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PART I Analytic and Geometric Properties of the
Kerr Solutions

1 Introduction

The Kerr solutions (Kerr 1963 )and their electromagnetic generalizations
(Newman et al. 1965) form a 4-parameter family of asymptotically flat solutions
of the source-free Einstein-Maxwell equations, the parameters being most con-
veniently taken to be the asymptotically defined mass M, electric charge Q, and
magnetic monopole charge P, together with a rotation parameter @, which is such
that (in units of the form we shall use throughout, where the speed of light ¢ and
Newton’s constant G are set equal to unity ) the asymptotically defined angular
momentum J is given by

J=Ma
The parameters may range over all real values subject to the restriction

which must be satisfied if the solution is to represent the exterior to a hole rather
than naked singularity. It turns out (Carter 1968a) that the solutions all have the
same gyromagnetic ratios as those predicted by the simple Dirac theory of the
electron, as the asymptotic magnetic and electric dipole moments cannot be
specified independently of the angular momentum but are given, in terms of the
same rotation parameter, as Qa and Pa respectively.

The solutions are all geometrically unaltered by variations of P and Q provided
that the sum P? + Q? remains constant, and since it is in any case widely believed
that magnetic monopoles do not exist in nature, attention in most studies is re-
stricted to the 3-parameter subfamily in which P is zero. This 3-parameter sub-
family, and specially the 2-parameter pure vacuum subfamily in which Q is also
zero, has come recently to be regarded as being at least potentially of great
astrophysical interest, since the Kerr solutions do not merely represent the only
known stationary source-free black hole exterior solutions: they are also widely
believed (for reasons which will be presented in Part I of this course) to be the
only possible such solutions.

We shall devote the whole of Part I of the present lecture course to the
derivation and geometric investigation of these Kerr solutions. In a strictly logical
approach, Part II of this course (which will consist of a general examination of
stationary black hole states with or without external sources) should come first,
but it is probably advisable for a reader who is not already familiar with the sub-
ject to start with Part I since the significance of the reasoning to be presented in
Part I will be more easily appreciated if one has in mind the concrete examples
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62 B. CARTER

described in Part 1. For the same reason many readers may find it easier to
appreciate the accompanying lecture course of Hawking if they have first become
familiar with the examples described here, although only the final stages of
Hawking’s course actually depend on the results presented here, the bulk of it
being logically antecedent to both Part I and Part I of the present course. This
present lecture course is intended to serve both logically and pedagogically as

an introduction to the immediately following course of Bardeen and hence also
(but less directly) to the subsequent courses in this volume.

2 Spheres and Pseudo-Spheres

under an action of the rotation group SO(3) whose surfaces of transitivity are
2-dimensional. The metric on any one of these 2-surfaces must have the form

dsd =r? (d6? + sin20dy?) (2.1)

in terms of a suitably chosen azimuthal co-ordinate 6 running from O to 7, and a
periodic ignorable co-ordinate ¢ defined modulo 2w, where the scale factor r is
the radius of curvature of the 2-sphere. In what follows we shall frequently find
it convenient to use the equivalent alternative form

ds2=r? dp’ 2N .2
s=r?| s (L i 22)

expressed in terms the customary alternative azimuthal co-ordinate
K= cos@ (2.3)

running from —1 to +1. See Figure 2.1.

A space-time manifold .# is said to be pseudo-spherically symmetric if it is
invariant under an action of the 3-dimensional Lorentz group whose surfaces of
transitivity are timelike and 2-dimensional. The metric on one of these 2-surfaces
can be expressed in a form analogous to (2) as

2

d.
ds% = —s? 0 jx2 — (1 —x?)dt? 2.4)

where s is the radius of curvature and where the co-ordinate ¢ is ignorable.

The two simple and familiar metric forms ds3 and ds?2 illustrate a feature
which will crop up repeatedly in the present course, that is to say they both have
removable co-ordinate singularities. The spherical form (2.2)is obviously singular
at 4 = +1; moreover we cannot remove this singularity simply by returning to the
form (2.1) in which the infinity is eliminated only at the price of introducing an
equally undesirable vanishing determinant which will of course lead to an infinity
in the inverse metric tensor. We can cure the singularity and show explicitly that
the space is well behaved at the poles (as we know it must be by the homogeneity)
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Figure 1. Figure 1a shows a plan of a timelike 2-section, in which the spherical co-ordinates
0, v are held constant, of the space time manifold of a spherical collapsing star which
occupies the part of space time marked by horizontal shading. Locuses on which r is con-
stant are marked by dotted lines and null lines are marked by continuous lines. The horizon
J#* is indicated by a heavy continuous line and the region outside the domain of outer
communications is marked by diagonal shading. Figure 1b shows the extrapolation back
under the group action of the pseudo-stationary empty outer region of Figure 1a. The past
boundary marked by a heavy dotted line would become the horizon 5#~ in an extended
manifold. (See Part II, Section 1)

only by giving up the use of the ignorable co-ordinate . Thus for example we can
cure the singularity at the north pole u = 1 by introducing Cartesian type co-
ordinates x, y defined by

N |
=Y — sin ¢ (2.5)
1+u
1 — 2
y= 2r——‘—l— cos (2.6)
1+u

to obtain the conformally flat form

dx? +dy?
ds? = ———— 2.7
SO x2 +y2 ( )

1+
4r?
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which is well behaved everywhere except at the south pole. It is of course im-
possible to obtain a form which is well behaved on the whole of the 2-sphere at
the same time (see Figure 2.1.).

Let us now consider the algebraically analogous singularities at x = £1 in the
pseudo-spherical metric ds2. These singularities are of a geometrically different
nature since the metric is well behaved with the same signature, on both sides of
the singularities i.e. both in the static regions with |x | > 1 and in the regions
where the ignorable co-ordinate is spacelike |x [<1. (In contrast with the
spherical metric which has the right signature only for |u | < 1.) We can link the

North Pole . aa:-+

Figure 2.1. The 2-sphere. The light dotted lines represent trajectories of the Killing vector
3/d3¢.

well behaved domains x > 1 and —1 <x < 1 by a co-ordinate patch extending
right across the divisions x = £1, by introducing new co-ordinates

—-X i
'r=—I RS e ! (2.8)
A=|1-—x?|r e (2.9)

which leads to the form

2
ds2 =2 {‘% — )\2dr2} (2.10)

in which the new co-ordinate 7 is ignoreable. This form is well behaved over the
whole of the region A > 0 including the loci A7 = £ 1 which correspond respec-

tively to the divisions —x = 1 in the original system (2.4). Moreover it can easily
be seen that these loci are in fact null lines. The situation can be visualized most
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easily in terms of null-co-ordinates u, v which we introduce by the defining
relations

1
U=r1 +X (2.11)
1
v=T— (2.12)
which leads to the form
dudv
ds,2< = —4S2 m- (2.13)

(whose u and v are restricted by the condition u — v > 0) in which the divisions
x = 1 are represented by the lines u = 0 and v = O respectively.

The relationship between the co-ordinate patches (2.13) (which is equivalent
to (2.10) with A > 0) and the co-ordinate patches of the form (2.7)is shown in
the conformal diagram of Figure 2.2a. This is the first example of a technique,
which we shall employ frequently, of representing the geometry of a timelike
2-surface on the plane of the paper, in a manner which takes advantage of the
fact that any such metric is conformly flat and thus can be expressed in the
canonical null form ds? = Cdudv where C is a conformal factor. The method
consists simply of identifying the null co-ordinates u and v with ordinary
Cartesian co-ordinates on the paper which conventionally are placed diagonally
so that timelike directions lie in a cone of angles within 45 degrees of the
vertical. There is nothing unique about such a representation since there is a
wide choice of canonical null form preserving transformations in which the co-
ordinates u, v are replaced respectively by new co-ordinates u™®, v* of the form
u* =u*(u), v* = v*(v) and in which the conformal factor C is replaced by
C* = C(du*/du)(dv*/dv). This freedom can be used to arrange for the co-
ordinate range u*, v* to be finite even if the original co-ordinate range is not
(e.g. by taking u™ = tanh u, v* = tanh v) thereby making it possible to represent
an infinite timelike 2-manifold in its entirety on a finite piece of paper.

The co-ordinate patch of Figure 2a with the spacially homogeneous form
(2.10) is in fact still incomplete, as would have been expected from the fact that
starting from the time symmetric form (2.4) one could have extended into
the past instead of the future by replacing ¢ by —¢ in the transformation equations
(2.8)and (2.9). We can obtain a new form which covers both extensions by
setting

u = tan— ) (2.14)

vV
v=—Ccot— (2-15)
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which leads to the new null form

ds? = —s? {1 + tan> -U—;—K} dudv (2.16)

In terms of these co-ordinates (which can both range from —ee to oo subject to
the restriction —m < U — V <) the entire co-ordinate range of u and v subject
tou + v <0, i.e. the entire range of A, 7 subject to A > 0, is covered by the range

2.2a

Figure 2.2 Conformal diagram of the 2-dimensional pseudo-sphere. In Figure 2a the light

dotted lines represent trajectories of the Killing vector 3/a¢ and the heavy lines represent

the corresponding non-degenerate Killing horizons. In the extended diagram of Figure 2b
the light dotted lines represent trajectories of the Killing vector 3/387, and the double lines
represent the corresponding degenerate Killing horizons.

0< V< 2m, and —m < U <. The situation is illustrated in Figure 2b. The mani-
fold in this figure is geodesically complete and hence maximal in the sense that
no further extension can be made. The null form (2.16) covering this maximal
extension can be converted to an equivalent static form by introducing co-ordinates
X, T defined by

Uu-v

X = tan ——— (2.17)
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T= (2.18)

which gives the maximally extended static form

2

1+ X2 (1 +X2)dT? (2.19)

2 _ .2
dsy =+s

in which X and T can range from —oo to o without restriction.

Looking back from the vantage point of this complete manifold we can see
clearly what has been happening. The timelike Killing vector whose trajectories
are the static curves x = constant, | x | > 0 in the system (2.4), becomes null on
the surfaces on which U or V are multiples of 7, these surfaces representing past
and future event horizons for observers who are fixed in that x remains constant
relative to this system. [The past and future event horizon (cf. Rindler 1966) of
an observer being respectively the boundary of the past of his worldline, i.e. the
set of events he will ultimately be able to know of, and the boundary of the
future of his world line i.e. of the set of events which he could in principle have
influenced.] Thus for the Killing vector whose trajectories are the static lines
x = constant, | x | > 0 in the system (2.4), the corresponding event horizons are
the lines on which U and V are multiples of 7. In the extension (2.10) in which
the ignorable co-ordinate ¢ has been sacrificed, there is a new manifest symmetry
generated by the Killing vector whose trajectories are the lines A = constant, and
for the corresponding static observers the event horizons coincide with alternate
horizons of the previous set, specifically the lines on which U + 7 and V are
multiples of 27, In the maximal extension in which the ignorable co-ordinate 7
has in its turn been replaced by T, there is a third non-equivalent Killing vector
field, whose static trajectories are the lines X = constant, and in this case the
corresponding observers have no event horizons.

There is a fairly close analogy between the removable co-ordinate singularities
associated with rotation axes, as exemplified by the case of the ordinary 2-sphere
discussed earlier, and the removable co-ordinate singularities associated with
Killing horizons. Both arise from the inevitable bad behaviour of an ignorable
co-ordinate which is used to make manifest symmetry group action generated by
a Killing vector. The former case arises in the case of a spacelike Killing vector
generating a rotation group action when it becomes zero on a rotation axis, while the
latter arises in the case of a static Killing vector (and also under appropriate
conditions as we shall see later a stationary Killing vector) when it becomes null
on a Killing horizon. Killing horizons can be classified as degenerate or non-
degenerate according to whether the gradient of the square of the Killing vector
is zero or not. In the case of a non-degenerate Killing horizon (as exemplified by
the horizons on which the Killing vector whose trajectories are x = constant) the
relevant Killing vector must change from being timelike on one side to being
spacelike on the other. In the case of a degenerate Killing horizon, the relevant
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Killing vector may be (and in the sample of the Killing vector whose trajectories
are A = constant, actually is ) timelike on both sides of the horizon. We can see in
the example of the pseudo-sphere another phenomenon that will later be shown
to be true in general, namely that non-degenerate Killing horizons of a given
Killing vector field cross each other at what we shall call a Boyer-Kruskal axis, on
which the Killing vector is actually zero, this axis being very closely analogous to
a rotation axis. On the other hand degenerate Killing horizons (which have no
exact analogue in the case of axisymmetry ) continue unimpeded over an un-
bounded range.

Figure 2.3. Sketch of conformal diagram of 2-dimensional pseudo-sphere with the canonical
global topology obtained by identifying points with the same value of X but with values of
T differing by 2« in the maximally extended covering manifold of Figure 2.2b.

Since T'is ignorable, we could construct a new reduced manifold from the
manifold of Figure 2.2b by identifying points with the same values of X but for
which the values of T differ by any arbitrarily chosen fixed p period; the locus of
points at unit spacelike distance from the origin in 3-dimensional Minkowski
space is a manifold of the form obtained in this way where the period of 7' has
the canonical value 27 (see Figure 2.3).

