PART Il General Theory of
Stationary Black Hole States

1 Introduction

The necessity of facing up to the problem of catastrophic gravitational collapse in
astrophysics was first appreciated by Chandrasekhar in 1931 when he discovered
the upper mass limit for a spherical equilibrium configuration of a cold sphere of
ordinary degenerate matter in Newtonian gravitational theory. Subsequent work
by Chandrasekhar, Landau, Oppenheimer and others established fairly clearly by
the end of the nineteen thirties that the upper mass limit would not be greatly
affected by taking into account the existence of exotic forms of high density
matter, such as a degenerate neutron fluid, nor by the corrections resulting from
the use of Einstein’s theory of gravity, according to which an object above this
limit must ultimately disappear from sight within its Schwarzschild horizon—which
occurs when the circumferential radius 7 is diminished to twice the conserved
mass M (where here, as throughout this work, we use units in which Newton’s
constant G and the speed of light ¢ are set equal to unity)—with the subsequent
formation of a singularity.

It is true of course that an arbitrarily large mass can exist in quasi-equilibrium
in a sufficiently extended differentially rotating disc-like configuration. However,
it would be rather surprising if nature contrived to avoid the formation of at least
some large stars with sufficicntly small angular momentum for its effects to be
negligible even after contraction to the Schwarzschild radius. Moreover there are
many diverse effects (including viscosity, magnetic fields, and gravitational radia-
tion) which would all tend to transfer angular momentum outwards, except in the
special case of uniformly rotating axially symmetric configurations, for which
there is in any case an upper mass limit, somewhat larger than the spherical upper
mass limit, but of the same order of magnitude. (See for example the work of
Ostriker et al.) Hence although its onset may in some cases be postponed or
prevented, the basic issue of catastrophic collapse cannot be avoided merely by
taking into account natural deviations from spherical symmetry.

Despite these considerations there was very little work in the field until the
mid nineteen-sixties. The first signs of renewed interest were a pioneering attempt
by Regge and Wheeler (1957) to determine the stability of the Schwarzschild
horizon, and an equally important pioneering work by Lifshitz and Khalatnikov
(1961) in which it was suggested that the ultimate singularity which occurs in the
spherical collapse case might be avoided in more general situations. These two
works forshadowed the subsequent subdivision of the field of gravitational collapse

125



126 B. CARTER

investigations into two main branches, the first—with which we shall be concerned
here—being concerned primarily with horizons and astronomically observable
effects, and the second being primarily concerned with the fundamental physical
question of the nature of the singularities and the breakdown of the classical
Einstein theory. Another event which was of key importance in stimulating
interest in the field was the accidental discovery by Kerr (1963) of a rotating
generalization of the spherical Schwarzschild solution of Einstein’s vacuum
equations—accidental in the sense that Kerr’s investigations were not directly
motivated by the astrophysical collapse problem.

However, the event which laid the foundations of the modern mathematical
theory of gravitational collapse was the publication by Penrose (1965) of the
now famous singularity theorem which conclusively refuted the suggestion that
singularities are merely a consequence of the spherical idealization used in the
early work. The actual conclusion of the Penrose theorem was rather restricted,
being essentially negative in nature, and although its range of application has been
very greatly extended by the subsequent work of Stephen Hawking, there is so far
very little positive information about the nature of the singularities whose
existence is predicted. The real importance of the Penrose theorem lay rather in
the wealth of new techniques and concepts which were introduced in its proof,
particularly the notion of a trapped surface and the idea of treating boundary
horizons as dynamic entities in their own right. These developments lead directly
to the realization that the outcome of a gravitational collapse—in so far as it can
be followed up in terms of the classical Einstein theory—would have to be either
(a) the formation of a well behaved event horizon separating a well behaved
domain of outer communication (within which light signals can not only be
received from but also sent to arbitrarily large distances) from hidden regions (for
which the term black holes was subsequently introduced by Wheeler) within
which the singularities would be located, and from which no light could escape to
large distances, or (b) the formation of what have come to be known as naked
singularities, i.e. singularities which can be approached arbitrarily closely by time-
like curves or light rays which subsequently escape to infinity. If the latter situation
were indeed to occur it would mean that the classical Einstein theory would be
essentially useless for predicting the subsequent astronomically observable
phenomena, so that the development of a more sophisticated gravitational theory
would be an urgent practical necessity. However there are a number of features
of the situation as we understand it at present which encourage belief in the
conjecture which Penrose has termed the cosmic censorship hypothesis, which
postulates that naked singularities do not in fact occur, i.e. that the only possible
outcome of a gravitational collapse is the formation of black holes. It is probably
fair to say that the verification or refutation of this conjecture is the most
important unresolved mathematical problem in General Relativity theory today.
If the cosmic censorship conjecture is correct then there will be no theoretical
reason why Einstein’s theory of gravity should not be adequate for all foreseeable
astronomical purposes, except for dealing with primordial singularities (sometimes
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referred to as white holes) such as the cosmological big bang. (It will still of
course be possible that the theory may fail empirically by conflict with
observation.)

Having arrived at the idea of a black hole as a possible outcome, if not an in-
evitable outcome, of a gravitational collapse, it is natural to conjecture that it
should settle down asymptotically in time towards a stationary final equilibrium
state—any oscillations being damped out by gravitational radiation—as indicated
in Figure 1. It was after all the non-existence of such a stationary final equilibrium
state for an ordinary massive star which led to the introduction of the alternative
black hole concept in the first place. With these considerations in mind, and the
recently discovered Kerr solution as an example, several workers including myself,
and notably Bob Boyer, began a systematic study of the properties of stationary
black hole states during the years 1965-1966. Too much concentration on the
stationary equilibrium states could not of course have been justified if the settling
down process took place over astronomically long timescales, but it has sub-
sequently become fairly clear from the dynamical perturbation investigations of
the Schwarzschild solution by Doroshkeviteh, Zel’dovich and Novikov (1966),
Vishveshwara (1970), Price (1972) and others that (as was suspected, by dimen-
sional considerations, from the outset) any dynamic variations of a black hole can
be expected to die away over timescales of the order of the time for light to cross
a distance equal to the Schwarzschild radius. These timescales are in fact extremely
short by astronomical timescales—of the order of milliseconds for the collapse of
an ordinary massive star, and at most hours or days for the collapse of an entire
galactic nucleus.

This early work served to clarify many of the elementary properties of the
black hole event horizons in the stationary case, and also their relationship with
other geometrically defined features such as what has subsequently come to be
known as the ergosurface, which are described in detail in sections 2 to 5. This
phase of elementary investigation was almost complete by the time of Boyer’s
tragic death in the summer of 1966, although the results were not actually
published until somewhat later, (Boyer (1969), Carter (1969), Vishveshwara
(1968)). The results described in section 8 were overlooked in this earlier period
and were obtained quite recently (by Hartle, Hawking and myself) while the
rigorous proofs in section 9 were actually worked out at Les Houches by Bardeen,
Hawking and myself.

