ 97.65\substack{+7.90\\-7.10}\\ 99.79\substack{+14.0\\-9.27\\-3.96}\\ 97.65\substack{+7.90\\-7.10}\\ 99.79+14.0\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.92\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-9.27\\-3.96\\-3.92\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3.96\\-3$ |
| 54758.8<br>55023.9                                                                                                    | $99.85_{-0.78}^{+\tilde{0}.86} \\98.97_{-1.68}^{+1.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-11.71^{+1.35}_{-1.57}\\-10.05^{+2.61}_{-3.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7.53\substack{+0.38\\-0.36}\\7.93\substack{+0.86\\-0.78}$                                                                                                                                                                                                                                                                                                                                                                                                           | $96.48^{+2.41}_{-2.33}\\100.99^{+5.78}_{-5.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



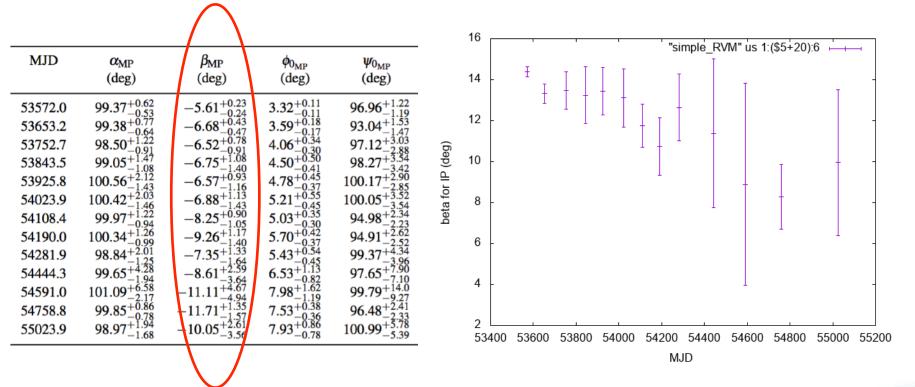

 $\alpha \sim 99^{\circ}$  -> orthogonal rotator



Max-Planck-Institut für Radioastronomie

#### Fitting the RVM to the early data, <2011




Our line of sight is moving away from the MP magnetic pole



Max-Planck-Institut für Radioastronomie

#### Fitting the RVM to the early data, <2011

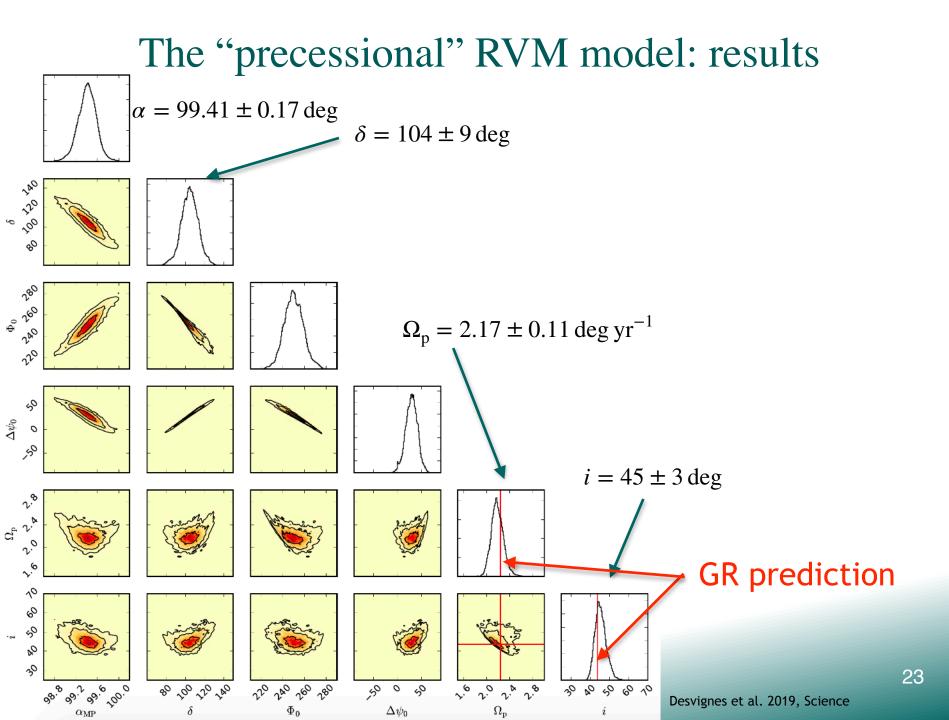
$$\beta_{\rm IP} = \alpha_{\rm MP} + \beta_{\rm MP} - \alpha_{\rm IP}$$