3 Derivation of the Spherical Vacuum Solutions

In this section we shall run rapidly through the steps by which the spherically
symmetric vacuum (both pure vacuum and source free Einstein Maxwell ) solutions
are derived. Thus we start from the condition that the space time manifold under
consideration is invariant under an action of SO (3) which is transitive over 2-
surfaces. Since the rotation group action is necessarily invertible in the sense
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that associated with any point there is a discrete subgroup action—a rotation by
180°—which reverses the senses of the tangent vectors to the surfaces of transitivity,
it follows automatically (cf. e.g. Schmidt 1967, Carter 1969) that the group
action is orthogonally transitive in the sense that the surfaces of transitivity must
themselves be orthogonal to another family of 2-surfaces. Therefore by requiring
that they be constant on these 2-surfaces, we can extend the polar co-ordinate 0, ¢
or equivalently u, ¢ from the individual 2-surfaces to the 4-dimensional manifold
M. 1t follows further that apart from an overall conformal factor 7 (where 7 is
the local radius of the 2-spheres) the space-time will locally have the form of a
direct product of the unit 2-sphere with a certain time-like 2-space, with metric
di? say, so that the overall metric will have the canonical form

du?
7t 1- Nz)d‘Pzi

Since we are only considering stationary spaces in the present course, we can
introduce an ignorable co-ordinate # on the timelike 2-spaces (in fact by the well
known theorem of Birkhoff, the stationary assumption involves no loss of
generality at all in so far as spherically symmetric pure vacuum or electromagnetic
vacuum solutions are concerned). Moreover except in the special case
(which we shall consider later since it is not as irrelevant as is often assumed)
when 7 is constant, we may take the radius r itself as a co-ordinate on the time-
like 2-space. The ¢ co-ordinate can then be fixed uniquely by the requirement
that it be orthogonal to the r co-ordinate. This leads to the canonical spherical
metric form

ds*> =r* {dI* + 1

+(1—p?)de® +——— (.2)

2 2 2
gt | dr*  Asdt
—u A, 77

where A, and Z, are two arbitrary functions of 7 only, and where the factors A,
have been distributed in such a manner as tc cancel out of the expression for the
metric determinant g, so that the ubiquitous volume density weight factor /=g
which appears in so many expressions takes the very simple form

r4
Vet (3.3)

The easiest way that [ know of solving Einstein’s equations in a case like this is
the method described by Misner (1963), which is based on the application of
Cartan type calculus to the differential forms of the canonical tetrad. In this
method the metric is expressed in terms of 4 differential forms w® = wg)dxa,

i=1,2,3,0, which are orthonormal, so that the metric takes the form
ds® = gz P w? (3.4)

where the g(;)(;) are scalar constants which are the components of the standard
Minkowski metric tensor in a flat co-ordinate system. Instead of working with a
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large number of Christofel symbols one works with what will (specially if the
original metric form is fairly simple) be a comparatively small number of
connection forms, 7(‘)(]-) = 7(’)(]-) dx? defined (but not in practice computed) by
the equations

w(')a-,b = 7,(1)(],)1)(0(1)‘z (3.5)
These forms will automatically be symmetric in the sense that if the labelling
indices are lowered by contractions with the Minkowski scalors i.e. setting
YOG = g(,-)(k)y(")@ , then we have they will satisfy

Y@ G) = Y6)G) (3.6)

Moreover the antisymmetrized part of the equation (3.5) can be expressed in
terms of Cartan form language as

doo® = =YDy A (3.7)
and it can easily be seen that the two expression (3.6)and (3.7) together (which
can easily be worked out without using covariant differentiation) can be used to
determine the forms 'y(i)(]-) instead of the computationally more awkward defining
relation (3.4). Furthermore the tetrad components R ;) (x)() of the Riemann
tensor can also be read out without the use of covariant differentiation from
the expression

g(i)(j) = %R(i)(j)(k)(l)w(k) Aw® (3.8)

where the curvature two-forms O(i)(]-) =9® (Hab dXx° N dx? are given (as can easily
be checked by differentiating (1) and using the defining relation w(j)a[ bic] =
%Rabcdw(i)a by
6Dy =dr Dy + 10w AN B (3.9)
The tetrad components of the Ricci tensor are obtained simply by contracting
Raoyg) =R®0n 00 | (3.10)
and if required the co-ordinate form is given by
R, =R(i)(j)‘-0(i)a‘-0(j)b- _ (3.11)
In the present case the obvious tetrad of forms consists of

\
w(l) - dr
¥

v
w(2) = du

V1 —u? - (3.12)
Ww® = r\/IT[ﬁ dy
w® = rT'Ardt

)4 /
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and a straightforward calculation on the lines described above shows that the
only solution of the pure Einstein vacuum equations

R;=0 (3.13)

are given (after use of co-ordinate scale change freedom to achieve a standard
normalization ) by

Z,=r (3.14)
A, =r% —2Mr (3.15)

where M is a constant. The corresponding values of the curvature forms may be
tabulated as

M M
M M
03,y = 3 WM A w® 03y =2 3 WOANL® b (3.16)

0Oy =22 WO AW® 4O, =i‘_§ 0@ A ©
r

The comparative conciseness of this array, from which, if desired, all 20 of the
ordinary Riemann tensor components can be read out, shows clearly the advantage
of the Cartan formulation. If one is interested in the Petrof classification, it can
be seen directly from the above array that the tetrad w® isin fact a canonical
tetrad and that the Riemann tensor, which in the vacuum case is the same as the
Weyl conformal tensor, is of type D. (See Pirani 1964, 1962; Ehlers and Kundt 1962.

The familiar Schwarzschild metric itself is given explicitly by

dr? du? r* — 2Mr) J

2_.2 + — (1 =u®)dp?l - ———2 42 .1
ds” =r 2 _oMr 1- u? (I —u%)dy 2 (3.17)

To obtain the electromagnetic vacuum solutions we must first find the most
general forms of the electromagnetic field consistent with spherical symmetry.
We start from the well known fact that there are no spherically symmetric vector
fields on the 2-sphere, and only one unique (apart from a scale factor) spherically
symmetric 2-form on the 2-sphere, which takes a very simple form in terms of
the co-ordinate system (2.2), namely du A dy. Since any cross components of
the Maxwell field between directions orthogonal to and in the 2-spheres of
transitivity would define vector fields in the surfaces of transitivity it follows
that the most general spherical Maxwell field is a linear combination with co-
efficients depending only on r, of dr A dt and du A dp, and hence can be expressed
in terms of the canonical tetrad in the form

F=2E,0WAw® +2B,06? A w® (3.18)
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where E, and B, are functions of 7 only. The dual field form *F'is then given
simply by

*F=2B,0M A w® +2E,6@® A @ (3.19)
and in terms of these expressions the source free Maxwell equations simply take
the form dF = 0, d *F = 0 and thus they too can be worked out by the Cartan

method without recourse to covariant differentiation. The electromagnetic
energy tensor will be given by

81T,y = (E2 + B?) {w{Pw® + 0P wf + 0P w® — wPwiP} (3.20)
and hence the Einstein-Maxwell equations

Rab =81TTab (321)

can easily be worked out with the Ricci tensor evaluated in the way described
above.
The solutions are given by

0 P
E, =% B,= (3.22)
r r

(where Q and P are constants which correspond respectively to electric and
magnetic monopole charges) with

Z,=r? (3.23)
A, =r* —2Mr+ Q? + P? (3.24)

In presenting the information giving the curvature, it is worthwhile to make a
distinction now between the Riemann tensor, and the Weyl conformal tensor
since the Ricci tensor which may be read out by substituting (3.20)in (3.21) and
using (3.22), is no longer zero. The Weyl forms )y = Q1)(j)ab wtl(i) wg)
defined in terms of the tetrad components C‘(i)(j)(k)(,) by

Q9) = 3C0 a9 yw® A O (3.25)
are related to the curvature forms O(i)(j) by
Q@A = g 4 R[(i)(k)w(j)] A w® +1Rw® A W) (3.26)

where R is the Ricci scalar (which is of course zero in the present case ). The Weyl
form may be tabulated as

Mr— Q? — P Mr — Q* — P* )
Q) = - rg GO AL® QO = T G AGO
_ 0% _ p? N2 _ p2
0@y =M= —F op,m g, =M rg P @ Au® b (327)
Mr— Q* - P? Mr— Q* — P? @)
QO =2 =L = F jop,0 o P SN OTY™ }

r
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Again the form of this array makes it immediately clear to a connoisseur that
the solution is of Petrov type D. The explicit form of the electromagnetic field is

2
F=rTer/\dt+2Pdu/\d«p (3.28)

which may be derived via the relation
F=2dA (3.29)

from a vector potential A given by
_Q
A==dt—Pudy (3.30)
The explicit form of the metric itself is
ar? du® 2 _ 2Mr+ Q? + P?
E (- u?)de?) -1 > o dt

+
P —2Mr+Q*+P* 1-pu? r
(331)

ds? =r?

this being the solution of Riessner and Nordstrom, which of course includes the
Schwarzschild solution in the limit when Q and P are set equal to zero.

Our search for spherical solutions is not quite complete at this point because by
working with the spherical radius 7 as a co-ordinate, we have excluded the special
case where 7 is a constant. Of course a solution with this property cannot be
asymptotically flat, unlike the solutions which we have obtained so far, and there-
fore it might be thought not to have much physical interest. However as we shall
see in the next section, it is impossible to have a full understanding of the global
structures of the solutions we have obtained so far, without considering this
special case, which arises naturally in a certain physically interesting limit.

To deal with this special case we must alter the canonical metric form (3.2)
by replacing the co-ordinate » by a new co-ordinate, A say, except in the con-
formal factor r? outside the large brackets which remains formally as before, and
is now to be held constant.

Using the same methods as before, we find that there are no pure vacuum
solutions of this form, but that there do exist source free electromagnetic
solutions, which can be expressed as follows: The electromagnetic field takes
the form

F=2Qd\Adt+2Pduldy (3.32)
which can be derived from a vector potential
A=0Ndt—Pudy (3.33)

and the metric is given by

d\?  du?
ds? = (Q* + P2){ —+

+ (1 —u?)dp — \? dt? (3.34)
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This is the solution of Robinson and Bertotti. This metric is in fact almost as
symmetric as possible, since it can easily be seen that it is the direct product of
a 2-sphere whose radius is the square root of Q? + P? with a pseudo sphere (cf
the form (2.10)) of the same radius. [ts maximal symmetry group therefore has
not four parameters as in the previous solutions (three for sphericity and one for
stationarity ) but six.

4 Maximal Extensions of the Spherical Solutions

It is relatively easy to analyse the global structures of the solutions which we
have just derived, since, as indicated by (3.1), all of them are equivalent, modulo
a conformal factor 72, to the direct product of a 2-sphere with a timelike 2-surface.
Thus the problem boils down to an analysis of the timelike 2-surfaces with metric
ds? =r*dI? whose structures can be represented by the simple conformal
diagrams whose use was described in section (1).

The simplest case is of course simply flat space to which the Schwarzschild
form (3.17) reduces when the mass parameter is set equal to zero. The
corresponding timelike 2-dimensional metric is simply dr? — dt? with the
restriction m > 0, which, via the transformation u =r — ¢, v = r + ¢, is equivalent
to the flat null form 2 du dv, with the restriction u +v > 0. The corresponding
conformal diagram is given in Figure 4.1, in which the null boundaries.#* and
" which play a key role in the Penrose definition of asymptotic flatness are
marked. To qualify as asymptotically flat in the Penrose sense—which he refers
to as the condition of weak asymptotic simplicity—a spacetime manifold must
be conformally equivalent to an extended manifold-with-boundary with well
behaved null boundary horizons " and .$~ isomorphic to those of flat space.
(Asymptotic flatness is discussed in more detail in the accompanying course of
Hawking.)

The Schwarzschild solution is of course asymptotically flat in this sense, and

indeed when M is negative the conformal diagram of the metric

rrdrr 2 —2Mr
rr—oMr P
is topologically identical to the flat space diagram of Figure 4.1, although there
is the important geometric difference that whereas in the former case the
boundary r = 0 represented only a trivial co-ordinate degeneracy at the spherical
centre, in the latter case, as can be seen from a glance at the array (3.16) it rep-
resents geometric singularity of the Riemann tensor. In the physically more
interesting case where M is positive the Schwarzschild conformal diagram still
agrees with the flat space diagram for large values of r, in accordance with the
Penrose criterion, but it has an entirely different behaviour going in the other
direction due to the fact that the metric form (3.17)becomes singular not only

at r = 0 but also at r = 2M. The fact that the Riemann components, as exhibited
in the array (3.16), are perfectly well behaved there suggests that this may not

ds? = dr? @4.1)
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be a true geometric singularity but merely a removable co-ordinate singularity of
the Killing horizon type which we have already come across in section 2.

It is not difficult to verify that this is indeed the case. By introducing just one
null co-ordinate v, defined by

v=t+ {r+2Mlog|r—2M|} 4.2)
we obtain the form
2 My
ds? =2 dv dr — r—r2——dv2 4.3)

Ax|s§

r=o

Figure 4.1. Conformal diagram of timelike 2-section with constant spherical co-ordinates
6, ¢ of Minkowski space.

This metric form is well behaved over the whole co-ordinate range 0 < r < oo
—oo <y < oo, The removability of the co-ordinate singularity at » = 2M was first
pointed out by Lemaitre (1933). The type of transformation we have used here
in which the manifest stationary symmetry is preserved is due to Finkelstein
(1958). The conformal diagram of this Finkelstein extension is shown in
Figure 4.2.

The Finkelstein extension is not of course maximal since we could equally
well have extended in the past direction, by introducing the alternative null
co-ordinate

u=t— {r+2Mlog|r—2M|} 4.4)
and thereby obtaining a symmetric but distinct metric extension :
2
r°— 2Mr
ds}=—-2dudr— —5—du?® (4.5)

r
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Figure 4.2. Conformal diagram of timelike 2-section with constant spherical co-ordinates
8, ¢ of Finkelstein extension of Schwarzschild manifold. In this figure and in all the
conformal diagrams of section 2 and section 4 the convention is employed that the Killing
vector trajectories (which in this case are the curves on which » is constant) are marked
by light dotted lines, while Killing horizons are marked by heavy lines, except in that
degenerate Killing horizons are marked by double lines. Curvature singularities are
indicated by zig-zag lines.