An analogous first phase of investigation of the elementary properties of black
hole even horizons in the more general dynamic case has been carried out more
recently almost exclusively by Stephen Hawking, using some of the techniques
developed by Penrose, Geroch and himself for proving singularity theorems; the
most important of these elementary properties is that the area of the intersection
of a constant time hypersurface with the event horizon (which is of course
constant in the stationary case) can only increase but never decrease with time in
the dynamic case (Hawking 1971). An off-shoot of this work has been a much
more sophisticated second phase of investigations of stationary black hole event



128 B. CARTER

v //%7////////

N Pole

y /%/ %,

S pole

Figure 2. Equatorial and polar sections of a conceivable axially and equatorially symmetric
galactic nucleus are illustrated. The nucleus is supposed to consist of a stellar system (whose
intersections with the equatorial and polar planes are represented by the shaded regions)
with a massive central black hole. (The hole will be non-Kerr-like due to the distorting
influence of the stellar mass distribution.) Projections onto the equatorial and polar planes
of two stellar orbits (related by a 90 degree axisymmetry rotation) are marked, using dotted
lines where the orbits lie behind the relevant planes. These would be typical orbits in a
system which is approximately stationary (in that mass redistribution as the stars fall into
the hole takes place over timescales long compared with the orbital periods) but in which
the circularity condition is violated due to a net inflow of matter at high latitudes com-
pensated by a net outflow near the equator. (In order to obtain this circularity violation

it is necessary not only that the orbits be eccentric but also that they should have a
consistent average tilt.) The Papapetrou theorem is sufficiently powerful to ensure that the
spacetime will be stationary-circular in the empty region in the neighbourhood of the hole
despite the non-circularity resulting from the quasi-convective matter flow in the region
occupied by the stars. (See section 7.)
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horizons, in which (using the techniques originally developed by Newman and
Penrose for dealing with gravitational radiation problems) Hawking has shown
that many of the simplifying assumptions which were taken for granted in the
earlier work on stationary event horizons, particularly that of axisymmetry, can
in fact be rigorously justified. I shall use what I shall refer to as Hawking’s strong
rigidity theorem as the starting point of section 3 of this course. The actual deriva-
tion is discussed by Stephen Hawking himself in the accompanying lecture course,
but the full technical details of the proof are beyond the scope of the present
proceedings (see Hawking (1972), Hawking and Ellis (1973)). The main content
of sections 6 and 7 will be the demonstration that this theorem can be combined
with suitable generalizations (which I shall present in full detail) of earlier
theorems, originally derived outside the context of the black hole problem, by
Lichnerowicz (1945) and Papapetrou (1966), to justify the principle simplifying
conditions namely staticity and circularity, which are involved at various stages in
section 2 and in the subsequent sections.

The existence of the kinds of the results described in sections 2 to 7 were in
most cases at least conjectured before 1967, even though many of the detailed
formulae and rigorous proofs which are now available, particularly those due to
Hawking, are of more recent origin. However in that year a new result was
announced by Israel which took me, and as far as I know everyone else in the
field, by surprise, despite the fact that there were already many hints which
might have suggested it to us. This was the theorem which could be taken, subject
to some fairly obvious assumptions which have since been fully justified, as
implying that the Schwarzschild solution is the only possible pure vacuum
exterior solution for a stationary black hole which is non-rotating (in the sense
made precise in section 4). Until then I think that we had all thought of a black
hole even in the stationary limit, as potentially a fairly complicated object. I
know that I had always imagined it should have many internal degrees of freedom
representing the vestigial multipole structure of the star or other object from
whose collapse it had arisen. Yet here was a theorem which implies that if rotational
effects were excluded, there could be no internal degrees of freedom at all, apart
from the mass itself. My immediate reaction—and as far as I can remember this
was how Israel himself saw the situation—was to suppose that this meant that
only stars starting off with artificially restricted multipole structures, and in the
non-rotating case only exactly spherical stars, could form black holes with well
behaved event horizons, so that the natural outcome of a gravitational collapse
under physically realistic conditions would always be the formation of a naked
singularity. In short it seemed that the cosmic censorship conjecture was utterly
erroneous, and that our work on black hole theory had been, from a physical
point of view, rather a waste of time. This state of alarm did not last very long,
however, since in the discussions that followed, in which Roger Penrose took the
leading part, it soon became clear that there was an almost diametrically opposite
and far more plausible alternative interpretation which could be made. This was
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that far from being an essentially unstable phenomenon, the formation of a black
hole is actually a stabilizing effect, which enables an object collapsing from one
of a very wide range of initial configurations, not only to form a well behaved
event horizon, but also to settle down (as far as the part of space-time outside the
event horizon is concerned) towards one of a very restricted range of possible
stationary equilibrium states, the excess multipoles being lost in the form of
gravitational radiation. Thus on this interpretation, an uncharged non-rotating
body (if it collapses in a part of space sufficiently far from external perturbing
influence) should give rise ultimately to a Schwarzschild black hole. The sub-
sequent investigation of the decay of perturbations in a Schwarzschild background
space by Vishveshwara, Price, and others, provides strong support for this way of
viewing the situation, which is now almost universally accepted as correct, at least
for cases where the initial deviations from spherical symmetry are not too large.

Having reached this point of view, it was natural to conjecture that the only
possible pure vacuum exterior solutions for a rotating black hole were those
which were already known, that is to say the Kerr solutions, which until then we
had thought of as merely simple examples from a potentially much wider class.
The idea that the multipole moments could settle down to preordained values by
gravitational radiation made it seem particularly natural to conjecture that in the
pure vacuum case the only multipole moments which would remain as independent
degrees of freedom would be those for which there were no corresponding degrees
of freedom in the asymptotic gravitational radiation field, that is to say the mono-
pole and dipole moments, i.e. the moments corresponding to mass and angular
momentum (which cannot be radiated away directly, although they can of course
be varied indirectly in consequence of the non-linearity of the field equations).
These are in fact just the two degrees of freedom which actually are possessed by
the Kerr solutions. It is not yet known for certain whether the Kerr solutions
are absolutely the only possible stationary black hole exterior solutions, but it
can be established conclusively (using appropriate global conditions, and with the
aid of Israel’s theorem and the strong rigidity theorem of Stephen Hawking, which
in conjunction make it possible to take axisymmetry for granted) that all solu-
tions must indeed fall into discrete classes within which there are at most two
degrees of freedom, as the intuitive physical reasoning described above would
suggest. (It is this property of having no degrees of freedom except those
corresponding to multipoles which can not be directly radiated away which
Wheeler has described by the statement that “‘a black hole has no hair”.) It can
also be shown that in the unlikely event that there does exist any other family
than the Kerr family, it must be somewhat anomalous, in so much as the range of
variation of the angular momentum within the family cannot include zero.