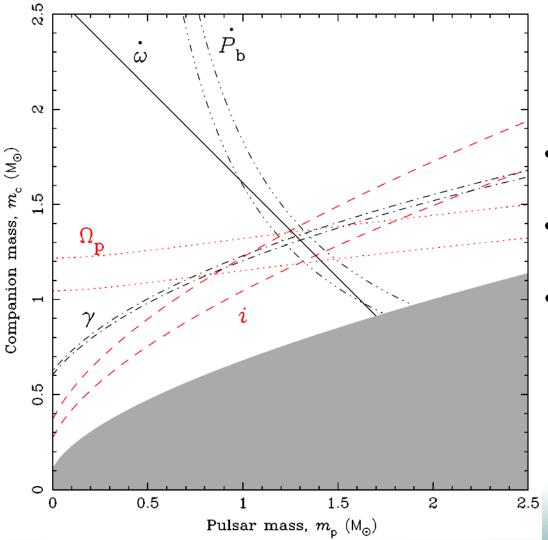
Our line of sight is getting closer to the IP magnetic pole



Max-Planck-Institut für Radioastronomie


## The "precessional" RVM model for polarisation

- 'Precessional' RVM introduced by Kramer&Wex (2009)
- Fit the RVM as function of time to get the full geometry of the system
- 6 main parameters + 1 additional phase offset per epoch (47)

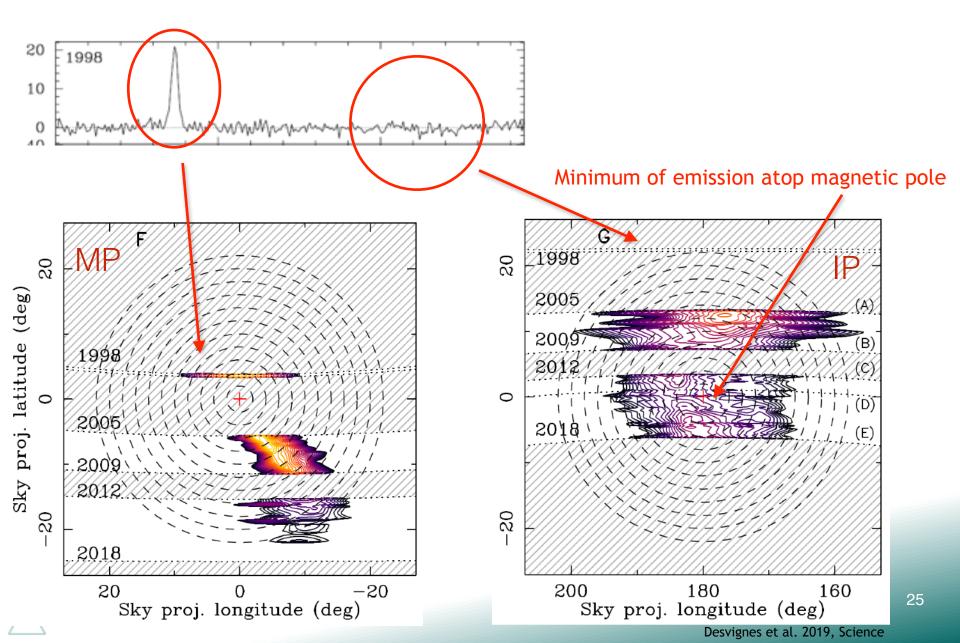

$$\alpha, \delta, \Phi_p, \Delta \psi, i, \Omega_p, \phi_{i=1..41}$$

- Precession rate and inclination angle can be fixed to GR values (or set free)
- No ambiguity in inclination angle
- To map the 53-D problem, I developed modelRVM using nested sampling tools like MultiNest and PolyChord to explore the parameter space