In fact we can make a sequence of such extensions alternating between outgoing
and ingoing null lines. After four such Finkelstein extensions, we can arrange to
get back to our original starting point, in the manner shown in Figure 4.3. None
of the four patches covers the central crossover point in the diagram, but our

Figure 4.3. Conformal diagram of timelike 2-section with constant spherical co-ordinates
6, v of Krushal’s maximally extended Schwarzschild’s solution.

experience with the analogous Killing horizon crossover points in the pseudo-
sphere, suggests that just as the extension from (2.4) to (2.10) could be augmented
to the maximal extension (2.19), so also here there should be a further extension
to cover the crossover point. This is indeed the case, but unfortunately this

time in dropping the manifest symmetry represented by the ignorability of the
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co-ordinate f we cannot expect to obtain any new compensating manifest sym-
metry as we did in the previous case, and so the new extended system will not
be very elegant.
To construct the required extension we first introduce the null co-ordinates
u, v simultaneously to obtain the null form
r? — 2Mr

dsf =— 2 du dv (4.6)

where now r is given implicitly as the solution of
r+2Mlog |r —2M | =% (u +v) 4.7)
At this point we are even worse off than with the original Finkelstein extension,

since we have restored the co-ordinate degeneracy at »r = 2M. However we can now
easily make an extension both ways at once by setting

u=—4Mn |U| (4.8)
v=4Mn | V| 4.9)
which gives
1M QU dv
ds? =5 - (4.10)

where r is given implicitly as a function of U and V by
r-2M)e™ = _yy (4.11)

and where if required, the original time co-ordinate # can be recovered using the
equation

vV
12 =
e U (4.12)
This form is well behaved in the whole of the UV plane. The original static
patch is determined by U < 0, ¥ > 0 and the original Finkelstein extension is
determined by ¥ > 0. It is fairly obvious that this extension is maximal since
most geodesics either can be extended into the asymptotically flat region or to the
geometrically singular limit. However to prove strictly that it is maximal we
should check that there are no incomplete geodesics lying on or tending to the
Killing horizons U = 0 and ¥ = 0. Weshall cover this point later on when we
discuss geodesics. [Checking that all geodesics are either complete or tend to a
curvature singularity is a standard way of proving that an extension is maximal,
but it is not the only way; for example a compact manifold must clearly be
inextensible even though it may—as was pointed out by Misner (1963 )—contain
incomplete geodesics.] This maximal extension was first published—in a somewhat
different co-ordinate system—by Kruskal (1960), surprisingly recently when
one considers that the Schwarzschild solution, was discovered in 1916.
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For studying the stationary exterior field of a collapsed star, that is to say
the classical (if it is not premature to use such a word) black hole situation, the
Finkelstein extension is sufficient, as is indicated by the conformal diagram given
in Figure 4.4. The full Kruskal extension has the feature, which seems unlikely
to be relevant except in a rather exotic situation, of possessing two distinct
asymptotically flat parts, which are connected by wha* has come to be known
as a bridge. The nature of the bridge can be under- ,od by considering
the geometry of the three dimensional space sections, e.g. the locus U = V' (which
coincides with # = 0 in the original co-ordinate system) whose geometry is
suggested by Figure 4.5 which is meant to illustrate an imbedding in 3-dimensional

Figure 4.4. Conformal diagram of timelike 2-section with constant spherical co-ordinates
6, ¢ of maximally extended space-time of a collapsing spherically symmetric star.

flat space of the 2-dimensional circumferential section 6 = 7 of the locus U= V.
These three sections have spherical cross sections whose radius diminishes to a
minimum value 7 = 2M (at the throat of the bridge) and then increases again
without bound. It can be seen from the conformal diagram of Figure 4.3 that an
observer on a timelike trajectory cannot in fact cross this throat, since after
crossing the horizon U = 0, the co-ordinate r must inevitably continue to
decrease, until after a finite proper time the observer hits the geometric singularity
at r = 0; this means in fact not only that such an observer is unable to reach

the region of expanding 7 on the other side of the throat, but also that he is
unable to return or even send a signal to the regions r > 2M on the side from
which he came. It is this latter phenomenon which is apparent even on the
restricted Finkelstein extension (Figure 4.2), and in the dynamically realistic
collapse diagram (Figure 4.4) which justifies the description of the null hyper-
surface at r = 2M as a horizon. Thus technically, the hypersurface U = 0 is the
past event horizon of #*, and together with the hypersurface V' = 0 bounding
the future of .#~, it forms the boundary of the domain of outer communications
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which we shall denote by <.#> meaning the region which can both receive signals
from, and send them back to, asymptotically large distances which in the present
case is the connected region with r > 2M specified by U <0, V > 0. The horizon
U = 0 has the infinite red shift property (which is quite generally characteristic

of a past event horizon of # ™) that the light emitted by any physical object which
crosses it is spread out over an infinite time as seen by a stationary observer in

the asymptotically flat region, and thus not only gets infinitely red shifted as the
body approaches the horizon (which of course it can reach in a finite proper

time from its own point of view) but also progressively fades out. Thus the body,
which might for example be the collapsing star represented on Figure 4.4, will

Figure 4.5. Sketch of part of a space-like equatorial 2-section (cos 8 = 0) of one of the ¢ =
constant hypersurfaces through the throat of Kruskal’s maximally extended Schwarzschild
manifold. Trajectories of the Killing vector 3/dy are indicated by light dotted lines.

appear to become not only redder but also blacker until with a characteristic
time of the order of that required for light to cross the Schwarzschild radius
(~107% seconds in the case of a collapsing star of typical mass) it effectively
fades out of view altogether. It is for this reason that the region inside the
horizon is referred to as a black hole.

Of course in the more exotic situation when the full Kruskal extension is
present, the region of the past of V' = 0 is by no means invisible from outside,
and it would in fact be possible to see right back to the singularity (unless of
course, like the big bang of cosmology theory, it were hidden in some opaque
cloud of particles). The region to the past of V' = 0 is often referred to as a white
hole, although with less justification than the application of the description
black to the future of U = 0. Without worrying about the question of colour,
it is obviously reasonable in all cases to describe the regions outside the domain
of outer communications <.#> as holes.
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Let us now move on to see how the situation is modified in the electromagnetic
case. In the Reissner-Nordstrom solutions the timelike 2-sections have the metric

form
2 2 + 0% + P2
ds? = (r 4 ) dr? — ( 4 2Mr2 ¢ )dt2 (4.13)

2 _2Mr+ Q? + P? r

When the charge is large, more precisely when Q2 + P2 > M? | this metric is well
behaved over the whole range from the singularity at » = 0 (which from the array
(3.26) can be seen to be a genuine geometric curvature singularity ) to the asymp-
totic limit » = oo, and the conformal diagram is the same as in the negative M

Point. gt interndl
infinity

Figure 4.7. Conformal diagram of timelike 2-section with constant spherical co-ordinates
8, ¢ of Finkelstein type extension of Riessner-Nordstrom solution with M? = P2 + Q2.

Schwarzschild case and is given by Figure 4.6 (This also applies to the Reissner-
Nordstrom case with negative M.) However when M? > Q* + P? there is a
singularity of the metric form (4.13) at two different values of 7, which we shall
label 7, and r_, and which are given by

ro=Mx\/M?— Q7 — P2 (4.14)

We can use this notation to write the metric in the more convenient form

AT N ek o3| Sl S P (4.15)

(r—reXr—r-2) r

As is suggested by the regularity of the Weyl curvature array (3.26), these singulari-
ties are removable in the manner with which we are beginning to become familiar,
as can easily be seen by making the obvious Finkelstein type transformation

dS_L'_‘



BLACK HOLE EQUILIBRIUM STATES 81

2 2
sttrttinlr—rl-—nlr—r_| (4.16)
v 2M 2M - .

which leads to the form

C-r)=ra) s
r

ds?=2dvdr- 4.17)
which is clearly well behaved in the whole range 0 <r <, In this system there
is an inner static domain 0 < <r_in addition to the outer static domain as is
shown in the conformal diagrams of Figure 4.7. In the limit as the charges Q and
P tend to zero the inner horizon = r_ collapses down on to the curvature singu-
larity 7 = 0 and the inner domain is squeezed out of existence, so that the manifold
goes over continuously to the Schwarzschild Finkelstein extension. The way in
which this limiting process takes place is illustrated in the conformal diagram of
Figure 4.8 in which the freedom to adjust the conformal factor is used to rep-
resent the Schwarzschild Finkelstein extension in a manner which approaches
the zero charge limit of the Reissner-Nordstrom Finkelstein extension.

Figure 4.8. Figure 4.8a is a modified version of Figure 4.2 and Figure 4.8b is a modified
version of Figure 4.7 showing how the Reissner-Nordstrom solution approaches the
Schwarzschild solution as P2 + Q2 — 0.

As in the Schwarzschild case, we can make a Finkelstein type extension not
only in the forward direction but also in the backward, by introducing the out-
going null co-ordinate

2 2

u=t—r—;7+41n|r—r+|+£7_4m|r—r_ (4.18)
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which leads to the form

r—ry)(r—r.)du?
ds? = 2dydr T - r) (4.19)
r

By patching together forward and backward going extensions of this kind we
can build up what is in fact a maximal extension in the manner illustrated in the

Figure 4.9. Conformal diagram of timelike 2-section with constant spherical co-ordinates
6, v of maximally extended Riessner-Nordstrom solution with M2 > P2 + Q2.

conformal diagram of Figure 4.9 to obtain an infinite double chain of asymp-
totically flat universes linked together in pairs by wormholes. This manifold was
first described by Graves and Brill (1960). As in the Schwarzschild case it is
possible to construct Kruskal type co-ordinate extensions to cover the crossover
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points of the horizons. It is possible to construct a co-ordinate system covering
the whole manifold at once, but it is simpler to construct local patches adapted
to the kinds of horizon r = r, and r = r_ separately. The notation we are using
enables us to describe both kinds of patch at once as follows. Starting as in the
previous case from the double null form.

r—r)(r—r-
ds? = — ¢ +)§ ) du do (4.20)
r
where r is given implicitly as a function of # and v by
r? 2
r+2—;41n|r—r+|—2741n|r—r_ =Lw—-u) 4.21)

we introduce new co-ordinates U, V* or U~, V'~ depending on whether we want
to remove the singularity at » =r, or r = r_, defined by

— r‘% l | U+ | W
=¥—=In|-U*
“TTu
| 4.22)
r2
v=%_—n [+V*
! )
which leads to the form
2 _ F+ 2 2Mr 2.2 2 d(ft dVi
dsj = — (M) exp (— —E )lr— rs |ritre)ri 7 (4.23)
where 7 is given implicitly as a function of U*, V* by
2Mr .
|r—r. |exp (i—z )Ir —re TR = Uyt (4.24)
ry

and the co-ordinate ¢, if required, is given by

exp (iizlt) =— % (4.25)

+

It can be seen that these forms are well behaved in the neighbourhood of r =r.
respectively, (although not in the neighbourhood of r = r;).

In the Graves and Brill manifold the time symmetric 3-dimensional space
sections (# = constant) fall into two classes, as illustrated in Figure 4.10 which
shows imbeddings in 3-dimensional flat space of 2-dimensional sections. The
first kind, exemplified by the locuses U™ + V' * = 0, are topologically similar to
the Kruskal bridges connecting two asympototically flat regions except that
the throat is somewhat narrower, and can be (if the charges are larger) very
much longer. The second kind, as exemplified by the locus U™ + V'~ =0,
represents a sort of tube connecting two curvature singularities » = 0; only part
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of the tube is illustrated since the flat space imbedding breaks down before the
curvature singularities are reached.

Let us pause for a moment to consider the implications of what we have seen
so far for a gravitational collapse situation. We notice that a material sphere can
only undergo catastrophic gravitational collapse if the condition Q2 + P? < M?
(or simply Q% < M? provided we take for granted the physical condition that
there are no material magnetic monopoles) is satisfied since otherwise electro-
magnetic repulsion would predominate over gravitational attraction, and that it

-

Figure 4.10. Sketches of spacelike equatorial 2-sections (cos & = 0) of ¢ = constant hyper-
surfaces in the maximally extended Reissner-Nordstrom when M2 > P2 + Q2. The sketches
are intended loosely to suggest imbeddings in 3-dimensional flat space; strictly, however,
the section passing through the Killing horizon crossover point r = r_ ceases to be sym-
metrically imbeddable when it gets too near to the curvature singularity r = 0.

is precisely the same in equality Q* + P> < M? which determines whether a
horizon will be formed. This suggests what Penrose (1969 ) has termed the cosmic
censorship hypothesis according to which, in any situation arising from the
gravitational collapse of an astrophysical object (such as the central part of a

star after a supernova explosion) starting from a well behaved initial situation,
the singularities which result are hidden from outside by an event horizon i.e.
that naked singularities which can both be approached from and seen from
outside (as in the case of the singularity at # = 0 in the Reissner-Nordstrom
solutions with Q? + P? > M?) cannot arise naturally from a well behaved initial
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situation. This hypothesis does not exclude the visibility of preexisting singu-
larities (such as that of the big bang in cosmology theory not to mention the so
called white holes) which cannot be reached in the future by a timelike trajectory
and in this sense are not completely naked.