In addition to the strong rigidity theorem, Stephen Hawking has also derived a
very valuable theorem which he will describe in the accompanying lecture course,
stating that the constant time sections of stationary black hole boundaries must
be topologically spherical. Using these two theorems as the starting point and
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making the further highly plausible but not yet rigorously justified assumption
that there cannot be more than one topologically spherical black hole component
in an asymptotically flat pure vacuum stationary exterior space, I shall give a
fairly complete derivation of the basic no-hair theorem whose content I have just
described. I shall also demonstrate, subject to the further assumption of axisymmetry
that the Schwarzschild black holes are the only ones with stationary pure
vacuum exteriors and with zero angular momentum; I hope that the treatment
given here will also be useful as an introduction to the study of the full scale
Israel theorem, in which axisymmetry is not assumed. Israel’s original version of
the theorem (1967) contained an alternative simplifying assumption which has
since been removed, at considerable cost in technical complexity, by Muller Zum
Hagen, Robinson, and Siefert (1972). Both these versions of the theorem are
incomplete in that they assume various boundary conditions on what is presumed
to be the surface of the black hole without reference to a proper global definition
of the black hole event horizon; it should however be clear from the present
treatment that these boundary conditions can in fact be justified without too
much difficulty by means of the lemma described in section 4.

The net effect of the mathematical results which I have just outlined is to make
it virtually certain that for practical applications a stationary pure vacuum black
hole can be taken to be a Kerr black hole. However it is by no means certain that
the whole range of Kerr black hole states is physically attainable. The recent work
by Chandrasekhar (1969), (1970), and Bardeen (1971) on equilibrium configura-
tions for a self gravitating liquid in General relativity, suggests by analogy the likeli-
hood that although the Kerr solutions are almost certainly stable for sufficiently
small values of the dimensionless parameter J 2/M4, (where M is the mass and J the
angular momentum in natural units) there may be an eigenvalue of this parameter
(below the cosmic censorship limit J%/M* = 1) above which they would become
unstable. The existence of such an eigenvalue might be revealed in a purely
stationary analysis by the presence of a first order perturbation solution bifurcating
from the Kerr solutions at the corresponding value of J2/M*. I have shown in the
proof of the no-hair theorem that there is no axisymmetric first order bifurcating
solution, but the theorem of Hawking, which excludes the existence of exact non-
axisymmetric perturbations, does not rule out the possibility of first order non-
axisymmetric perturbations. This suggests that if there is an instability in the
higher angular momentum Kerr black holes it is likely that it will lead to the
formation of non-axisymmetric deformations. If the cosmic censorship hypothesis
is correct the deformed black hole would presumably get rid of its excess angular
momentum by gravitational radiation, and ultimately settle down towards one of
the stable Kerr black holes below the critical eigenvalue. The recent developments
in dynamic perturbation theory, in which very diverse techniques have been
introduced by groups such as Chandrasekhar and Friedman, Hawking and Hartle,
and Press and Teukolsky, encourage the hope that the question of the stability
of the upper part of the Kerr black hole sequence will be solved conclusively, one
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way or the other, in the not too distant future. Although it appears that the most
exciting future development in black hole theory will be concerned with dynamic
aspects, there remains a great deal to be done in stationary black hole theory,
particularly in relation with non-vacuum black holes. To start with there is the
question of how the results would be affected by the presence of an electro-
magnetic field. I have been able to allow for the presence of such a field in all

the results described in sections 2 to 11, but although Israel was able by an
impressive tour de force (Israel 1968) to generalize his theorem to cover the
electromagnetic case, I have not yet been able to do the same for the no-hair-
theorem (given in section 12). One would expect (as it is discussed in section 13)
that a stationary black hole solution of the source-free Einstein-Maxwell equations
would have just two extra degrees of freedom, (in addition to the mass and
angular momentum) which would correspond to the conserved electric and
magnetic monopole charges. In particular this means that an uncharged black hole
should have no magnetic dipole moment.) While no one has yet been able to
exclude the existence of a solution family branching off from the Kerr-Newman
solution family (which has just the four degrees of freedom one would expect),

it is not so difficult (as has been shown by Wald, and also independently by Ipser)
to prove that no such bifurcating solution family can start off from the pure
vacuum Kerr subfamily.

For practical astrophysical applications the question of electromagnetic
generalizations is probably not of very great importance, since magnetic monopoles
appear not to exist, and due to the fact that charges can be carried by electrons and
positrons (which are very light compared with the baryons which normally give the
principal contribution to the mass), it is very easy for electric charges to be neutral-
ized by ionization or pair creation processes, so that in an actual collapse situation
it is hard to see how any excess charge carried down into the black hole could
ever be more than a small fraction of a per cent (in natural units) of the mass. A
potentially more important generalization is to the case where the black hole is dis-
torted from the simple Kerr form by the presence of some sort of fluid. In the case
of a black hole formed from the collapse of an ordinary star such effects would prob-
ably be negligible, since in order to produce significant deviation effects it is neces-
sary that the perturbing mass be not too small compared with the mass of the hole,
and also that it be within a distance not too large compared with the Schwarzschild
radius of the hole. In other words the perturbing material must be condensed to
a density not too far below that determined by the dimensions of the hole. In the
case of an ordinary star sized black hole this could only arise if the perturbing
material itself consisted of a neutron star or another black hole in a close binary
configuration, and due to its lack of overall axisymmetry such a system would
lost energy rapidly by emission of gravitational radiation, and could survive for at
most a matter of seconds. However it seems much more likely that a supermassive
black hole of the kind whose existence in galactic nuclei was originally suggested
by Lynden-Bell (1969) could deviate significantly from the Kerr form, at least
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during an initial active period, lasting perhaps for a million years or so after its
formation. The sort of object I have in mind would be an axisymmetric system
consisting of a central black hole of something like 10° solar masses, surrounded
at a distance of a few Schwarzschild radii, by an equally massive cloud consisting
of 10 ordinary individual stellar mass Kerr black holes. To minimize the rate of
collisions (which would in any case be extremely small in terms of timescales
comparable with the several hour long orbital periods) one could make the further
not implausible supposition that the small Kerr black holes move in fairly
coherent orbits in a Saturn-like disc configuration. Being out of phase, the gravita-
tional radiation contributions of the individual Kerr black holes would almost
completely cancel out, and as far as calculations of the large scale properties of
the central non-Kerr black hole were concerned, the cloud of small black holes
could be treated approximately as a (suitably non-isotropic) fluid. Except in the
final sections 10 to 13 which are specialized to the vacuum cases, all the results
which follow will be valid for general stationary but non-Kerr black hole con-
figurations of the kind which I have just described. A more detailed treatment of
many aspects of non-vacuum black hole theory is contained in the following
course given by Jim Bardeen.