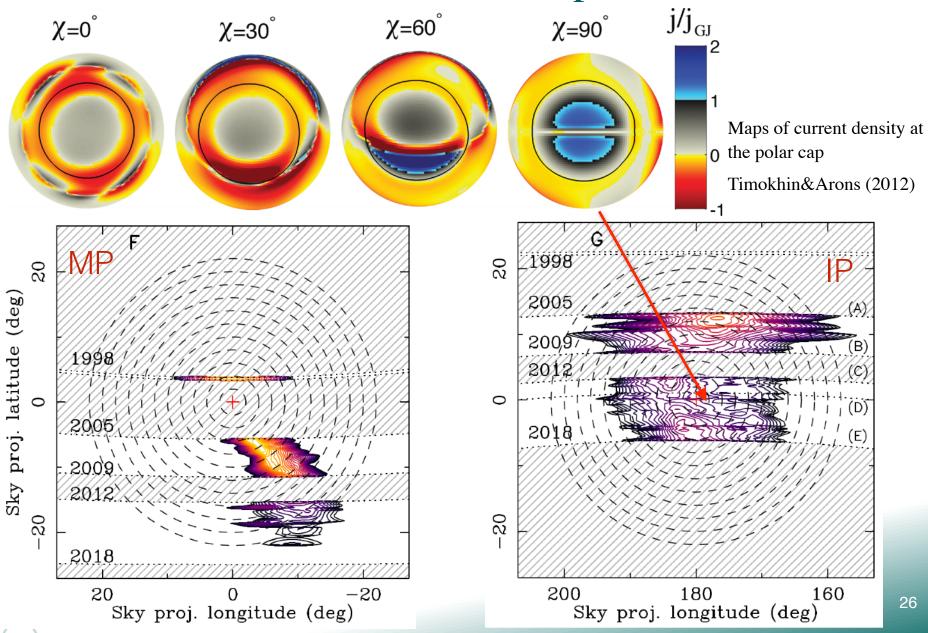




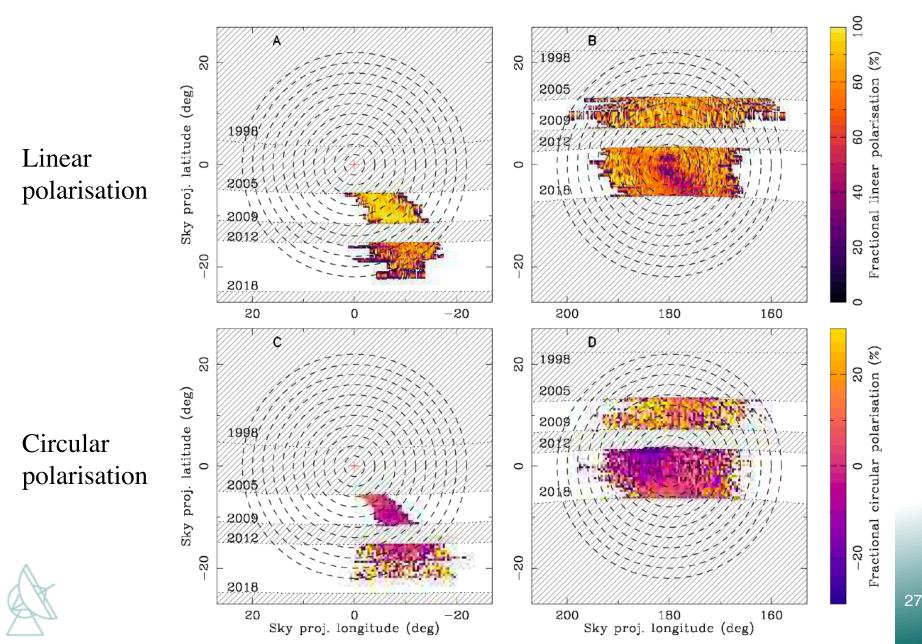
#### The mass-mass diagram



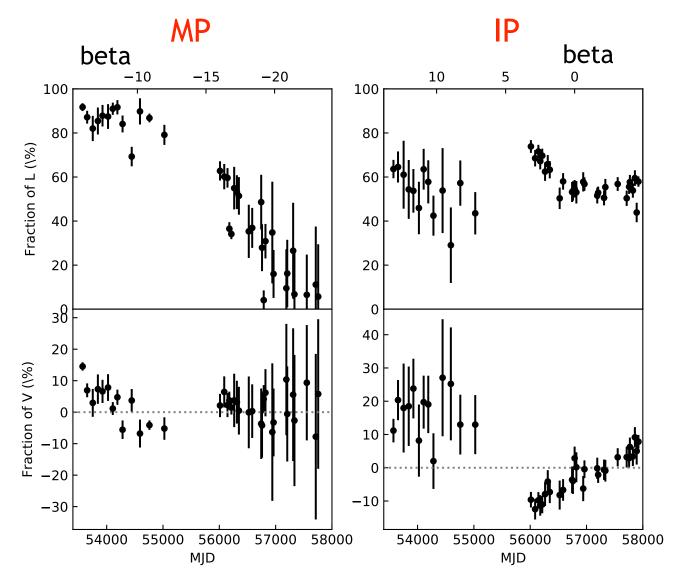

$$\dot{Pb}, \dot{\omega}, \gamma$$


from Leeuwen et al. 2015

- 2 PK parameters gives the masses of the system
- Each additional parameter provides a test of GR
- $\Omega_p = 2.17 \pm 0.11 \text{ deg yr}^{-1}$  provides the best constraint on relativistic spin-precession