Let us now move on to consider the special case of the Reissner-Nordstrom
solutions for which the critical condition Q2 + P? = M? is satisfied, i.e. which
are poised between the normal hole situation Q% + P2 < M? and the naked
singularity situation Q2 + P* > M2, According to the cosmic censorship hypo-
thesis a critical case such as this should represent a physically unattainable limit,
but one which is approachable and therefore of considerable interest in the same
way as for example the extreme relativistic limit is of great interest in particle
scattering theory.

The metric in this limiting case simply takes the form

2 2
M) g2 T _dr? (4.26)
r r— M)
This metric form is static both for r > M and for r < M but it is none the less
singular at r = m. Its extension was first discussed by myself (1966). The co-
ordinate singularity is in fact the first example in the present section of a Killing
horizon which is degenerate in the sense described in section 2, as would be
expected when it is thought of as the limiting case in which the two non-
degenerate Killing horizons r =r, and r = r_ have coalesced.
As usual the Finkelstein type extension can be carried out without difficulty
by introducing the null co-ordinate

M2
v=t+(@F-M)y+2MIn |r—- M| — (4.27)
r—-m
which leads to the metric form
_an2
ds? =2 dr dv — (iz—M)—dvz (4.28)

r

The corresponding co-ordinate patch which is well behaved over the whole range
0<r<oo, —eo <y <oo jsillustrated in Figure 4.10, in which we have also shown
the way in which this limit is approached by the Finkelstein extensions of the
ordinary Riessner-Nordstrom metrics as Q% + P? approaches M? from below.

As usual we can also make the symmetric past extension, by introducing a
co-ordinate

M2
=t (r—M)—2MIn|r— M|+ _
u r—-m n|r | —T (4.29)
thus obtaining the form
2
dst = —2 du dr =) g2 (4.30)

r
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This time however there is no way of carrying out a further Kruskal type exten-
sion, because the transformation (4.27) contains not only the by now familiar
logarithmic singularity but also a first order pole singularity. However it turns
out that a Kruskal type extension is quite unnecessary, since the Finkelstein
extensions can be fitted together in the manner illustrated in Figure 4.1.2to form
an extended manifold which is in fact maximal since (as we shall verify later) all
geodesics either intersect the curvature singularity or can be completed. The
situation is rather different from those which we have come across so far, because

Figure 4.11. Conformal diagram of timelike 2-section with constant spherical co-ordinates
68, ¢ of Finkelstein-type extension of Reissner-Nordstrom solution in degenerate case when

M?=P2+ Q2

the completed geodesics can not only approach the outer parts of the diagram
labelled .# " and .#~, but can also approach the inner boundary points labelled x,
each of which therefore represents (in a manner which is disguised by the
conformal factor)infinitely distant limit in the inward direction.

The nature of the limits represented by the points x, (which take the place
of the missing Kruskal crossover axes) can best be understood by considering the
time symmetric space sections, ¢ = constant. In this case the analogue of Figure
4.10 is given by Figure 4.13 which shows that instead of having a minimum (the
throat) or a maximum of r in the respective cases r > M, r <M, the space sections
extend indefinitely, both approaching asymptotically the same infinite spherical
cylinder.
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Point_s at internal
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Figure 4.12. Conformal diagram of timelike 2-section with constant spherical co-ordinates
6, v of maximal extension of Reissner-Nordstrom solution in degenerate case when

M? =p? + Q2

D £
N
t
[
N -
-— v
-~ - O
-

Figure 4.13. Sketches of spacelike equatorial 2-sections (cos 8 = Q) of ¢ = constant hyper
surfaces in the maximally extended Reissner-Nordstrom solution in the case M? = P2 + Q2
and also in a Robertson-Bertotti universe, indicating how the latter represents an asymp-

totic limit of the former.
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It is at this stage that the Robinson-Bertotti solution (3.34)enters into the
discussion. We do not need to do any further work to find its global structure,
since its time sections have the metric

2
ds? = (Q* + P?) (di —A2 d'r2) (4.31)

which, as we have already remarked is the metric of a pseudo-sphere, so that the

4.14a 4.14b

Figure 4.14. Figure 4.14a represents a modified version of Figure 4.12 and Figure 4.14b
represents a modified version of Figure 2.2b. The shaded regions of the two diagrams can

be made to approximate each other arbitrarily closely in the neighbourhood of the horizons,
showing that the maximally extended Reissner-Nordstrom solution effectively contains a
Robertson-Bertotti universe within it in the bottomless hole case when M2 = P2 + Q2.

required extension past the singularity A = 0 is given by (2.19) and the corre-
sponding conformal diagram is that of Figure 2.2b. Now it can easily be seen by
setting 7 = X + M, t = M*7, that the Reissner-Nordstrom solution with Q2 + P2 = M?
approaches the Robertson-Bertotti solution in the asymptotic limit as r — oo,

The limiting spherical cylinder illustrated in Figure 4.13 is in fact the same as a

7 = constant cross section of a Robinson-Bertotti universe. The conformal diagrams
of the 92 + P? = M? Reissner-Nordstrom solution, and of the Robinson- Bertotti
solution are shown side by side for comparison in Figure 4.14. The shaded regions
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singularie,

Figure 4.6. Conformal diagram of timelike 2-section with constant spherical co-ordinates
8, ¢ in the maximally extended Reissner-Nordstrom solution in the naked singularity case

when M2 < P2 + 02,

can be made to coincide as closely as one pleases by adjusting the conformal
factor so that they correspond to a sufficiently small range of the co-ordinate
A=r—M.

5 Derivation of the Kerr Solution and its Generalizations

Having now looked fairly thoroughly at the spherical vacuum solutions, we have
clearly arrived at a stage where it would be interesting to see how the various
phenomena—horizons, naked singularities etc.—which we have come across would
be modified in more general non-spherical situations, particularly when angular
momentum, the most obvious source of deviation from spherical symmetry, is
present.

Since, as we have seen, the derivation of the spherical Schwarzschild solution
is very easy (it was achieved in 1916 within a year of the publication of Einstein’s
Theory in 1915) one might have guessed that it would be comparatively not too
difficult to derive a rotating (and hence non-static but still stationary ) generaliza-
tion in a fairly straightforward manner, starting from some suitably simple and
natural canonical metric form. Moreover, as I plan to make clear in this section,
one would have guessed correctly. Nevertheless, after forty years, repeated
attempts to find a canonical form leading to a natural vacuum generalization of
the Schwarzschild solution had turned up nothing (or more precisely nothing
which was asymptotically flat) except the Weyl solutions, which are unfortunately
static, and therefore useless in so far as showing the effect of angular momentum
is concerned. Moreover the first (and so far the only ) non-static pure vacuum
generalization of the Schwarzschild solution was found at last by Kerr in 1963
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using a method which is by no means straightforward, and which arose as a bi-
product of the sophisticated Petrov-Pirani approach to gravitational radiation
theory which was developed during the nineteen fifties. In consequence of this
history it is still widely believed that the Kerr solution can only be derived using
advanced modern techniques. There is however an elementary approach of the
old fashioned kind which was rather surprisingly overlooked by the searchers in
the nineteen twenties and thirties, and which I actually found myself, with the
aid of hindsight, in 1967. This approach now seems so obvious that Iam sure it
will be clear to anyone who follows it that despite the apparent messiness of the
form in which it is customarily presented, no non-static generalization of the
Schwarzschild solution which may be discovered in the future can possibly be
simpler in its algebraic structure than that of Kerr.

This approach starts from the observation that for practical computational
purposes one of the most useful, indeed almost certainly tk#e most useful, algebraic
property which the Schwarzschild solution possesses as a consequence of
spherical symmetry, and which one might hope to return in a simple non-spherical
generalization, is that of separability of its Dalembertian wave equation and the
associated integrability of its geodesic equations.

Now it is physically evident from the correspondence principle of quantum
mechanics, (and it follows mathematically from standard Hamilton Jacobi
theory) that integrability of the geodesics as well, obviously, as separability of
the Dalembertian wave equation Y%, = 0, will follow if the slightly more general
Klein-Gordon wave equation ¢*?., — m?y = 0 (where m? is a freely chosen
constant which may be interpreted as a squared test particle mass) is separable.

Separability is of course something which depends not only on the geometry
but on a particular choice of co-ordinates x2(a = 0, 1, 2, 3), and in terms of these
co-ordinates it depends less directly on the form of the ordinary covariant tensor
&ap defined by

ds? = ggp dx® dx? (5.1)

than on the form of the contravariant metric tensor g2 defined in terms of the
inverse co-form

o\*_ ,, 0 0
Z) =pab T 5.2
(as) & 5 axb (>2)
In terms of the contravariant metric components and of the determinant
g = det (gp)= {det @)} (5.3)

the Klein Gordon equation can be expressed in terms of simple partial derivatives
in the form

4 0 0
Y 15;\/—_5’8‘"’@&0—7”2\/:2“0 (5.4)
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The standard kind of separability takes place if substitution of the product
expression

Y= I,'I:d/i (5.5)

where each function Y;(i =0, 1, 2, 3)is a function of just the single variable X,
causes the left hand side of (5.4) to split up into four independent single variable
ordinary differential equations, expressed in terms of four independent freely
chosen constants of which /72 is one.

To see how this works out in the spherical case, we note that the inverse metric
corresponding to our general spherical canonical form (3.2) is

3\ 1 V. 1 [a) dV z%a\
(8_8) _’—2{(1_”2)(&1) e (aw) " (a_r) _Ar(g)} e

and hence using (3.3), the Klein Gordon equation takes the form

r’ , 9 oY 1 92
__ 1T— - 2 = 4 -1 — i 2.2
Z {d/ au( #)a“ v 1_“26¢2¢ m?2r
0 r2A, 0y rZ, 3%y
+ L A SR Pl Wl S 0
v or Z, or v A, ot? .7)
which has solutions of the form

Y = R, PL(n)e"? ! (5.8)

where /, n, w are separation constants (of which 7 and » must be integers if the
solution is to be regular) and P, (u) is a solution of the (I, n) associated Legendre
equation (and is thus an associated Legendre-polynomial in the regular case) and
where R, is a solution of the equation

d r*A, dR, w*r*z, r?
1 ==y L+ — [+ 1)— m?r*]=0 5.9
ar z, ar a tz lCrD-mT] (59)

R,

What we want to do now is find the simplest possible non-static generalization
of the canonical coform (5.6), including in our criteria for simplicity not only the
most obvious requirement of all, namely that the manifest symmetry property of
stationarity and axisymmetry represented by the ignorability of the co-ordinates
t and ¢ be retained but also the requirement that the separability property of the
corresponding Klein Gordon equation be retained. There is a third obvious
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simplicity property of the coform (5.6) which can be retained without prejudice
to the other two, (and which greatly simplifies the computation of the Riemann
tensor etc.) namely the fact that it determines a natural canonical orthonormal
tetrad, such that two of the tetrad vectors contribute in the separation only to
the terms independent of r, while the other two contribute only to the terms
independent of u.

This leads us to try the canonical coform

3)\*_1 3\*, 1 9, a3l
b=z ) afaie]
1 3y 1 2
+E{A,(E) —A—[ ra O ]} (5.10)

where Ay, Z,,, 0, are functions of u only, and where A,, Z,, Q, are functions of
r only, and the form of the conformal factor Z remains to be determined.

It is to be observed that the factors A, are redundant, since the one in the
first term could be eliminated by renormalizing u as a function of itself while the
one in the second term could be eliminated by a proportional readjustment of
Z, and A,. The same applies to the factor A,. These factors have been included
explicitly however firstly because they are suggested by the canonical spherical
coform (5.6) (to which (5.10) reduces when one sets A, =1 — u? withu =1,
0,=0r=0and Z= r?) but also for the more compelling reason that the
freedom of adjustment of A, and A, can be used to achieve considerable simplifica-
tion of the form of Z required to achieve separability. In any case they are
arranged so as to cancel out of the determinant which is simply given by

2
V&= z (5.11)
|ZrQy - ZMQr I

Let us now investigate the conditions which must be imposed on Z to achieve
separability. Using (5.10) and (5.11) we obtain the Klein Gordon equation in the
form

4 {ag 2v2 ;r—ﬂmzz}w

ou Z “auarZ VA

-1 i i 1 )E E
i {8an”+atZ“} Au( Z )(Q“afz“at)w
a9 o0\ 1(v=sg 9
_ Y (a¢Q’+atZ’)A,( Z )(Q +Z, )w 0 (5.12)

It is clear that if these terms are to separate, the factor Z~'y/=g which occurs in
each one must depend on r and u only as a product of single variable functions
which can be absorbed into A, and Ay (using our freedom to rescale these
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functions) so as to reduce the factor Z™'y/=g to unity. Thus we are led to
choose the definition

Z=2,0, - 2,0, (5.13)

for the conformal factor. This is still not quite sufficient for separability except
in the case of the pure Dalembertian wave equation, since there remains the mass
term which now takes the form m?Z. In this expression we have not only made no
provision for cross terms between the non-ignorable co-ordinates, i.e. terms
proportional to (3/9r)(3/du), which would obviously destroy the separability,
but we have also, in accordance with our principle of maximum simplicity, ex-
cluded all other cross terms except those directly between the ignorable co-
ordinates, i.e. those proportional to (9/9¢)(3/0y) whose presence is essential if
we are to have non-zero angular momentum. To achieve complete separability
this term also must split up into the sum of two parts each depending on only
one variable, i.e. Z must have the algebraic form

Z= Uﬂ- + U}\ (514)

where U, depends only on u and U, only on A. From the expression (5.13) we
see that this requirement will be satisfied if and only if
dz,dQ, dZ, dQ,_ 0
dr du du dr

(5.15)

There are basically two ways in which this can be satisfied : a more general
case in which either both Z, and Z, or both Q, and Q,, are constants, and a
more special case in which at least one of the four functions is zero, or can
be reduced to zero by a form preserving co-ordinate transformation in which ¢
and ¢ are replaced by linear combinations of themselves. In the more general
case we can take it without loss of algebraic generality that it is the Q’s which
are constants. Thus replacing Q,, Q,, by constant C,, C,, respectively we obtain
the basic separable canonical form

0 \? 1 2.1 ) o [|?
— ] = A# _8_ g CM —+ Zu —
os] [CuZ, - C,Z,) ou]  Au dp ot

1 o 1 0 o |?
+ A,———|C —+2, — 5.16
[Cuz, - C,Z,,]{ " or A,[ " 0y ’a:J } G-16)

The original expression (5.10) from which we started had algebraic symmetry
not only between r and u (apart from a sign change) but also between ¢ and ¢.
In the coform (5.16), in which the symmetry between 7 and ¢ has been lost, we
have chosen to set O, and Q, rather than Z, and Z,, constant in order that it
should include the spherical coform (5.6), in which # and ¢ have their usual
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quite distinct interpretations in the appropriate limit (that is to say when C, = 1,
C,=0,2,=0,Z,=r*, A, = 1 - p?).