2 The Domain of Outer Communications and the Global Horizon

Throughout this course we shall be dealing with a space-time manifold .# which
is asymptotically flat and pseudo-stationary. By asymptotically flat we mean that
M is weakly asymptotically simple, in the sense of Penrose (1967), and by pseudo-

stationary we mean that . is invariant under a one-parameter isometry group

action 7:R(1) x .#~.# of the one-parameter translation group R(1), and that

the trajectories of this action 7° (i.e. the sets of points {x € #:x = 7°(¢, x,), t € R(1)}
for fixed xo €.#) are timelike curves at least at sufficiently large asymptotic
distances. If the trajectories of 7 were timelike curves everywhere, .# would be

said to be stationary in the strict sense. The maximal connected asymptotically

flat subdomain & of .# that is stationary in this strict sense will be referred to as

the outer stationary domain of M.

Our attention in this course will be almost exclusively restricted to the domain
of outer communications <.#> of _# which is defined as the set of points from
which there exist both future and past directed timelike curves extending to
arbitrarily large asymptotic distances. In the terminology of Penrose (1967), <.#>
is the intersection of the chronological past of #* with the chronological future
of J7. It is evident that <#> (like &%) is an open subset of .#, and can therefore
be regarded as an asymptotically flat space-time manifold in its own right. Clearly
the boundary <.#>° of <.#> in .#, which we shall denote more briefly by S
can be thought of as a union of the form #’= #* U #", where the subset of
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points S * forms part of the boundary of the chronological past of £ ¥, (i.e. the
boundary of the subdomain of .# from which there are future directed timelike
curves extending to arbitrarily large asymptotic distances) and where similarly the
subset S~ forms part of the boundary of the chronological future of #~. Using
the lemmas of Penrose and Hawking (Penrose (1965), Hawking (1966)) it is easy
to see that 7" must be a global past horizon in the sense (Carter 1971) that it is
an achronal hypersurface (i.e. a not necessarily differentiable hypersurface with
the property that no two points on it can be connected by a timelike curve) such
that from any point on it there is a null geodesic which can be extended without
bound towards the future (but not necessarily towards the past) lying entirely in
H’*. Similarly 5 is a future global horizon.

These definitions and properties of <#>,# and # do not depend in any
way on the pseudo-stationary property. In a dynamic collapse starting from well
behaved intial conditions #~ would not exist, and # " could be regarded as being
either the past boundary of the black hole (i.e. the region of space-time outside
<> or equivalently as the future boundary of the domain of outer communica-
tions (see Figure 1). The example of spherical collapse shows however that one
cannot expect that the corresponding pseudo-stationary limit space will, when
extrapolated back in time by the group action, have well behaved initial conditions,
although one can at least demand that the closure of the domain of outer
communications should be geodesically complete (in the sense that any inextensible
geodesic of finite length will have an end point on the boundary) if a horizon J#~
is allowed for in .#. The region lying to the future of J#* can still be quite appropri-
ately described as a black hole since, by its definition, no light from within it can
escape to an external observer. The analogous region to the past of 5~ (if it exists),
which has the property that it can never be reached by any signal or probe from
outside, has been referred to as a white hole—a rather misleading term, since light
of any colour might in principle emerge from it. Personally I should prefer to
refer to any such region (i.e. a region lying outside the future of .#") as a primordial
hole. As far as the present course is concerned it will not be necessary to worry
about these distinctions, and I shall simply refer to the whole of the region
outside the domain of outer communications as a hole™ without further qualifica-
tion. Since this work is motivated by the problem of gravitational collapse, our
attention will be entirely devoted to the domain of outer communications <.%>
and its future boundary, the horizon #*. It will at no stage be of any particular
importance whether the horizon S exists, nor what its properties may be if it
does.

Since the domain of outer communications and its bounding horizon #* are
globally defined subsets, it is not always easy to ascertain their position in relation

T A consensus at this school has agreed that the most appropriate French translation of
the term black hole is “piége noir”’. For more general purposes it has been suggested that the
term hole should be translated as “poche”; thus primordial hole would be translated as
“poche primordiale™.
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to locally defined structures on .#. Under favourable conditions however it is
possible to determine the position of #* locally, in relation to the symmetry
group structure, as will be shown in the next section. In establishing such relation-
ships, I have found the following lemma, which gives an alternative global
characterization of the domain of outer communications, extremely useful.

LEMMA 2 <.#> is the maximal connected asymptotically flat domain of .# with
the property that the trajectory n° (x) of the pseudo-stationary action #°* through
any point x in the domain will, if extended sufficiently far in the forward direc-
tion, enter and remain in the chronological future of x (i.e. in the set of points
which can be reached by a future directed time-like curve from x).

Proof The proof consists of two parts: Part I in which it is shown that any
connected asymptotically flat domain & of .#, with the property that the
trajectory m°(x¢) of #° through any point xo € 2 will enter the chronological
future of x if extended sufficiently far in the forward direction, must lie within
<#>; and Part Il in which it is shown that the trajectory of #° through any
point x of <.#> will enter and remain in the chronological future of x if
extended sufficiently far in the forward direction.

Part I: The required result follows at once from the fact that any point xo € 2
can be connected to some point ¥’ on the trajectory 7°(y) of the action 7° through
any point y € & by a future directed timelike curve X in 2. The existence of A
is established as follows. Since & is connected there certainly exists some curve
v from x¢ to y. By the defining property of 2, there must exist some point x;
on the trajectory m%(x) such that x lies in the chronological future of x.
Therefore any point x; on v sufficiently close to x will lie on some future
directed timelike curve A; from xy,. Since 1y is compact, it is possible by repeating
this process to obtain a finite sequence of points x; on <y starting with x¢ and
ending with y, such that each point x; lies on a future directed timelike curve A;
which starts from some point x;_; on the trajectory 7°(x;_;) of 7* through the
preceding point x;_; of the sequence. By transporting the timelike segments A;
suitably under the group action #° one can clearly construct a sequence of image
segments which connect up end to end to form a future directed timelike curve A
from x¢ to some point on 7°(y).