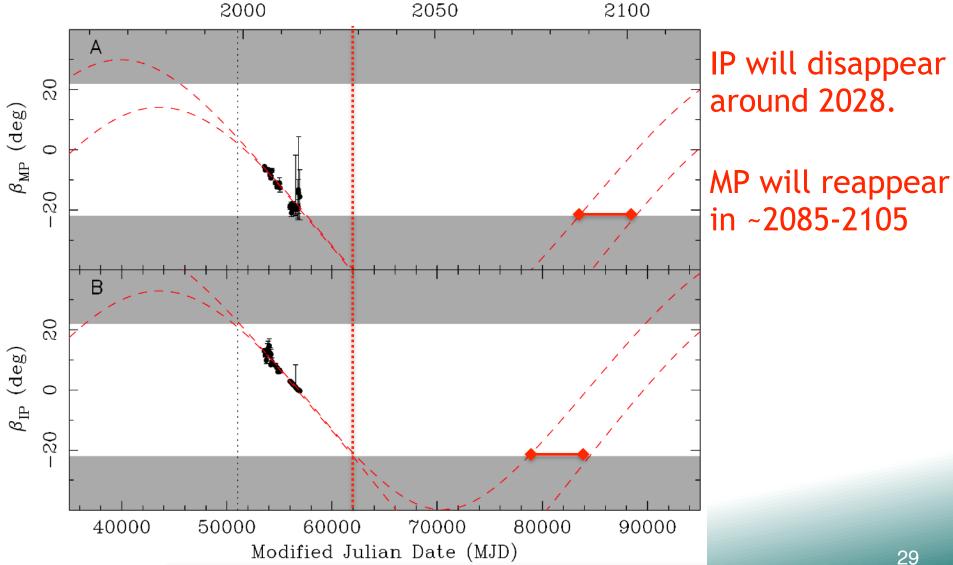

#### Emission map




#### Emission map



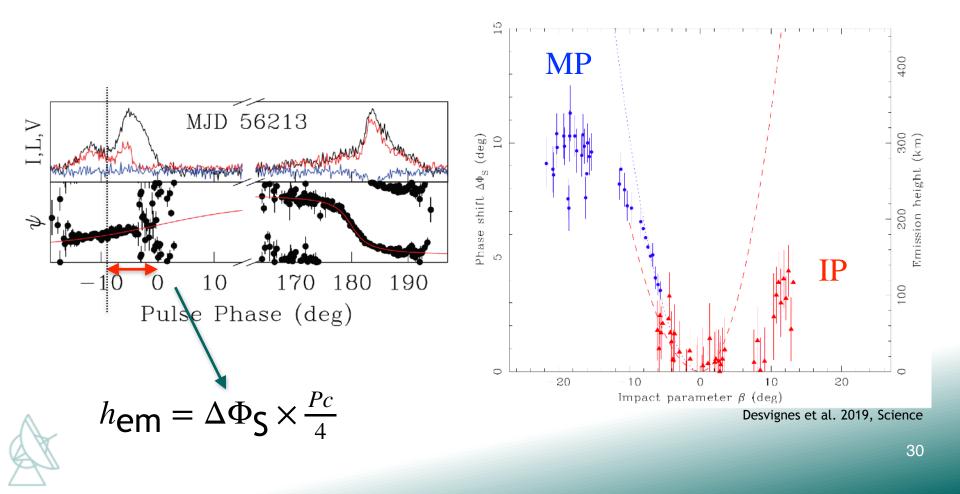
#### Emission map: polarisation

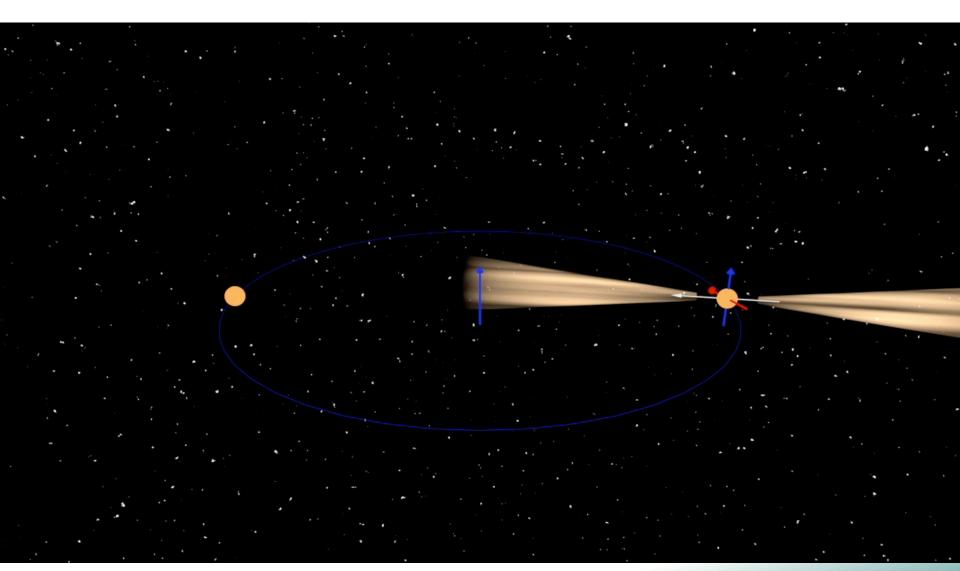



#### Emission map: average polarisation






#### Predictions for the pulses' s visibility

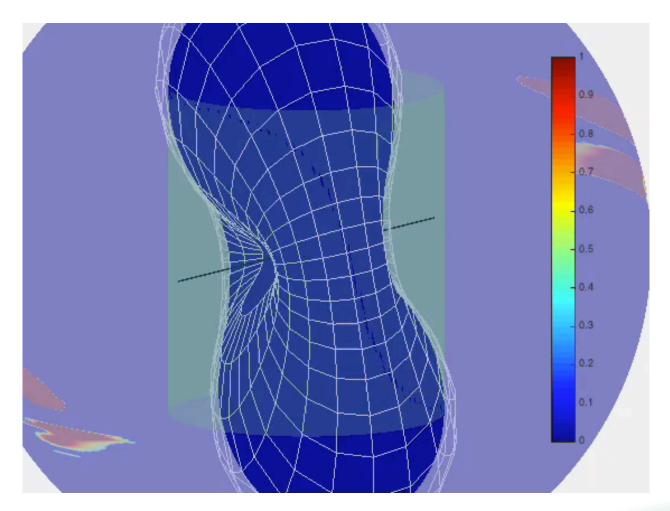



Desvignes et al. 2019, Science

#### Emission heights

Blaskiewicz et al. (1991) interpreted the longitude delay  $\Delta \Phi_S$  as caused by (to the first order) special relativistic effects such as aberration and retardation assuming the emission originates from an altitude h.






#### Results

- Large relativistic spin-precession effects -> Our l.o.s crossed the IP magnetic pole
- Beam is more elongated than previously thought
- Drop of intensity and linear polarisation atop the magnetic pole
- Two additional tests of GR: precession rate and inclination angle Best constraint (5%) on spin-precession rate.
- Ambiguity in inclination angle is removed
- IP should disappear around 2028. MP will reappear in 2062-2090.
- Can constrain the relativistic treatment of pulsar polarisation