In the alternative way of satisfying (5.15) it can be arranged either that Z,, is
zero, and Q, a constant or that Q,, is zero and Z, a constant. I have studied the
resulting canonical forms (Carter 1968) and found that there are no vacuum
solutions except those which are in fact special cases of (5.16) and therefore we
shall not consider these alternative possibilities any further here.

The steps by which we have arrived at the canonical separable coform 5.16
are so simple that it is really quite surprising that it was not found by any
researcher of the nineteen thirties, such as for example Eisenhart or Robertson
who both worked on separability of wave equations in curved spacetime (cf.
Robertson 1927, Eisenhart 1933). The corresponding metric determinant is
given by

v-¢=1C2, - CZ,| (5.17)

and the covariant metric form is given by

2 2
ds? = [CyZ, — C,Z,] [‘i’ + dL}
r K
+ Au[Cdt — Z, do)? — A, [Cudt — Zy dy)?
[C#Zr - CrZu]

(5.18)

It is very easy to derive the vacuum solutions corresponding to this canonical
form, using the same method as in the spherical case, working in terms of the
natural canonical orthogonal tetrad of forms,

7. _ 1/2
w(1)={M} dr (5.19)
A,
.z, - CZz
w® = _“_"___Ji} du (5.20)
Aﬂ-
A 1/2
@=i—HE 1 [Cudt—Z.d 5.21
w {CMZ,—C,Z#} [Cu p dy] (5.21)
A
O =l ———L—— 1 [Cudt - Z,d 5
« {C”Z,—C,ZJ[ wdi = Zydy] (5:22)

I

The complete set of solutions for the four unknown variable functions Z,,
Z,, A, A, in terms of the constants C,, C, turns out to be remarkably simple :
the variables functions are all required to be quadratic polynomials, whose co-
efficients are subject to a few linear restraints. These quadratic functions can be
stated in a very compact form if we temporarily exclude the special cases which
arrive when either C,, or C, is zero (in the same way that it was convenient to give
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the general spherical solutions in a form in which r was assumed to be a variable,
dealing separately with the special Robinson Bertotti case). When C, and C, are
non-zero they may both be normalized to unity by a change of scale of Y and .
We shall impose this normalization only for C, which is unity in the spherical
canonical form, but in order to be able to go over smoothly to the spherical

limit we shall retain C, as a freely renormalizable parameter which—with a certain
prescience—we shall relable a. Thus setting

C,=1 (5.23)
C =a ' (5.24)

we can express the general solution (excluding special limiting cases where C,,
or C, is zero) in the concise form

z,=r*,  Z,=-au? (5.25)
A, = hr? — 2Mr + pa? (5.26)
Ay =—hu® —2qu+p (5.27)

where h, M, q and p are arbitrary parameters. (This would look more symmetric
between r and u if we chose to use the available co-ordinate freedom to adjust @
to unity.) The complete set of solutions, including the special limiting cases, can
be obtained from these by first making linear co-ordinate transformations in
which r and au are replaced respectively by cr + d and au + f, and then allowing
the parameters c, d, a, f to vary freely over all values in the resulting somewhat
more complicated expressions including the values ¢ = 0 and @ = 0 for which the
original transformation would have been singular. The solutions, (5.25), (5.26),
(5.27) represent a vast class of vacuum metrics most of which are unacceptable
for our present purposes for global geometric reasons, examples being the
Taub-N.U.T. space (cf. Misner, 1963) which is included in the family as one of
the special limiting cases and the more general family discovered by Newman
and Demianski (1966).

In order to understand the global geometry of these solutions, we note that
the canonical metric form (5.18) has singularities whenever A, and A, are zero
which are very similar respectively to the Killing horizon type and symmetry axis
type co-ordinate singularities with which we are already familiar in the spherical
case. Moreover while we can conceive that » should be able to vary across a
region where A, vanishes in an extended metric, it is clear that if the metric is to
retain the correct signature u must be absolutely restricted to the range in which
A,, is non-negative. Now since we wish the co-ordinate to represent an azimuthal
variation between extending from a south polar to a north polar symmetry axis,
it is clear that we must require that the quadratic function A, be positive in a
restricted range, whose limits will we hope—if things work out—turn out to be
the symmetry south and north polar symmetry axes. To achieve these conditions
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it is clear that we need 2> 0 and also Ap + g% > 0. Now we know that if the
symmetry axis is to be well behaved the overall coefficient of dy? in the metric
form (5.18) must be zero that is to say Z u must vanish for the same values of u
as A, Now the values of Z,, and Z, may be adjusted to the extent of the
addition of the same arbitrary constant to both of them (by replacing ¢ by a con-
stant coefficient linear combination of ¢ and ¢) but it is clear that even with
these adjustments the zeros of Z,, will always occur for equal and opposite
values of u, and can therefore match the zeros of A, only if q is zero. Thus we
see that the restrictions

q=0 - (5.28)
h>0 (5.29)
p>0 (5.30)

are necessary for regular angular behaviour of the solutions. When the two latter
conditions are satisfied we can make scale changes of u and r so as to obtain
h=p =1 thereby ensuring that u varies over the conventional co-ordinate
range —1 <u < 1. In doing so we use up our co-ordinate freedom to adjust @
which thereafter becomes a geometrically well determined parameter). The
adjustment of 7 and v necessary to ensure that the zeros of Z,, coincide with
those of A, leads us to replace the forms (5.25) of the solution (which were
previously adjusted for maximum algebraic simplicity ) by
Z,=r*+4? (5.31)
Z,=a(l—u?) (5.32)

while the other conditions we have imposed cause the expressions (5.26), (5.27)
to reduce to the standard expressions

A, =r® — 2Mr+a° | (5.33)
Ay=1—p? (5.34)

On substituting these expressions together with (5.23) and (5.24) back into the
canonical form (5.18) and making the substitution

u=cosb (5.35)

we obtain the solution of Kerr (1963) in the standard co-ordinate system intro-
duced by Boyer and Lindquist (1966), which takes the explicit form

2
5+ db?
r? — 2Mr + a? }

N sin®6 [a dt — (r* + a®) dy]® — (r* — 2Mr + a®)[dt — a(1 — u?) dy]?
r* +a? cos?

ds? = (r* + a® cos?0) {

(5.36)
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where we have retained the grouping of the terms to make manifest the canonical
tetrad with respect to which the separability (which of course is not affected by
the replacement of u by a function of itself) takes place. In terms of this tetrad
as given explicitly by (5.19), (5.20), (5.21), (5.22) and of the curvature forms
defined in section (3), the Weyl tensor, which in this case is equal to the Riemann
tensor, may be presented in the form

Q(l)(z) = _Liw® A W@ — L@ A ®

Q(O)(s) =_1I, WO A L3 +I2w(1) Aw®

QO = 20, 0® A @ — 2,6® A w®

9(3)(2) =2, A w® + 2,0 A @ (5.37)
Q(O)(z) =1, 0@ A w® — [,w® A w®

Q3 =1w® A w® + LD A ©

where
_ g (PP —3d%0%)
Il = Mr m (5.38)
2 2,2
I, = Map G =471 (5.39)

(r2 + a2u2)3

It is obvious (to an expert) from this array that the canonical separation tetrad
is also a canonical Petrov tetrad, and that the Weyl tensor is of Petrov type D. It
was by searching for vacuum solutions with type D Weyl tensors that Kerr originally
found this metric.

Let us now move on to consider the electromagnetic generalization of the
method we have just applied. The obvious thing to do is to seek a generalization
of the spherical canonical form (3.32) to canonical form of the electromagnetic
potential 4 in a separable background metric of the canonical form (5.18) which
will be such that not only the ordinary Klein Gordon equation but also its
electromagnetic generalization is separable, thus ensuring (as a consequence of
Hamilton-Jacobi theory, or from a physical point of view by the correspondence
principle) that not only geodesics but also charged particle orbits will be
integrable. In terms of an electromagnetic field potential

A=A, dx" (5.40)

the electromagnetic Klein-Gordon equation takes the form

v (%a - ieAa) VAT o (%;— ieAa) y—m?y=0 (5.41)
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In order not to introduce unnecessary cross terms we shall start off by requiring
that 4 contain only the same two components as were necessary in the spherical
case, i.e. that it has the form

A=A3dp+Aydt (5.42)
where A 3 and A4 are scalars, independent of ¢ and ¢, whose functional dependence
on u and r remains to be determined. On substituting this expression into (3.41),
using the canonical co-form (5.18) we obtain

) o )
Ay —+—A ——m*(CuZ, - CZ
v [au Hou or " or m( “)}

9 9 1 |o 9 .
+y! [ Zy +a Cu +zeX}A {atz +a Cn+zeXn}gb
0 1|0 0
_y! Z,+—C, —ieX,}y=0 .
d/ { Z +a¢C zeX}A (af a(p y — 1€ r}\{/ (5 43)

where we have set
AOZr+A3Cr=Xr }

5.44
AOZp.+A3CM.=—X“_ ( )

In order for the equation to separate we clearly need to choose A and 43 in
such a way that X,, and X, are respectively functions of u and 7 only. This can
be done simply by taking arbitrary functions X,, X, of r and u respectively and
solving (5.44) for 4, and A4 ;. Thus we obtain the expression

X,(C,dt—Z,do)+X,(C,dt— Z, dp)
Cz, -Gz,

for the canonical separable vector potential associated with the form (5.18). We
can now go on to solve the source free Einstein-Maxwell equations for the forms
(5.45) and (5.18) in conjunction, using the method described in section 3. As in
the pure vacuum case the functions A, A,, Z,, Z,, turn out to just quadratic
polynomials, and the new functions X,, X, are even simpler—they are linear.
Again there is a large class of solutions most of which have undesirable global
behaviour, and from which a small subclass can be selected by requiring thatu
should be a well behaved azimuthal angle co-ordinate. We shall not repeat this
selection procedure but merely present the final form of the well behaved sub-
class, using the same normalization conditions as in our presentation of the
vacuum Kerr solutions. Thus the solutions for which C, or C,, are non-zero are
given directly, setting

C,=1 (5.46)
C, =a (5.47)

A= (5.45)
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by
X, =0r (5.48)
X, =Pu (5.49)
Z, =r*+q* (5.50)
Z, =a(l — u?) (5.51)
A, =r? —2Mr +a? + Q* + P? (5.52)
Ay=1—p? (5.53)

where in addition to the parameters M and a which by comparison with the Lenz-
Thirring solution can be seen to represent mass and angular momentum per unit
respectively, we now have two more parameters Q and P which represent electric
and magnetic monopole moments. This solution was first obtained by Newman
and his co-workers (1965) using a guessing method based on an algebraic trick.
Written out explicitly, and again setting u = cos 6, this Kerr-Newman solution
takes the standard form

do?

2
ds? = (r* +a* cos?0) { 3 dr2 5——5+
re—2Mr+a“+Q°+P

. sin?f[a dt — (r* + a®)dp]? — (r* — 2Mr + a® + Q% + P*)[dt — a sin?0 dy]?

r? +a? cos?6
(5.54)
with
4= Qr[dt — a sin?60 dp] + P cos 0 [adt — (r* +a?)dy]
r* +a? cos?f

(5.55)

[These solutions can be obtained from the general solution [4] (Carter 1968) by
making the restrictions g =0, > 0, p > 0 and settingr =\, a2 cos 0 = u, ¢ = ay,
t =X+ a*y where a? = p.] The metric (but not of course the field) is invariant
under a duality rotation in which a and b are altered in such a way as to preserve
the value of the sum of their squares. The Ricci tensor for this metric can be
expressed in terms of the canonical tetrad as

_Q2+P2

R, =
ab r2 +02[.12

[w&"’wﬁ?’ + w‘(f)w?) + wt(l2)w572) — wMwf] (5.56)

and the Weyl tensor has the same basic form (5.37) as in the vacuum case, but
this time with the more general expressions

_ Ml — 3¢*] — (@2 + P)(2 — i)

11 (r2 + a2u2)3

(5.57)
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_ Map[3r® — a*u?] — 2(Q* + PPaur

(r2 + (12#2)3 (558)

I

for the coefficients.