Part II: It is evident that a possible subdomain &, with the properties specified
above, is the outer stationary domain . It is clear from the definition of <.#>
that any point x, in <> can be connected to some point x; in & by a future
directed timelike curve A, and that x can be reached from some other point x,
in & by a future directed timelike curve A3. Moreover by the properties of &
discussed above, there must exist a future directed timelike curve A, from x; to
some point x5 in the trajectory n%(x,) of 7° through x,. Therefore by transporting
A3 suitably under the group action 7, it is possible to construct an image segment
A3 which links up with A; and A, to form a timelike curve A from x, to some
point xg on 7%(x,) via x,; and x5. This establishes that 7%(x,) enters the chrono-
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logical future of xq. 7°(x) may of course leave the future of x after remaining
within it only for a limited group parameter distance, but in this case (by repetition
of the preceding argument) it will re-enter after a finite distance, and at the
second entry must remain in the chronological future of x for at least twice as
long (as measured by the group parameter) as on the first occasion. It is easy to
see that after at most a finite number of departures and re-entries, a point will be
reached beyond which will never leave the chronological future of x. This
corapletes the proof of the lemma.

In most of the work of this course, we shall need to employ the following
postulate:

CAUSALITYAXIOM There are no compact (i.e. to be more explicit, topologically
circular) causal (i.e. everywhere timelike or null) curves in .#.

This is almost the weakest possible global causality condition. Its necessity for
any reasonably well behaved physical situation can hardly be question. The lemma
which has just been established does not itself depend on the causality condition,
but most of its applications do. An example is the following immediate corollary:

COROLLARY If the causality axiom holds in .#, then any degenerate trajectory
of 7 (i.e. any fixed point of the action) and also any topologically circular
trajectory of #°, must lie outside the domain of outer communications <.#>.

Fixed points and circular trajectories can however lie on the boundary 5# of
< #>—indeed this is where one would normally expect them to turn up, as is
shown by the example of the Kerr black holes. The causality axiom is satisfied in
a Kerr black hole solution if, in defining .#, we exclude the region within the
inner horizon at r=r_. In this case there are in fact circular trajectories of the
pseudo-stationary action on the Boyer-Kruskal axis # ¥ N #~, and also fixed
points of the pseudo-stationary action where 5 * N S intersects the rotation
axis. In the more special case of a Schwarzschild black hole, #* N #~ consists
entirely of fixed points of the pseudo-stationary action.

The lemma which we have just proved can also be used, again in conjunction
with the causality axiom, to show that the domain of outer communications of a
pseudo-stationary space-time manifold is a fibre bundle over a well behaved three-
dimensional base manifold, the fibres being the trajectories of the group action
(Carter 1972b).

3 Axisymmetry and the Canonical Killing Vectors

Whenever it is convenient to do so, I shall suppose that the space-time manifold
# under consideration is axisymmetric, i.e. that it is invariant under an action
7:30(2) x M~ M of the one-parameter rotation group SO(2), in addition to
being invariant under the pseudo-stationary action #* of R(1). In fact apart from
the discussion of static ergosurfaces in the present section, the only stage at which
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I shall not assume axisymmetry will be in the derivation of the Hawking-
Lichnerowicz theorem (which would not in any way be simplified by assuming
axisymmetry).

The original justification, (when the work described here was first undertaken)
for postulating axisymmetry was simply that it is difficult to imagine any realistic
astrophysical system to which the theory might be applied which could, as a good
approximation be treated as pseudo-stationary without being able, as an equally
good approximation, to be treated as axisymmetric (the idea being that
any non-axisymmetric bulge would probably need to rotate to support itself,
thereby radiating gravitationally). It is now possible to justify the axisymmetry
condition as a mathematical necessity, at least in the case of rotating black holes,
by appeal to Hawking’s strong-rigidity theorem according to which, subject to
very weak and general assumptions, which are described by Hawking in the
accompanying notes, there exists an isometry group action 7" of R(1) on .#
with the property that the null geodesic generators of #°* are trajectories of 7.
The black hole is said to be non-rotating if 7" is the same (up to a scale factor) as
7, and otherwise it is described as rotating. On account of the restrictions imposed
by asymptotic flatness, it may be taken for granted that the axisymmetry action
7 whose existence I have postulated commutes with the pseudo-stationary
action 7* (see Carter 1970; I should point out that in this reference I ought to
have stated that the vector fields referred to in the statement of Proposition 5 and
in the proof of Proposition 6 must be complete). Hawking has shown directly
that the action %" predicted by his theorem commutes with 7° and that in the
rotating case the two together generate a two parameter Abelian isometry group
action 7™ with a subgroup action 7 of SO(2). In the non-rotating case it is
possible to establish axisymmetry—and indeed spherical symmetry—by a rather
different method provided that <.#> is a pure or electromagnetic vacuum, by
using first the generalized Hawking-Lichnerowicz theorem to be described in
section 6, and then the theorems of Israel (1967), (1968). In the case of a non-
rotating hole with external matter present, axisymmetry is not a mathematical
necessity, but even in this case it seems unlikely that there would be any natural
astrophysical applications which would not be axisymmetric in practice.

Even when .# has a many parameter isometry group, resulting from axial or
even spherical symmetry, there will still be only one unique pseudo-stationary
subgroup action 7° (up to a scale factor), since any other subgroup action will
have spacelike trajectories at large distances. We shall denote the Killing vector
generator of #° by

9 _ a0
ot ox*?
where the x* (¢ =0, 1, 2, 3) are general local co-ordinates, and where ¢ is a group

parameter along the trajectories. (At a later stage we shall impose further restric-
tions in order that # shall be well defined as a canonical co-ordinate function.) We

(3.1)
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shall fix the scale factor by imposing the standard normalization condition, which
consists of the requirement that the squared magnitude scalar

= k%, (3.2)
should satisfy
Vo1 3.3)

in the asymptotic limit at large distances. Subject to this requirement, the vector
k? is uniquely determined. It will of course satisfy the Killing equations

ka;b = k[a;b] (3-4)

Except in the spherically symmetric case, in which a choice must be exercised,
the axisymmetry action 7 will also be uniquely determined, (up to a scale factor)
since other one-parameter subgroup actions will in general have non-compact
trajectories. We shall denote its generator by

a 0

A 3.5

oy ox? (3-5)
where ¢ is a group parameter along the trajectories. The vector field 7® will be
zero on a necessarily timelike two dimensional rotation axis. We shall fix the
scale factor by imposing the standard normalization condition, which consists of
the requirement that the squared magnitude scalar

X=mm, (3.6)
should satisfy
X X°
Y el | 3.
ax -7

in the limit on the rotation axis. This ensures that the group parameter ¢ has the
standard periodicity 2m. Subject to this requirement m? is uniquely determined
in the spherical case. It will of course satisfy the Killing equations