- Beam shape and beaming fraction will help on refining the pulsar population and DNS merger rate



#### Future work: going back to the polar cap







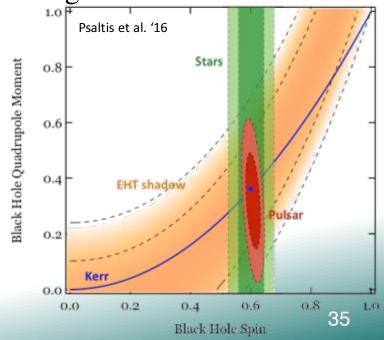
 $R_{\rm LC} \sim 6875 \, {\rm km}$ 

## Part III: Exploring the Galactic Centre with radio pulsars



#### Motivations

Based on high star formation rate and density of massive stars, the GC is expected to harbour many pulsars (Wharton et al. 2012).


Observing/Timing a pulsar in close orbit around Sgr A\* has the potential to:

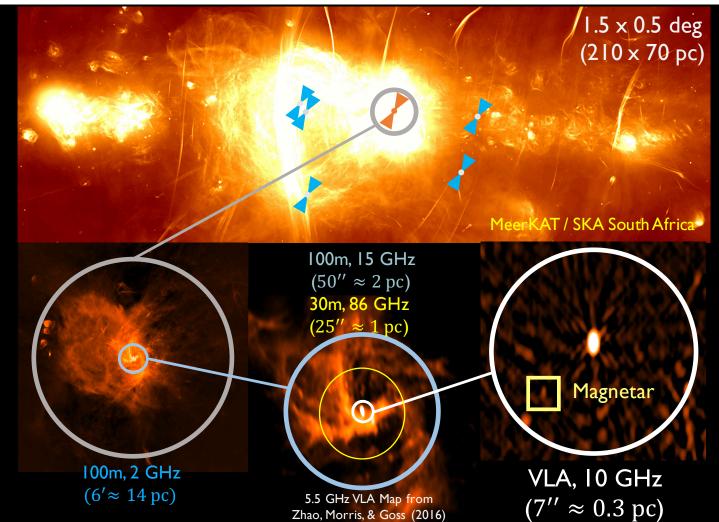
- Allow the study of the GC environment.
- Perform precise strong-field gravity tests as large relativistic effects are expected on the orbital motion and signal propagation.

#### Ranging capability of pulsar timing

 $\delta t = 1 \,\mathrm{ms} \, \longrightarrow \, \delta r = 300 \,\mathrm{km} \, \longrightarrow \, 0.00025 \,\mu\mathrm{as}$ 

- Measure the Black Hole properties with high precision: mass, spin, quadrupole moment.
  - Combine near- and far-field tests.
  - Provide input parameters to interpret an EHT image on Sgr A\*.