We now come to the special case—the generalization of the Robinson-Bertotti
solution—which has been left out so far. These special cases can be obtained
from the general form by making the linear co-ordinate transformation r - cr + k
and then taking the singular limit when ¢ tends to zero. Again we select a subset
from a much wider class by the requirement that u should behave as a regular azi-
muthal co-ordinate. The solutions could be expressed algebraically in terms of
the general canonical form (5.18) but it would be geometrically misleading to do
so since ¢ and ¢ would come the wrong way round. Instead we express the
solution directly in an alternative and in this case geometrically more enlightening
canonical form as follows. [These solutions can be obtained from the form [B(-)]
(Carter 1968) in the subcase g = 0, A> 0, k2 > Q? + P? by adjusting m to zero,
n to unity, setting a*> = k? — Q% — P? and replacing u by au, ¥ by ¢ and ax by
(@ + k?)p]

a\?  du?
ds® = (@®p® + k) {—+—— — Ay dr?
s*=(@"u ) A a, Ay dr
A
taa e (@ + k) do — 2akndr]? (5.59)
with
_ [(@® + k?) dp — 2ak) dT)
A=0NdT+P, g (5.60)
where
A,=1- u?
Ay = A +n (561)

where Q, P, a, n are independent parameters, of which the last, n, can

be adjusted to zero by suitable but non-trivial form preserving co-ordinate trans-
formations using the fact that the solution has a 4-parameter isometry group (of
which only 2 degrees of freedom—those corresponding to the ignorability of ¢
and p—are manifest) under which the hypersurfaces on which u is constant are
homogeneous and partially isotropic. The parameter & is not independent of the
others, but must satisfy

k2=a®>+Q*+P? (5.62)

[These solutions are not fundamentally new since they could have been obtained
from Taub-N.U.T. space (in the case where the “mass” term is zero) by analytic
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continuation in complex co-ordinate planes—the parameter k turning up as the
analogue of the standard N.U.T. parameter /]

In a more explicit form, having chosen n = 0, and having set u = 0, these
solutions can be expressed as

2
ds? = [a*(1 + cos20) + Q? + P?] [‘% +df? — \? d’rz}

, Sin*0[(24* +Q +P?)dyp — 2a(a® + @ + P*)'2 N ar]?
[22(1 + cos?8) + Q? + P?)

(5.63)

with
[(2a* + Q% + P*) dp — 2a(a® + Q% + P*)'/? \ d7]
[22(1 + cos20) + Q* + P?]

A=0NdT+Pcosh
(5.64)

which clearly reduces to the Robinson-Bertotti metric when a is set equal to
Zero.

The derivation of the source-free solutions of the separable form (5.18) with
(5.45) worked out so well, and the separability property is so valuable for sub-
sequent applications, that I was tempted to go cn and search for more general
solutions, in which for example, a perfect fluid is present. Unfortunately the
separability conditions are in fact very restrictive—so much so that it is rather
remarkable that there are any vacuum solutions at all-and nothing that was of
any obvious physical interest turned up (not that I would by any means claim to
have exhausted the subject). However, there was one generalization which came
out at once, namely to solutions with no material sources but in which a cosmo-
logical A term is present. Although I don’t think there is much physical justifica-
tion for believing a non-zero A term, it is perhaps worth quoting the result as a
geometrical curiosity. When a A term is present the solutions are still polynomials,
X, and X, being linear and Z, and Z,, being quadratic, as before, but now A, and
A, are no longer quadratic but quartic. As before, the solutions which I quote
below are selected out of a much wider class by the requirement that u should
behave as a regular and azimuthal angle co-ordinate, which ensures that the
solutions tend asymptotically this time not to Minkowski space as before but
to de-Sitter space. The pure vacuum solutions are given by

2 (2 4 2 d_"2 df*
ds® =(r" +a* cos 0){ A + 12 Acos20}

- (1 —1a2 A c0320) [a dt — (r* +a?) ahp]2
+sin“0 2, 2.2 12

r° +a* cos“6 1 —3a°A

(5.65)

A, dt — a sin?0 dy |?
r*+a?cos?0 | 1-—44%A
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where
A, = 3A@E? +a?r?) +r* — 2Mr +a® (5.66)

A straightforward electromagnetic generalization exists, but I shall not bother to
write it out here. [This solution can be obtained from the general solution [A4]
(Carter 1968) by setting g =0, p=a?, h =1 + 322 A with the restriction
1 —32®A >0, and settingr =\, 2 cos 8 =y, 9 = a(1 — 34> A)y and
t=(1-3a*A)(x +a*y)].

This solution has the property that it can be expressed in the form

df — a sin%6 dg dr 2
ds2=ds%+2Mr 1.2 2 2 2 — /.2 2 14,2
(1 —3a°A)(r* +a* cos?0) (r* +a*)(1 +3Ar?)

(5.67)
where
dar? do?
ds3 = (r* + a® cos?6 +
6=( 0s°6) {(a2 +r)(1+3A7%) 1 -14%A cosze}
1 — 3a®A cos®6\|a dt — (r* +4?) dp|?
+sin2g (L3 Acos O)jadt — (7 +a7) dy (5.68)
r“ +a® cos“f (1 —3Aa%)
where the new time and angle co-ordinates 7 and ¢ are defined by
~ 2Mr d
dt =dt+—1—r2L— (5.69)
(1 + §Ar ) Ar \
a 2Mr dr
dé=do+ 5.70
¢ =dy (r2+a2)(1+%Ar2)Ar (5.70)

The form whose square appears in the second term of (5.67) is in fact a null form,
either with respect to the full metric ds® or with respect to the metric ds3 to
which ds? reduces when m is set equal to zero. The existence of the expression
(5.67) establishes the claim that the solution is asymptotically de-Sitter (or
asymptotically flat when A = 0) since the metric ds3 to which ds? tends in the
limit is in fact exactly de-Sitter space (or exactly Minkowski space when A = 0)
albeit in a somewhat twisted co-ordinate system. The co-ordinate system may be
untwisted, and (5.68) reduced to a familiar expression for de-Sitter space (or

flat space when A = 0) by introducing new co-ordinates 7, 8, 3, ¢ defined by

(1 —1a2A)2 =r? + 4? sin0 — 3a® Ar? cos?6 (5.71)
Fcos@ =rcosb (5.72)
LaAs

s= 54 .
=9 1_%d2A2 (5 73)
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) r
f=—rs (5.74)
1 —3a°A
which leads to
dr? ~ s A o n
ds3 + —— +7(d0? +sin%f dp?) — (1 + 3A7?) di? (5.75)
1+ 31\]‘

The fact that the original Kerr metric (with A = 0) can be expressed as flat-space-
plus-squared-null-form was discovered by Kerr and Schild (1965). This property,
with its cosmological term generalization to de-Sitter-space-plus-squared-null-form
(which also applies to the electromagnetic generalizations) distinguishes the
asymptotically well behaved solutions selected above from the much wider class
of separable solutions (including Taub-N.U.T. space) which have been rejected.

6 Maximal Extensions of the Generalized Kerr Solutions

It turns out that despite their much greater complexity, the generalized Kerr

solutions have maximally extended manifolds which are closely analogous to

those of the spherical special cases as described in section 4. The construction

of the appropriate maximally extended manifolds has been discussed in detail by

Boyer and Lindquist (1967) and Carter (1968). The present section will consist

primarily of a somewhat abbreviated description of these extension constructions.
The metric forms (5.36) and (5.54) are of course singular on the locusr =0,

u = cos @ = 0 where the factor Z is zero, and where the curvature array (5.37) is

clearly singular itself. However, when M? > Q2 + P? + 42, these forms are also

singular on the loci where r = r, or r = r_ with the definitions

re =M VM? —a® — Q* — P? (6.1)

i.e. where A, is zero. Since the curvature array (5.36) is well behaved where A, is
zero, one might have guessed that the metric form singularities atr =ryand r=r_
should be removable by co-ordinate transformations, as is in fact shown to be the
case by the existence of the transformation (5.69), (5.70) to the form (5.67) which
is perfectly well behaved where r = r... It will be convenient to make a slightly
different transformation, exactly analogous to the Finkelstein transformation
described in section 4, introducing an ingoing null co-ordinate v, and a corre-
sponding angle co-ordinate p by

r? +q?
dv=dt+

dr
A, (6.2)

a
dp=do+-—dr
p=dyp A

¥
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so as to obtain from (5.54) the form
ds® =2drdv — 2asin®0 drdp+ Z df*
+Z71[(r* +a?)? — A, d? sin?0] sin0 d@>
—2aZ7Y(2Mr — Q* — P?)sin?0 d dv
—[1=Z7'oMr - Q% — P?)] av? (6.3)

with
Z=r*+a%cos? 6 (6.4)
the corresponding electromagnetic potential form being

A=Z7Y[Qr+ Pacos0) dv — Z 7 [Qra sin?0 + P(r? +a®) cos0]dp  (6.5)

where the new potential 4 differs from 4 by a gauge transformation. It was in this
form that both the pure vacuum solution (Kerr 1963) and its electromagnetic
generalization (Newman et al. 1965) were originally discovered (the curves on
which the co-ordinates v, ¢ and @ are all held constant being the integral trajectories
of one of the two degenerate Debever (1958) eigenvector fields, namely W@ — M of
the Weyl tensor). The transformation (6.2), from this original Kerr-Newman

form (6.3) to the standard symmetric form (5.36) was first discovered by Boyer
and Lindquist (1967). The Kerr-Newman form (6.3) is well behaved over the whole
of a co-ordinate patch whose topology is that of the product of a 2-plane and a 2-
sphere, with co-ordinates v, » running from —ee to e and with spherical type co-
ordinates 6 running from O to 7 and ¢ periodic with period 27, except for the

usual rotation axis co-ordinate singularity at 6 = 0 and 6= m where ¢ ceases to be
well defined, and except also for a ring singularity on the locusr =0, 6 = 7/2

where the function Z is zero. The rotation axis singularity is easily removable, for
for example by introducing Cartesian-type co-ordinates x, y, z defined by

x + iy =(r+ia) € sin z=r cosf (6.6)
in terms of which the form (5.67) is transformed (in the case A = 0 under con-
sideration here) to the Cartesian Kerr-Schildt form

ds? = dx? + dy? + dz? — dr?

+2Mr—Q2—P2 r(xdx+ydy)—a(xdy—ydx)+zdz

+dt
r* + 4222 r? + 4 r

(6.7)

The ring singularity is irremovable, since as we have already remarked the
curvature array (5.37) is singular when Z is zero.

Two dimensional cross sections at constant values of v and @ are illustrated
in Figures 6.1 to 6.5. The ring singularity (which is irremovable since as we have
already remarked, the curvature components in the arfay (5.37) are unbounded
in the limit as Z tends to zero) can be thought of as representing the frame of an
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Alice-type looking glass separating the positive r part of the patch (which is
asymptotically flat in the limit # - ) from the negative r part of the patch
(which can easily be seen to be asymptotically flat also in the limit 7 > —o°),

It can be seen directly from the form (6.3) that when they exist (i.e. when
the inequality M2 > Q? + P? + a? is satisfied) the locuses 7 = r, and 7 = r_are null

Figure 6.1. Conformal diagram of symmetry axis 6 = 0 of maximally extended Kerr or
Kerr-Newman solution when M2 > g2 + P2 + Q2. In all the diagrams of this section the

locus 6 = 0, where the axis passes through (without intersecting) the ring singularity, is
marked by a broken zig-zag line.

hypersurfaces which can be crossed in the ingoing (decreasing r) direction only
by future directed timelike lines. The surfaces on which r has a constant value
between these limits (i.e. 7— < r <ry) are spacelike and can also be crossed only
in the sense of decreasing r by a future directed timelike line. Of course starting
from the ¢, ¢ reversal symmetric standard form 5.54, we could also have made
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an analogous extension by introducing outgoing null co-ordinates u, p defined

by

r* + a?

du=dt — dr

Y
43 = dp —— dr (€5
p=do—
The metric form in the resulting co-ordinate system is identical to (6.4) except
that u is replaced by —v and ¢ by —@. This metric form is well behaved on a co-

Points alt
internal infinity

Py
"y

Figure 6.2. Conformal diagram of symmetry axis 8 = 0 of maximally extended Kerr or
Kerr-Newman solution when M2 =42 + P2 + Q2 @2 > 0).

ordinate patch with the topology of the product of a 2-plane and a 2-sphere,
with co-ordinates u,  running from —ee to o and with spherical type co-ordinates
6 running from 0 to 7 and ¢ periodic with periodic 27, except as before for the
standard rotation axis co-ordinate singularity at 0 = 0, 6 = 7, and the ring
singularity at r = 0, 6 = /2. Just as was done in the special case of the Reissner-
Nordstrom solutions in section 4, so also in this more general case, it is possible
to build a maximally extended manifold by combining ingoing null co-ordinate
patches (7, 8, @, v) and outgoing null co-ordinate patches (¥, 6,9, u) in the criss-
cross pattern illustrated in Figures 6.1, 6.2 and 6.4 (which are analogous to 4.9,
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6.3b

Figure 6.3. Figure 6.3a is a modified version of Figure 6.2 and Figure 6.3b is a conformal
diagram of the maximally extended homogeneous universe whose metric is given by
equation (5.63). The shaded regions of the two diagrams can approximate each other
arbitrarily closely in the neighbourhood of the horizons, showing that the maximally
extended Kerr or Kerr-Newman solution effectively contains a homogeneous universe
within it in the bottomless hole case when M2 = P2 + Q2 + 42,

Figure 6.4. Conformal diagram of symmetry axis 8 = 0 of maximally extended Kerr or
Kerr-Newman solution in the naked singularity case when M? < 4?2 + P2 + Q2.
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4.12 and 4.6 respectively). These figures can be thought of as showing the

basic pattern which the 4-dimensional ingoing and outgoing Finkelstein-type
extensions fit together to form a maximally extended manifold, and they can
also be given a more specific interpretation (as described in more detail by
Carter 1966) as exact conformal diagrams of the symmetry axis 6 = 0 of the
maximally extended manifold. As in the Reissner-Nordstrom case, when there
are no horizons, i.e. when M? < Q2 + P? + 42, a single patch suffices as illustrated in
Figure 6.4; in this case the singularity where Z tends to zero is naked in the
sense that it can both receive light signals from and send light signals to the same
original asymptotically flat limit .# where r—> oo. In the general non-degenerate
case when M? > Q% + P? + 42, i.e. when the horizons 7 = 4 and r = r_ both
exist and are distinct, it is necessary to construct Kruskal type co-ordinate
patches analogous to those of 4.9 to cover the crossover points in Figure 6.1,
which represent 2-dimensional spacelike surfaces in the 4-dimensional extended
manifold, where the horizons r =r_ and r =r+ intersect themselves. As in the
spherical cases this construction can be carried out by first introducing the co-
ordinates ¥ and v simultaneously in place of 7 and ¢. We also take advantage of
the fact noticed by Boyer and Lindquist (1968) who first carried out this con-
struction, that there are two particular Killing vector fields corresponding to

the two operators (r2 +a?) 8/dt + a 8/dy in the standard co-ordinates of the form
(5.64), which coincide everywhere with the null generator of the horizonsr =r,
respectively. This makes it possible to define new ignorable angle co-ordinates ¢*
given by

2do* =dp—dp+a(r?+a®)™! (du— dv) (6.9)
which are constant on the null generators of the horizons at r = r, respectively.