Mgp = m[a;b] (3.8)

We have already remarked that the actions 7° and 71 must commute, meaning
that together they generate a 2-parameter action 74 = 7* ® 7 of the group
R(1) x SO(2), defined by

m4(t, ¢, x) = 75(t, ™ (e, x)) = ™ (0, 7, X))

for any ¢ € R(1), ¢ € SO(2), x € A. 1t follows that the generators k* and m®
satisfy the local commutation condition

m? kP = k? ym® (3.9)
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The surfaces of transitivity of the action 7 i.e. the sets of points
{x € M:x=1(¢, ¢, x0), t ER(1), € SO(2)}

will clearly be timelike in . We shall define the outer stationary axisymmetric
domain W~ of # as the maximal asymptotically flat sub-domain of .# in which
these surfaces of transitivity are timelike, or equivalently in which the Killing
bivector

Pap = 2k[a’nb] (3.10)

is timelike. Thus & is the maximal connected asymptotically flat region in which
V> 0 and ¥ is the maximal connected asymptotically flat region in which ¢ > 0,
where we introduce the notation

0=—4ppp®=VX+ W? (3.11)
where

W=k’m, (3-.12)
We note that

W=X=0=0 (3.13)

on the rotation axis, where m? is zero. By a trivial application of the lemma of

the previous section it is clear that & must lie within <.#>. By considering the
locally intrinsically flat geometry of one of the cylindrical timelike 2-surfaces of
transitivity of the action 74 in %/, it is clear that any trajectory of the action
through a point xq in the 2-cylinder must ultimately enter the chronological future
of x( defined in relation to the intrinsic geometry on the 2-cylinder, and must
hence, a fortiori, enter the chronological future of x¢ in the 4-dimensional space-
time geometry of .#. Therefore by application of the lemma of the previous
section we deduce that #" must also lie in < #>. Since we have already remarked
that % must lie within #” we see therefore that we must have

FEW S<LI> (3.14)

whenever the relevant domains are defined.

We conclude this section by noting that while % is characterized by V' > 0,
and ¥ is characterized by ¢ > 0, the whole of .# except for the rotation axis on
which X = W = ¢ = 0 must be characterized by

X>0. (3.15)

if the causality axiom holds.
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4 Ergosurfaces, Rotosurfaces and the Horizon

In any space-time manifold with a pseudo-stationary isometry group action
generated by a Killing vector k°, the energy E of a particle moving on a timelike
geodesic orbit is a constant given by E = —mk“®, where m is the rest mass of the
particle and v? is the future oriented unit tangent vector of the orbit. It is evident
that this energy must always be positive within the outer stationary domain .
More generally £ must always have a definite sign (depending on the time-
orientation of k%) in any region in which V = —k%, is positive, while on the other
hand it may have either sign at any point where £ is spacelike. We shall refer to
any locus on which V is zero, i.e. any boundary separating regions where k“ is
timelike from regions where it is spacelike, as an ergosurface, and more particu-
larly, we shall refer to the boundary & ® of # as the outer ergosurface.

When .# is axisymmetric as well as pseudo-stationary we shall in an analogous
manner refer to a locus on which o is zero as a rotosurface, and more particularly
we shall refer to the boundary ¥ ® of the outer stationary-axisymmetric domain
W~ as the outer rotosurface.

Another way of thinking of these surfaces is to regard & as a staticity limit, i.e.
the boundary of the outer connected region within which it is kinematically
possible for a timelike particle orbit to satisfy the condition of staticity i.e. for
its tangent vector v? to be parallel to k% similarly #"°® can be thought of as a
circularity limit i.e. the boundary of the outer connected region within which it is
kinematically possible for a timelike orbit to satisfy the condition of circularity,
i.e. for its tangent vector to be a linear combination of k% and m? so that the orbit
represents a uniform circular motion. [The ergosurface .%* has sometimes been
referred to in the literature as an “infinite red-shift surface™, but this is misleading
since the only physical particles whose observed light will suffer a genuine infinite
red shift are those which cross the black hole horizon # itself.]

In consequence of (3.14) we see that the rotosurface %~ *—when it is defined—
must always lie outside or on the hole boundary & and similarly that the ergo-
surface % ® must always lie outside or on both %" ® and 5. The main objective of
this section is to show that there are natural conditions under which either % or
#"® (or both) must actually coincide with 5. This will be of great value when we
come on to the study of black hole uniqueness problems, since (being globally
defined) the hole boundary may in general be difficult to locate without integrating
the null geodesic equations. When 5 can be identified with &®or #"® whose
positions are locally determined in terms of the symmetry group structure, what
would be an extremely intractable integro-partial differential problem reduces to
a relatively straightforward (albeit non-linear) partial differential equation
boundary problem.

The situations under which this simplification occurs, arise when either the
pseudo stationary action 7° or the pseudo-stationary axisymmetry action 7° @ 7/
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is orthogonally transitive meaning that the surface of transitivity (which will have
dimensionality p equal respectively to 1 or 2 everywhere except on loci of
degeneracy) are orthogonal to a family of surfaces of the conjugate dimension
(i.e. of dimension n — p which will be respectively 3 or 2). In the former case, i.e.
when 7° is orthogonally transitive, the geometry is said to be static. In the latter
case, i.e. when 7 is orthogonally transitive, I shall describe the geometry as
circular for reasons which will be made clear in section 7. By Frobenius theorem
the necessary and sufficient condition for the geometry to be static in & (i.e. for
the Killing vector £? to be orthogonal to a family of hypersurfaces) is

Kia;pke) = 0 (4.1)

and similarly the necessary and sufficient condition for the geometry to be
circular in #, (i.e. for the Killing bivector pg, to be orthogonal to a family of
2-surfaces) is

KiapPca) =0
Ma;bPcd) = 0 (4.2)

It will be made clear in sections 6 and 7 that these conditions of staticity and
circularity are not imposed gratuitously but that as a consequence of the Hawking
strong rigidity theorem one or other can be expected to hold in the exterior of a
stationary black hole under practically any naturally occurring conditions.

The purpose of the present section is to show that subject to suitable global
conditions, the ergosurface (or staticity limit) &® coincides with S in the static
case, while the rotosurface (or circularity limit) #”* coincides with 5 in the
circular case. The demonstration depends on the two following lemmas, of which
the first was originally given (independently) by Vishveshwara (1968) and Carter
(1969) and the second was originally given by Carter (1969).

LEMMA 4.1 If the staticity condition (4.1) is satisfied in %, then the boundary &*®
consists of null hypersurface segments except at points of degeneracy of the
action 7° (i.e. where k% is zero).