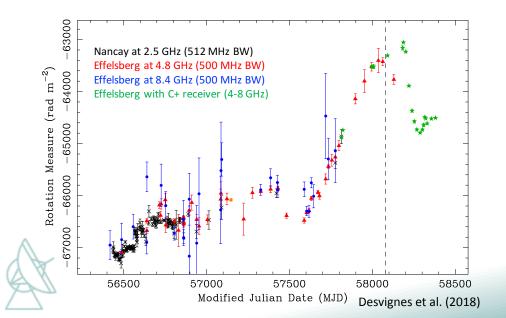


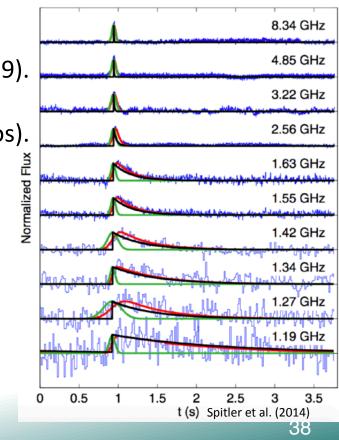

#### Pulsars in the GC

- Before 2013, only 5 pulsars were known within 0.5 deg of Sgr A\*.
- April 2013: Detection of a radio magnetar 3" from Sgr A\* (Eatough et al. 2013), following detections of X-ray pulsations with NuStar.



#### Pulsars in the GC


- Before 2013, only 5 pulsars were known within 0.5 deg of Sgr A\*.
- April 2013: Detection of a radio magnetar 3" from Sgr A\* (Eatough et al. 2013).




Plot by R. Wharton

#### The GC magnetar

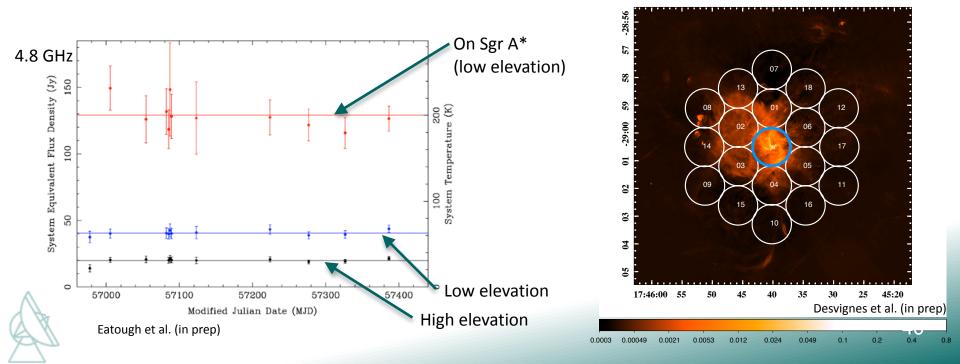
- With the GC magnetar we can:
  - Constrain the B-field in the Bondi-Hoyle accretion region (Eatough et al. 2013).
  - Scatter-broadening of pulsars much less than expected (Spitler et al. 2014).
  - Precisely measure its position and proper motion (Bower et al. 2016) w. VLBA
  - Time variations of the interstellar medium properties (Desvignes et al. 2018).
  - Study the single pulse emission (Wharton et al. 2019).
- 2019: Follow-up of the other 5 GC pulsars (PI Noutsos).





### Further complimentary GC searches

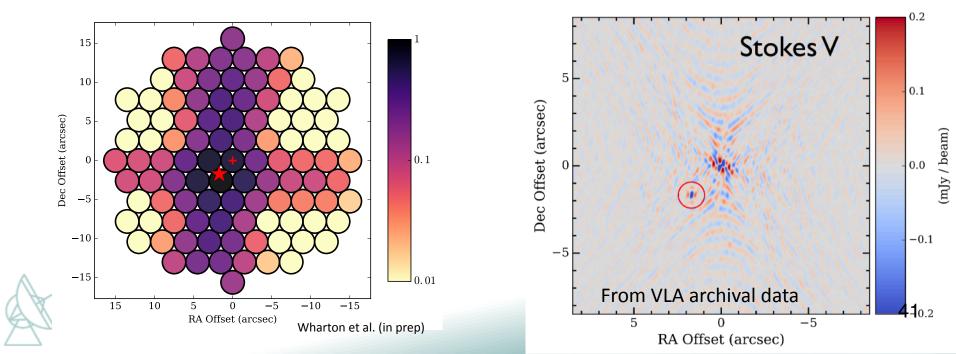
- The GC magnetar is not close enough to Sgr A\* for constraining the BH properties.
- Further deep searches are warranted to find this elusive system.


| Conflictingobser | Observing frequency                            | Low       | High         |
|------------------|------------------------------------------------|-----------|--------------|
| Conflict         | Pulse dispersion smearing ( $\propto f^{-2}$ ) | ×         | $\checkmark$ |
|                  | Pulse scatter broadening ( $\propto f^{-4}$ )  | ×         | $\checkmark$ |
|                  | Pulsar spectra ( $\sim f^{-1.7}$ )             | 1         | ×            |
|                  | Intense GC background                          | ×         | $\checkmark$ |
|                  | Integration time                               | Short Lon |              |
|                  | Signal/Noise                                   | ×         | $\checkmark$ |
|                  | Possible binary motion                         | 1         | ×            |

These effects impose on using different observatories/frequencies and search strategies.