We thus obtain two symmetric double null co-ordinate systems, analogous to
(4.20) (and adapted respectively to the horizons r = r.) given by

A,( Z Z, )(r2 — r2)a? sin?0 (du? + dv?)

ds? ==
Z\rP+d®> r2+d%)(r? +d®)(r} +a?) 4

A [ 22 72 ]dudv+2d02

= +

Z [(ﬂ +a%)? P +a?)?| 2

A, asin?0| . Zs Rk

_ _’T [a sin20 dy* — rgTaz (du — dv).:dcp"J
120 2_ 2 _

4 sin [a (ri — r°)(du — dv)

L2

with the obvious abbreviation Z, =r2 +a? cos? 6 and where r is defined implicitly
as a function of u and v by

Fr)y=u+v (6.11)
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where

Fry=2r+k'Inlr—r |+ k20 In|r —r_ (6.12)
with the constants k, and k_ defined by

ks =303 +a*) (e —15) (6.13)

As in section 4, we now introduce new co-ordinates U and V" or U and V™
(depending on whether we wish to remove the co-ordinate singularity at 7 =, or
r=r_) defined by

u=—k:'n|U*| }

6.14
b=+ In| V| (6.14)

which leads directly to the forms
Z N Z: \(r—r)(r+rasin?f
rr+a? r2+a?] (P +a®)(2 +4?)
(Uav?+ v2qu*?y (22 V£
X tZ 2. 22t 2, 22
4 (* ta®)” (ri+a%)
dutdv* a* sin? 0

+Zdh? —
2 Z

K:2GHr)

ds* =771 (

X (r — reks 2G.(r)

2
X [A,a sin 0 dp* — 2—+Z‘% (r = r£)Gs(Nk: (V:dU* — Uthi)] do*

ry

sin? 6

+

+ + + +N 12
g_*:_i‘iz 16 (VEdU* — U*dv*)]

2 + 2 + +
[(r a )d<P a §+d2 2
(6.15)

[which is the generalization of (4.23)] where 7 is now determined implicitly as a
function of U* and V* by

UV* = (r —rs)G: \(r) (6.16)
where G.(r) is defined by
G-_;-_(r) - e—2"i’|r _ r;||K¢/K¢| (617)

The corresponding electromagnetic field potential forms are

_[O@rrs —a? cos® 0) — Pacos O(r + r.)] (V*dU* — U*dV*)
- Z(r: +a% 2
N [Qrasin? 6 + I; cos O(r* + az)]dqoi

A:t

(6.18)
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where the new potentials A* differ from A by gauge transformations. Since the
relations (6.16) and (6.17) ensure that  is an analytic function of U" and V" in
the neighbourhood of the horizons r =r, and an analytic function of U~, ¥~ in
the neighbourhood of the horizons r =r_, it can easily be checked that the forms
(6.15) and (6.18) are well behaved in the neighbourhood of the horizons r = r,
respectively except for the usual co-ordinate singularities on the rotation axes

0 =0, 6 = m which could easily be removed by changing to a Cartesian type
system. Since it is rather complicated the form (6.15) is of very little practical
use, but its existence is important in order to establish that the extended mani-
fold includes the intersections of the two null hypersurfaces U* = 0and V* =0
which make up the locuses r = r,. The fitting together of the co-ordinate patches
covering the maximally extended manifold of Figure 6.1 is described in more
explicit detail by Boyer and Lindquist (1967) and Carter (1968).

In the naked-singularity case, i.e. when M < Q2 +P? + 42 the patches covered
by the original standard metric form (5.54) and by the Kerr-Newman form (6.3)
are equivalent, and so a single patch gives the maximally extended manifold as
illustrated in Figure 6.4. In the limiting intermediate case M? = Q% + P? + 4>
where the horizons ¥ =r, and r = r_ have coalesced to form a single degenerate
horizon at r = M, the Kerr-Newman patches of the form (6.3) are sufficient to
build the whole maximally extended manifold illustrated in Figure 6.2, as is
described in more explicit detail by Carter (1968). As in the degenerate spherical
case of Figure 4.12, so also in Figure 6.2 there are internal boundary points which
represent limits which can only be reached by curves of infinite affine length (in
addition to the boundary points representing the ordinary external asymptotically
flat limit, i.e. the boundary hypersurfaces congruent to .#). As in the spherical
case, so also in this more general case, it can easily be seen that the degenerate
limit manifold illustrated by Figure 6.2 approximates a homogeneous universe
whose metric is given by the special solution (5.63), in the limit as the degenerate
horizon r = M is approached, in the manner shown by Figure 6.3 (which is
analogous to Figure 4.14). This limiting case will be given special attention in
the following course of Bardeen.

The rigorous proof that these manifolds (as illustrated by Figures 6.1 to 6.4)
really are maximal (in the sense that they are not submanifolds of more extended
solution manifolds) depends (as in the spherical case) on the demonstration that
all geodesics can either be extended to arbitrary affine length or else approach the
curvature singularities, i.e. they are such that Z tends to zero along them. The
method of integrating the geodesics is described in the following section. The
explicit demonstration that the only incomplete geodesics are those which
approach the curvature singularity is decribed by Carter (1968) and will not be
repeated in this course.

We conclude this section by remarking that the procedures described here can
also be applied in a straightforward manner to the asymptotically de Sitter A-term
generalization (5.65) of the Kerr solutions. In this case when the rotation para-
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meter ¢ is small compared with M, and when M is small compared with the radius
parameter A~V of the asymptotic de Sitter universe, there will be four zeros of
4, of which two, which may be denoted by r =r,, r =r_, will be analogues of
the zeros r = r, in the ordinary Kerr solutions, while the other two, which may be
denoted by r =7, >r, and r =r_ _ <r_ would exist even in the ordinary

de Sitter universe. The conformal diagram for the symmetry axis of the ordinary
de Sitter universe has already been given by Figure 2.3. It is easy to guess that the

To be identifFied

MW”’
”

gm-m Plp.

i

M Sihgularity

Figure 6.5. Conformal diagram of the symmetry axis 6 = 0 of the Kerr-de Sitter solution
when A™% > M2 » 42. The opposite sides of the diagram are to be identified [compare
Figure 2.3 which is also the conformal diagram of the symmetry axis 6 = 0 for the pure
de Sitter universe].

corresponding conformal diagram of the symmetry axis of the simplest maximally
extended Kerr-de Sitter space will be as shown by Figure 6.5 which shows a
sequence of de Sitter universes in which antipodal points are connected by
Kruskal type throats. It is a straightforward (albeit lengthy) exercise, using the
techniques described in this section, to construct appropriate Finkelstein type
and Kruskal type co-ordinate patches to cover the manifold whose structure is
shown by Figure 6.5 and then to integrate the geodesic equations and use them

to prove that this manifold is indeed maximal. Since the Kerr-de Sitter solution
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is of more geometrical than physical interest, we shall not discuss it further in
this course.

7 The Domains of Outer Communication

The only parts of the manifolds described in the previous sections which are
strictly relevant to studies of black holes are the domains of outer communications
(i.e. the parts which can be connected to one of the asymptotically flat regions by
both future and past directed timelike lines), more particularly the domains of
communications which are non-singular in the sense of having geodesically
complete closures in the extended manifolds, since (as is discussed in the introduc-
tion to Part II of this course) it is these domains which are believed to represent
the possible asymptotic equilibrium states of a source-free exterior field of a

black hole. It is fairly obvious (and follows directly from the lemma 2.1 to be
given in Part II of this course) that in the cases when M2 < Q2 + P? + 42 the
domains of outer communications consist of the entire manifold, whereas when
M? >(Q? + P? + 4? the domains of outer communications consist only of the
regions r > r, bounded by the outer Killing horizons at 7 = r,.. In the former case
—the case of naked singularities—the domain of outer communications is itself
singular, since there are always some geodesics which approach the curvature
singularities. (Nevertheless there are fewer incomplete geodesics than one might
have expected since one can show (Carter 1968) that only geodesics confined to
the equatorial symmetry plane u = O can actually approach the curvature
singularities.) In the latter case, when the horizons at » = r, exist, the singularities
will always be hidden outside the observable region r > r,. (since we always have
r. =r_ > 0); therefore, since the only incomplete geodesics in the maximally
extended manifolds are those which approach the curvature singularities, it follows
that closures of the domains r > r, are indeed complete in the sense that any
geodesic in one of these domains must either have infinite affine length or else
have an end point within the domain r > r, or on the boundary r = r, in the
extended manifold.

The remainder of our discussion will therefore be limited to these black hole
exterior domains 7 > r.in the cases when the inequality M* >a* + P? + Q% is
satisfied. An important property of these domains (without which they could not
be taken seriously as the basis of a physical theory) is that they satisfy the
causality condition that there are no compact (topologically circular) causal (i.e.
timelike or null) curves within them. This follows from the fact that the hyper-
surfaces on which ¢ is constant form a well-behaved congruence of spacelike hyper-
surfaces within the domains r > r, [which implies that # must increase monotonic-
ally along any timelike or null curve which remains in one of these domains]. The
fact that these hypersurfaces are spacelike when r > r, follows from the fact that
the two-dimensional metric on the surfaces on which ¢ and ¢ are both constant is
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positive definite whenever 4, is positive, (i.e. both when r > r, and when r <r_)
and from the fact that the coefficient given by

_(r*+4d*)? — Aa?sin? 6

r? +4a? cos? 0

sin? 6 (7.1)

(which represents the squared magnitude of the Killing vector corresponding to
the operator d/dp inr, 0, ¢, p co-ordinates) turns out to be strictly positive also
throughout the domains r = r_ except of course on the rotation axis where it is
zero. The coefficient X does become negative in a subregion [indicated by double
shading in Figures 7.1 to 7.7] in the neighbourhood of the curvature singularity,
thereby giving rise to causality violation in the inner regions of the extended
manifold. In the naked singularity case, when M? < a* + P? + 92, it can easily be
shown (Carter 1968, Carter 1972) that the entire extended manifold is a single
vicious set in the sense that any event can be connected to any other by both a
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Figure 7.1. Plan of a polar 2-section on which v and ¥ are constant through maximally
extended Kerr solution with M? > a2. The ring singularity is treated as a branch point

and only half of the 2-section (corresponding roughly to cos 6 > 0) bounded by cuts is
shown—the other half should be regarded as being superimposed on the first half in the
plane of the paper. The same comments apply to Figures 7.2 and 7.3. In all the diagrams

of this section dotted lines are used to represent locuses on which 7 or 9 is constant, and

the positions of the Killing horizons are marked by a heavy line except for degenerate
horizons which are marked by a double line. The regions in which V is negative are indicated
by single shading and the regions where X is negative are marked by double shading. Some
projected null cones are marked.
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Figure 7.2. Plan of polar 2-section in which v and ¥ are constant through a maximally ex-
tended Kerr solution in the degenerate case when M? =42,

Figure 7.3. Plan of a polar 2-section in which v and § are constant through a maximally
extended Kerr solution when M2 < a2
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Figure 7.4. Rough sketch in perspective of a polar 2-section in which v and @ are constant
through a maximally extended Kerr solution when M? > g2 (this is an alternative representa-
tion of the same section as is shown in Figure 7.1).
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Figure 7.5. Rough sketch in perspective of a polar 2-section in which v and $ are constant
through a maximally extended Kerr-Newman solution when M2 > g2 + P2 + 02
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Figure 7.6. Rough sketch in perspective of an equatorial 2-section in which v is constant
and cos 6 = 0 through a maximally extended Kerr or Kerr-Newman solution when
M? > 4? + P2 + Q2. The continuous lines represent envelopes of projected null cones.
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Figure 7.7. Rough sketch in perspective of equatorial 2-section in which v is constant and
cos 6 = 0 through maximally extended Schwarzschild solution. This represents the static

limit of Figure 7.6.

future and a past directed timelike curve. However, in the black hole cases, i.e.
when M? <a? + P? + 02, the causality violation is restricted to the domains
r<r_, and so does not affect the domains of outer communications.

Another noteworthy feature of the domains of outer communications
(although its significance is often exaggerated) is that except in the spherical cases
they overlap with the regions [indicated by single shading in Figures 7.1 to 7.6]
in which the coefficient V given by

2Mr — P? — Q?