LEMMA 4.2 If the circularity conditions (4.2) is satisfied in #, then the boundary
#® consists of null hypersurface segments except at points of degeneracy of the
action 7° @ 1 (i.e. where p? is zero).

Proof of Lemma 4.1 We start by using the Killing antisymmetry condition
3.3 to convert the Frobenius orthogonality condition 4.1 to the form

2ka;[bkc] = kak[b;c] (4.3)
from which, on contracting with k% and using the definition (3.2) of ¥V, we obtain

V,1ke) = VEibic (4.4)
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This tells us immediately that on the locus % ® on which V is zero, the gradient
V p is parallel to £ and hence null there, (except at points of degeneracy where
k“ is actually zero). In the non-degenerate case, i.e. when the gradient ¥, is non-
zero, so that V ;, determines the direction of the normal to the hypersurface on
which V' = 0, it follows immediately that this hypersurface is a null hypersurface
as required. In the degenerate case where V' j, is zero on the locus V' = 0 more care
is required since ¥ might be zero not just on a hypersurface but over a domain of
finite measure. However by more detailed consideration of the situation (cf. Carter
(1969)) it can easily be verified that it will still be true that the actual boundary
& ® must be a null hypersurface.

Proof of Lemma 4.2 By analogy with the previous case, we use the Killing
antisymmetry conditions (3.4) and (3.8) to convert the Frobenius orthogonality

conditions (4.2) to the form

ka;[bpcd] = _kak[b;cmd] + mak[b;ckd] }

My, [6Pcd] = MaM[pcMa) — KaMp;cMa) (4.5)
from which we can directly obtain

2pae;[bpcd] = PaeP[cd;b] (4.6)
Contracting this with the Killing bivector p,;, we obtain

0,[bPcd] = OP[cd;b) (4.7)

This equation is analogous to (4.4), and tells us immediately that in the non
degenerate case, i.e. when the gradient o , is non-zero on the boundary #~ ® where
0 is zero, the normal to#”® which is parallel to 0,p lies in the plane of the Killing
bivector p,;. This is only possible (since the normal must also be orthogonal to
this bivector) if the normal is null, i.e. if #”®is a null hypersurface. As before it is
still possible with rather more care (see Carter 1969) to deduce that the boundary
#"®is a null hypersurface even in the degenerate case where o j is zero, (except
on the lower dimensional surfaces of degeneracy of the group action, where the
Killing bivector p,p, is itself zero). This completes the proof.

The two preceding lemmas may be used respectively in conjunction with the
lemma of section 2, to prove the two following theorems, which are of central
importance in stationary black hole theory: (these results have been given in a
somewhat more general mathematical context by Carter 1972b).

THEOREM 4.1 (Static Ergosurface Theorem) Let .# be a pseudo-stationary
asymptotically flat space-time manifold with a simply-connected domain of outer
communications <.#>. Then if the (chronological) causality axiom and the
staticity condition (4.1) are satisfied in <.#> it follows that <. #> = &, where
& is the outer stationary domain and hence that the outer ergosurface S*
coincides with the hole boundary .
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THEOREM 4.2 (Rotosurface Theorem) Let .# be a pseudo-stationary axisymmetric
asymptotically flat space-time manifold with a simply connected domain of outer
communications < #>. Then if the causality axiom and the circularity condition
(4.2) are satisfied in <.#> it follows that <> = ¥ where # is the outer
stationary-axisymmetry domain, and hence that the outer rotosurface W *
coincides with the hole boundary .

Proof of Theorem 4.1 We have already noted that % must always be entirely
contained within <.#>. Let & be a connected component of the complement of
& in <> Since & is connected (by definition) so also is the complement of &
in <#>. Hence by the condition that <.#> is simply connected, it follows (from
elementary homotopy theory) that the boundary 2°® of 2, as restricted to <.#>,
is connected.

Now (as we remarked at the end of section 2) it follows from the causality
axiom by the corollary to Lemma 2 that the action 7° can never be degenerate
(i.e. k% can never be zero) in <.#>, and hence it follows from Lemma 4.1 that the
boundary 2° of 2, as restricted to <.#>, must consist entirely of one connected
null hypersurface. It follows that the outgoing normal (from £) of this hyper-
surface must therefore be everywhere future directed or everywhere past directed;
in the former case no future directed timelike line in <.#> could ever enter &
from %, and in the latter case no future directed timelike line in <.#> could ever
enter & from 2. Neither alternative is compatible with the condition that & lies
in <.#>, unless & is empty. This establishes the required result.

Proof of Theorem 4.2 By analogy with the previous case we note that #~
must lie entirely within <.#>, and we choose & to be a connected component
of the complement of #in <.#>. As before we see that the boundary 2° of &
as restricted to <>, is connected.

We now use the causality axiom to establish that the action 7° ® 7 is nowhere
degenerate (i.e. the Killing bivector pg, is nowhere zero) in <.#> except on the
rotation axis where m? is zero. This follows from the fact that K must be parallel
to m? at any point of degeneracy, so that the trajectories of the action 7° would
be circles. Any such circular trajectory of #° must lie outside <.#> if the
causality axiom holds, by the corollary to Lemma 2.

We can now use Lemma 4.2 to deduce that the boundary 2° of & as restricted
to <.#> must consist of a null hypersurface everywhere, except perhaps at points
on the rotation axis where m? is zero. We can go on to deduce that the outgoing
normal to this boundary must be everywhere future directed or everywhere past
directed as before, despite the possibility of degeneracy on the rotation axis, since
the rotation axis must be a timelike 2-surface everywhere (by local geometrical
considerations) and as such could never form the boundary of a null hypersurface.
Hence as in the previous case we deduce that & must be empty as required. This
completes the proof.
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The mathematically important qualification that the domain of outer communica-
tions should be simply connected does not restrict the practical application of
these theorems, since Stephen Hawking has given arguments (see his discussion in
the accompanying lecture course) which indicate that in any reasonably well
behaved gravitational collapse situation the domain of outer communications of
the resulting final equilibrium state should have the topology of the product of
the Euclidean line R(1) with a 3-space which has the form of a Euclidean R(3)
from which a number of three dimensional balls (solid spheres) have been removed,
and which is therefore necessarily simply connected. Except in artificially con-
trived situations one would expect further that the 3-space would have the form
of a Euclidean 3-space from which only one 3-dimensional ball has been removed,
i.e. that it would have the topology S(2) x R(1) where S(2) is the 2-sphere, so that
the domain of outer communications as a whole would have the topology
S(2) x R(2). This latter stronger condition will be imposed in the theorems of
sections 10 to 13.