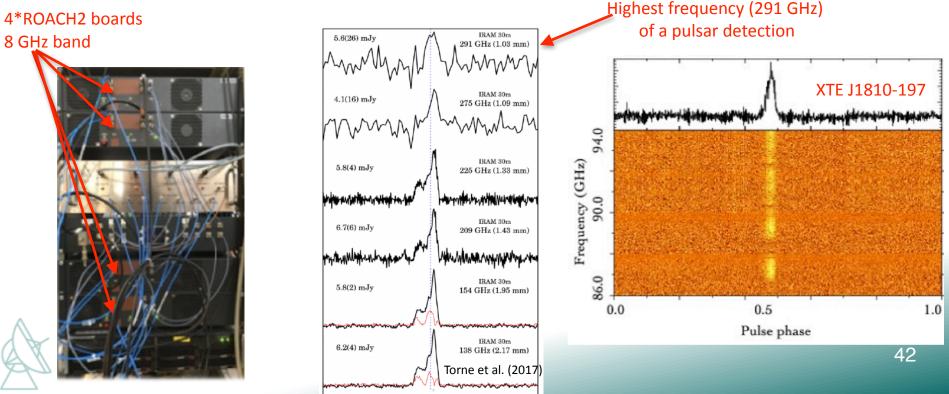


### Searching with Effelsberg


- Effelsberg monitoring campaign on Sgr A\* since 2012 at 4.85, 8.35, 14 GHz. (PIs G. Desvignes, R. Eatough)
- No good pulsar candidates but we provide new measurements of the GC background -> Previous surveys vastly underestimated the background and led to overoptimistic constraints on pulsar population (Eatough et al., in prep).
- New C-X band receiver and pulsar backend (PSRIX2 4-8 GHz) commissioned in 2018. Started a new survey of GC region (Desvignes et al, in prep).

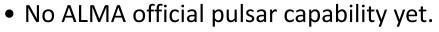


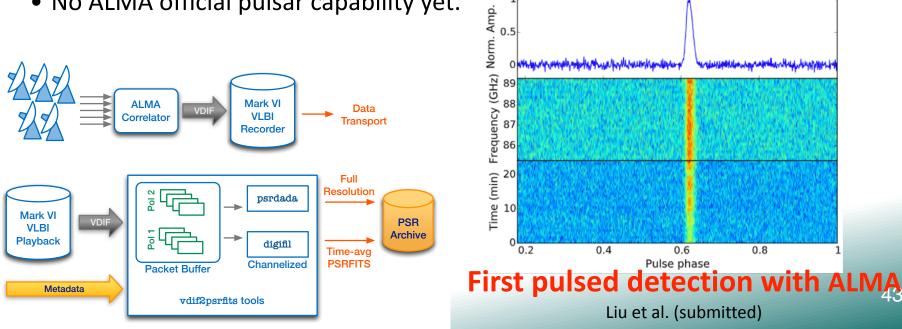
#### Searching with Karl G. Jansky VLA


Three different GC search projects (PI Wharton):

- Phased array search (D~100 m), 8-12 GHz, 2\*6.5 hr: on-going processing.
- Fast imaging, 2-4 GHz: on-going processing (~13 000 beams to reconstruct).
- Imaging in Stokes V, 2-4 GHz: on-going observations




### Searching with IRAM 30-m telescope


- To further mitigate ISM effects, push to even higher observing frequencies.
   -> IRAM 30m telescope (PI P. Torne)
- Required installation of a dedicated pulsar backend (4 ROACH2 boards).
- Pulsed detection of the GC magnetar up to 291 GHz (Torne et al. 2017).
- Study of normal pulsars and other radio magnetars.