7.2
r? +a? cos? 0 (7.2)

V=1-
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is negative. This coefficient V is the negative squared magnitude of the time
Killing vector corresponding to the operator 8/d¢ inr, 0, ¢, t co-ordinates; it is

the same as the metric component gg, in a notation system where the co-ordinates
x1 x2, x3, x% are taken to be 7, 6, ¢, t. We shall refer to the outer boundary of this
region as the outer ergosurface since it bounds the region within which the energy
E of an uncharged particle orbit (as defined by equation (8.22) of the next
section) can be negative. It is sometimes misleadingly described as an “infinite

red shift surface” on the grounds that the light emitted by a particle which is
static (in the sense that its co-ordinates remain fixed) will be redshifted at large
asymptotic distances by an amount which tends to infinity as the position of the
static particle approaches the ergosurface. However, the real significance of the
region ¥ < 0 bounded by the ergosurface is that physical particles which are

static in this sense may not exist at all within it (if their world lines are to be
timelike). In practice, moreover, one would not expect static particles to exist
even in the neighbourhood of the ergosurface, and therefore the infinite red shift
phenomenon would never be observed. On the other hand a genuine physically
observable infinite red shift will take place whenever a particle crosses the actual
horizon at r = r,, since it is obvious that the light emitted by such a particle in

the finite proper time-interval preceding the moment at which it crosses the
horizon will emerge at large distances spread during an unbounded time interval.

8 Integration of the Geodesic Equations

The geodesic equation, and also the orbit equations
mva;bvb = eFabvb (81)

for a particle of mass m charge e moving in a free orbit with unit tangent vector
v? can both be obtained from the same simple Lagrangian

L =3gp% %0 — ed g3° (8.2)

where a dot denotes differentiation with respect to an affine parameter, A say. In
the case of a particle orbit, A must be related to the proper time 7 along the orbit
by

T=mA (8.3)
which is equivalent to imposing the normalization condition

gapX°%” = —m? (8.4)
which means that we shall have

X =m? (8.5)
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The geodesic equations are obtained from the Lagrangian (8.2) when e is set
equal to zero.
Introducing the momentum co-vector

Pa = gapi"— €A, (8.6)

we see that the Hamiltonian corresponding to the Lagrangian (8.2) has the very
simple form

H = 3g"%(p, +eA,)(py + eAp) (8.7)

Since the affine parameter A does not appear explicitly in the Hamiltonian, the
Hamiltonian itself will automatically be a constant of the motion, and by the
normalization condition (8.4) it is clear that this constant is given simply by

=_im? (8.8)

When one of the co-ordinates, x° say, is ignorable (i.e. does not appear explicitly
in the Hamiltonian) the corresponding momentum p¢ will commute with the
Hamiltonian (in the sense that its Poisson bracket with the Hamiltonian will be
zero) and hence it will also be a constant of the motion. In the case of the metric
form (5.18) with the electromagnetic field potential (5.45) there are two
independent ignorable co-ordinates, namely # and ¢ and hence the corresponding
momenta p; and p,, will both be conserved, giving two constants of the motion in
addition to the constant given by (8.7) which would always exist.

To obtain a complete set of explicit first integrals of the motion we need to
have a fourth constant of the motion. In a general stationary-axisymmetric space-
time an independent fourth integral would not exist, but the condition that the
charged Klein Gordon equation be separable (which we imposed in our derivation
of the Kerr solutions) automatically guarantees the weaker condition that the
Hamilton-Jacobi equation corresponding to the Hamiltonian (8.6) will be
separable in the present case (Carter 1968a, Carter 1968b), thus ensuring the
existence of the required fourth integral. We shall not use the Hamilton-Jacobi
formalism in the present section, but instead shall show how the fourth constant
may be obtained directly by inspection of the Hamiltonian using the following
lemma:

LEMMA Let the Hamiltonian have the form
_1H +H,
2U0,+U,

where U, and U,, are single variable functions of the co-ordinates r and u respec-

tively and where H, is independent of the momentum p,, and of all the co-
ordinate functions other than r, and H,, is independent of the momentum p, and

(8.9)



BLACK HOLE EQUILIBRIUM STATES 119

of all the co-ordinate functions other than u. Then the quantity

_UH,-U,H,
- W (8.1 0)
commutes with H and hence is a constant of the motion.

Proof Since the stipulated conditions clearly ensure that A, commutes with
H,,, and since H,, naturally commutes with itself, we obtain

] (8.11)

=1 +
[Hr, H] T(Hr HM) [Hr, Ur + Uu

Similarly since U, clearly commutes with H, and with U, + U, we obtain

(U, H] = (U, H,] (8.12)

20U, + Uy

Working out the Poisson brackets on the right hand sides we find

1 1 oH, dU,
Hr, . =— 2
U, +U, U, +U,)" op, dr

= m [U,,H,] (8.13)

Thus we can eliminate the right hand sides of (8.11) and (8.12) to obtain

(H,,H] =2H[U,, H] (8.14)
It follows immediately that the quantity

K = 2U,H — H, (8.15)

commutes with A and hence is a constant of the motion. It is clear from (9.8)
that this quantity K can also be expressed in the form

K=H, — 2UH (8.16)

and also in the more symmetric form (8.10). This completes the proof.
Now the Hamiltonian corresponding to our canonical separable metric form
(5.18) with the canonical vector potential (5.45) can be read off directly from the

inverse metric (5.16) as
Aupii+ A [Cupy *+ Zups— eX,]?
2CZ, - C.Zy)

+ Arplzl _ Ar—1 [Crpcp + Zj.tpt+ €X,,]2
2(C“Z,. -GZ,)

H=

(8.17)
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which clearly has the form (8.9) with

H, = Ap} — 0,1 [Copy + Zipe+ eX, ] (8.18)
Hy= Ayl + A [Cuby + Zup,— eX ] (8.19)
U,=C.Z, (8.20)
U,=-CZ, (8.21)

It follows at once from the lemma that there will indeed be a fourth constant of
the motion K given equivalently by (8.10) or (8.16) in terms of the expressions
(8.18), (8.19), (8.20), (8.21), in addition to the constant H given by (8.17) and
the energy and polar angular momentum constants £ and L, given by

E=—p, (8.22)
L,=p. (8.23)
In terms of the actual source free solutions (5.46) to (5.53) we shall have
_ (U —upa+ (1 —u?) '[Pyt a(l — p?)p, — ePu]®
2r* +a*u?
A7 — M [ap, + (r? + a*)p, + eQr]?

H

202 + %0 (8.24)
and the corresponding expression for K will be
i = L0 = wHAP; — A '[9y * (7 +a®)Pet eQr]’}
2+ a2
L+ - @?)pi + (1~ 1) '[Py +a(l — p?)p, — ePul’}
2+ a2y’
(8.25)

where A, is given by (5.52).
Transforming from momentum to velocity co-ordinates and setting u = cos 0
we obtain the four constants of the motion explicitly as two linear combinations

_(r* —2Mr +a? cos? 0 + P* + Q)i

E
r* +a? cos? 0
(2Mr — P? — Q%a sin’ 0o + e(Qr + aPu)
¥ r? +a? cos? 0 (8.26)
I - [(¥* +4a)? — Aa?sin? 0] sin? Gy
z r? +a?cos? b
B P2 0%y <in 05 + . 2 2, 2
. (2Mr — P — Q%)a sin“ 0t + e[aQr sin” 6 + P(r° + a“) cos 0] (8.27)

r? +4?cos? 6
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and two quadratic combinations

=2
m? = —(r* + a® cos? 0)(% +92)

4

_sin®0 (7 +a%)p— ai]* + 5—o"—5— | 0 — 7]?
r? +a?%cos? 6 v r? +a?cos®0 asin® kP—
(8.28)

2, 2.2
r“+a“cos“f. A,
K =4*sin? 6 r? [asin? §p — £]?
A, P +a%cos? o

sin2 @

2 2 2 2 2 042
+(r° +a r°+a°cos“0)f° +——F5———
( ) {( ) r? +a?cos?0

(2 +a*)p — ai ]2}

(8.29)

Introducing the functions
R(r) = [E(r* + a2) —al,— eQr]2 — A (m**+K) (8.30)
©(0) = K — m%a® cos®  —sin~? O [Easin> @ — L, + eP cos 0]? (8.31)

=C+ 2aePE cos 6 + [az(E2 —m?®— (L2 +e*P?)sin 2 0] cos? 0 (8.32)
where C is a constant given in terms of K by
C=K— (L, —aE)? (8.33)
we can express the non-ignorable co-ordinate velocities by the equations
Z*%* =R(» (8.34)
Z%? = 9(6) (8.35)

It is clear from the form of (8.35) and (8.31) that K must always be positive if 6
is to be real. The ignorable co-ordinate velocities can be expressed directly as

. 1 a? aE(2Mr - 0%
=L, |[—— -~ 8.36
Zp=L; [sin2 9 A, A, (8.36)
. 2 +4%? 2Mr — P* — Q*
zi=g T pgerg| _ g, B o) (8.37)
A, A,

Hence we can obtain the final fully integrated form of the orbit equations as
0 I
d0 ar
\/__

1 4
a 2cos20do (r?ar

Vo JVR

(8.38)

(8.39)



122 B. CARTER

14

6
_ (L, +aEQ2Mr — P> — Q*)]dr L,adv
v +f : AR ¥ f sin2 6/0 (8.40)
r 0
_ [ [EC? +d*)? —aL,(2Mr — P> — Q®)]dr a*E sin® 0 do
’“*f AR Ve @4

Applications of these equations are discussed in the following course by Bardeen.
We conclude by remarking that the linear constants of the motion £ and L,
can be expressed in the form

E=—k°, (8.42)
and
L,=m%, (8.43)

in terms of the Killing vector components k% and m? defined by

a a
O a2 8.44
ot ox? (844)
d 2 0
S 8.45
oy m ox* (845)
It can easily be seen that the Killing equations
K@py=0 (8.46)
Ma;p) =0 (8.47

are both necessary and sufficient for £ and L, as defined by (8.42) and (8.43) to
be constant along all geodesics. In order for them to be constant along charged
particle orbits as well it is further necessary and sufficient that the invariance
conditions

A% gy + Ay k"= 0 (8.48)
Aama;b + Ab;ama =0 (849)

be satisfied, as they are in the present case.
Now the quadratic constant of the motion (8.29) can analogously be expressed
in the form

K = a,x*%° (8.50)
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where @, is a symmetric tensor given by
2 ;2 2
a”sin“ 0 dr
dgp dx®dx? = (r* + a* cos? 0) A +(r? + 4% db?
4
. (r* +a?) sin? 0 [(r* + a®) dp — a dt]?
r? +4? cos? 0
A,a® sin? 0 [asin® 0 dp — dt]?

_ 8.51
r? +a?cos? 6 ( )

[This expression (8.50) for K having a similar form to the expression (8.4) for the
constant m?.] It is a standard result (see Eisenhart 1926) that the equations

a(ab;c) =0 (8.52)

are both necessary and sufficient for an expression of the form (8.50) to be
constant along all geodesics. Since the equation (8.52) is analogous to the Killing
equations (8.46) which are necessary and sufficient for the analogous linear
expression to be constant along geodesics, Penrose and Walker (1969) in a recent
discussion have introduced the term Killing tensor to describe a symmetric tensor
satisfying the equations (8.52). Personally I would prefer to call it a Stackel tensor
since Stackel (a contemporary of Killing) actually made the first studies of the
kind of Hamilton-Jacobi separability which gives rise to the existence of such a
tensor (Stackel 1893).

It is to be noted that the existence of the Stackel-Killing tensor is not in itself
sufficient to ensure that the quadratic expression (8.50) is constant along charged
particle orbits as well as geodesics. It is easy to see that in general a necessary and
sufficient condition for the quadratic expression ,;x?x? to be constant along
charged particle orbits is that in addition to (8.52) the electromagnetic field
should be such that

aa(ch)a =0 (853)

It is clear that in any space the metric tensor g, will satisfy the Stackel-Killing
equations (8.52) and also that it will satisfy the condition (8.53) for arbitrary
F,p, thus giving rise to the constant of motion (8.4). Also when there are Killing
vectors present their symmetrized products also form Stackel-Killing tensors, so
that in the Kerr metrics there is actually a five parameter family of Stackel-Killing
tensors of which five linearly independent members may be taken to be g,p, the
tensor a4, defined by (8.51), together with k(,kpy, k(omp) and m,mpy. These give
rise to five linearly independent constants of which of course only four are
algebraically independent.

The approach to the Kerr metrics which we have adopted here is to start with
the separability properties as a fundamental postulate, and then to derive other
basic algebraic properties such that the fact that the Weyl tensor is of Petrov
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type D. The more traditional approach has been to start from the Petrov type D
property and then to derive the separability properties. The investigations initiated
by Penrose and Walker (1969) are aimed at deriving the separability properties
directly from the Petrov type D property without actually going through the
explicit solution of the field equations. [It is to be emphasized however that the
direct derivation of the existence of the Stackel-Killing tensor can only be an
intermediate stage in this programme, and is by no means sufficient to establish
the full separability properties of the Kerr metrics: there is at present no known
way of deducing the separability of the wave equation—as opposed merely to the
separability of the Hamilton-Jacobi equation—from the Stackel-Killing tensor.]
Some important recent work by Teukolsky (1972) has shown that the Kerr metrics
possess even stronger separability properties than those we have used in the
present course, by which higher spin wave equations (as well as the ordinary

scalar wave equation) can be at least partially separated by combining the
separation methods described at the beginning of section S with Petrov-type
analysis. This discovery is likely to prove to be of very great value in future
perturbation analyses of the Kerr solutions.
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