#### Searching with EHT - ALMA

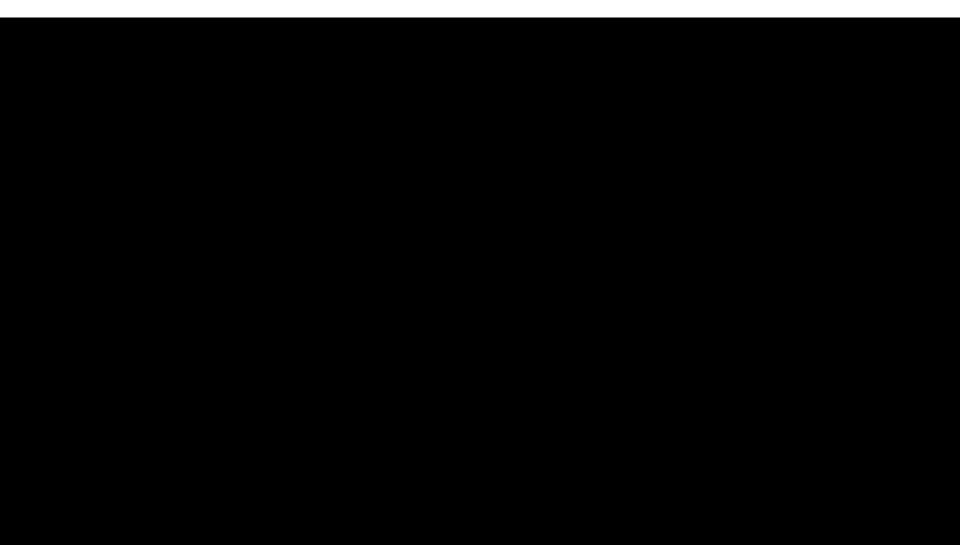
- Under the umbrella of the EHT we search the data for pulsars
- Dedicated software developed as part of NSF-funded ALMA DS to allow for pulsar, magnetar, transient observing mode (PI Jim Cordes, Cornell)
- The ALMA 37\*12m antennas are phased up thanks to the APP and the data are recorded with the Mark6 data recorder developed for EHT
- Successful tests on the Vela pulsar in January 2017 at 86 GHz (40 min).



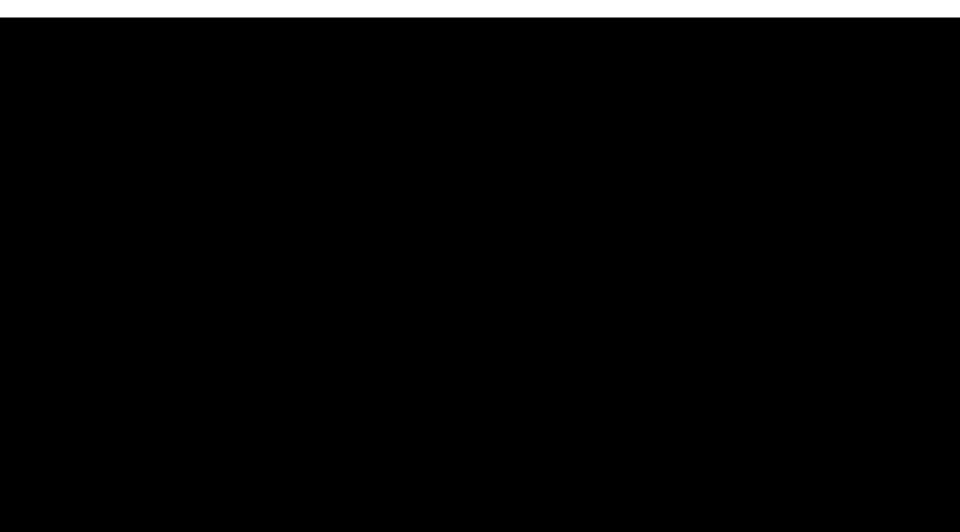


### Searching with EHT data

• EHT 2017:


8 telescopes: phased-ALMA, LMT (32m), PV APEX, JCMT, SMA, SMT, SPT 32 Gb/s, 3.5 PB raw data 5 nights with excellent weather

- EHT 2018:
   8 same telescopes + GLT
   64 Gb/s, 5.5 PB raw data
   4 nights with OK weather
- No observations in 2019 due to various telescopes issues
- NOEMA and KP should join for the 2020 campaign, adding 345 GHz observations


#### Current focus on EHT2017 data



#### Searching with EHT - ALMA



## Searching with EHT & GMVA data



#### **Conclusion & Future Prospects**

- No discovery yet of a close pulsar-Sgr A\* binary. But the prospects of finding this object warrant the need for continuous pulsar searches with several ongoing projects & more search techniques to be applied.
- Set constraints (if no discovery) on the GC pulsar population and stellar evolution by the end of the BHC project from current surveys.
- The magnetar continues to provides interesting constraints on the GC environment.
- Looking at phasing-up EHT and GMVA data from the most sensitive stations (ALMA, LMT, PV) for increased sensitivity.
- Interests for the next-generation facilities:
  - ALMA Band 1.
  - The MPIfR S-Band system for MeerKAT. See Vivek's presentation.
  - The ngVLA (next-generation VLA; see Astro2020 white paper)