We shall conclude this section by proving an important corollary to Theorem
4.2, which is as follows:

COROLLARY TO THEOREM 4.2 (Rigidity Theorem) Under the conditions of
Theorem 4.2, it is possible to choose the normalization of the null tangent vector
I of 5" in such a way that it has the form

=K+ Qm* (4.8)

where the scalar ¥ is a constant over any connected component of

Proof Itis evident from (4.2) that [ is a linear combination of k% and m*
on the horizon, and hence can be expressed in the form (4.8) where 2 is some
scalar which represents the local angular velocity of the horizon. The non trivial
part of the proof is the demonstration that Q2 is constant, i.e. that the rotation
which it determines is rigid, which is a consequence of the commutation condition
(3.8), which was not required for the proof of the basic Theorem 4.2. Since any
vector in the horizon including m? in particular, is orthogonal to /4 we find on
contracting (4.8) with m?® that Q must be given by

xXQf=_w (4.9)

where W and X are defined by (3.12) and (3.6). (On the rotation axis, where W
and X are both zero, 2 must be defined by a limiting process). Using the
relations

X,= 2mbmb;a}

W o= 2K, (4.10)

(of which the latter is a consequence of the commutation condition (3.8)) we find
by differentiation of (4.9) that the gradient of QH is given by

X*Qf = 2(wmP — xXkP\my., (4.11)
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It follows, from the second of the Frobenius equations (4.2), that we must have
Xzﬂﬁlapbc] = —4om[a;bmcl (412)

where o is defined by (3.11). Since we have already established that o is zero on
the horizon, this gives simply

Qappe) =0 (4.13)

This implies that the gradient of the coefficient Q determined by (4.9) lies in the
surface of transitivity of the group action 7% at the horizon, which is impossible
(since Q7 is clearly a group invariant quantity) unless the gradient is actually zero
on the horizon, i.e.

Q=0 (4.14)

which is the required result. This completes the proof.

Having established that Q7 as defined by (4.8) is constant on the horizon, we
can use this constant in (4.8) to define a vector field /* which will satisfy the
Killing equations

la;b = l[a;b] (415)

everywhere in .#. Our demonstration of the existence of this Killing vector field
I° that is null on the horizon has been based on the assumption that either the
staticity condition or the axisymmetric circularity condition is satisfied. The
strong rigidity theorem of Hawking, to which we have already referred, establishes
the existence of this Killing vector field without assuming either staticity or axi-
symmetry, subject only to very weak and general assumptions. If the hole is
rotating, i.e. if 1? does not coincide with k? then Hawking has shown, as an
immediate corollary to his basic theorem, that there must exist an axiSsymmetry
action 7 generated by a Killing vector field m? such that /2 has the form (4.8). It
then follows from the generalized Papapetrou theorem which will be described in
section 7 that the circularity condition which was postulated in Theorem 4.2 must
necessarily hold. On the other hand if the hole is non-rotating, i.e. if the Killing
vector field /% that is null on the horizon coincides with the pseudo-stationary
Killing vector field k°, it follows from the generalized Hawking-Lichnerowicz
theorem which will be described in section 6 that the staticity condition which
was postulated in Theorem 4.1 must necessarily hold (at least provided one is
prepared to accept the as yet not rigorously proved supposition that the ergo-
surface which coincides with the horizon in the non-rotating case is the same as
the outer ergosurface).

The net effect of the results of this section is to establish that #* must be a
Killing horizon (in the sense defined by Carter 1969) that is to say it is a null hyper-
surface whose null tangent vector coincides (when suitably normalized) with the
representative of some (fixed) Killing vector field, this field being the [? which has
just been constructed. This makes it possible to carry out a precise analysis of the
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boundary conditions on 5 in the manner which will be described in the next
section.

5 Properties of Killing Horizons

The horizon Killing vector /%, which generates the action 77 referred to in section
3, can be thought of as being in a certain sense complementary to the pseudo
stationary Killing vector k. We shall consistently use a dagger to denote the
complementary analogue, defined in terms of /4, of a quantity originally defined
in terms of k%. Thus in particular we define

V"‘ = ——lala (51)
Wt =1°m, (5.2)

The quantity X is self complementary, as also is 0 which can be expressed in the
form

o=Vix+w'? (5.3)

Since [? is orthogonal to any vector in the horizon, including m? and [ itself, it is
immediately evident that VT and W' and hence also (as was established directly
in Theorem 4.2) o, are zero on the horizon, i.e. we have

Vi=wh=6=0 (5:4)

on S, which is closely analogous to the condition (3.13) satisfied on the rotation
axis. Whereas k? is timelike at large asymptotic distances, (i.e. near .#) becoming
spacelike between the ergosurface where V' = 0 and the horizon (except in the non-
rotating case where it is timelike right up to the horizon), on the other hand /¢ is
timelike just outside the horizon, becoming spacelike outside the co-ergosurface,
where VT =0 (except in the non-rotating case where /? is timelike out to arbitrarily
large distances). [We remark that an analogous co-ergosurface can be defined for
any rigidly rotating body as the cylindrical surface at which a co-rotating frame
is moving at the speed of light; the surface so defined is of importance in the Gold
theory of pulsars.]

Being orthogonal to the horizon, /* must satisfy the Frobenius orthogonality
condition

lasple) =0 (5.5)

on . It is a well known consequence of this condition that the null tangent
vector of any null hypersurface must satisfy the geodesic equation. To see this
one uses the fact that the squared magnitude — V7 of 12 is a constant (namely
zero) on the horizon, so that its gradient must be orthogonal to the horizon, and
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hence satisfies
Viap) =0 (5.6)

on the horizon. Contracting (5.5) with /¢ and using (5.6) together with the condi-
tion 1 = 0, one immediately obtains the geodesic equation

Nalp el €= 0 (5.7)

This is equivalent to the condition that there exists a scalar k which is in fact the
positive root of the equation

K* =3l 1% (5.8)
such that
12.41° = k] (5.9)

on " (On A", 1 will satisfy an equation of the same form, except that  is
replaced by —«). The scalar k measures the deviation from affine parametrization
of the null geodesic. If v is a group parameter on one of the null geodesic
generators of J# 7, i.e. a parameter such that

_dx*

=
dv

(5.10)

where x? = x%(v) is the equation of the geodesic, and if v is a renormalized tangent
vector given by

0o O _dv (5.11)
dw dw

where w is an affine parameter, i.e. a function of v chosen so that v will satisfy

the simple affine geodesic equation

v

V@ p0?=0, (5.12)
then it follows that they will be related by

4 1 dw)_ 5.13

a\"dv] " (5.13)

[The expression (5.8) for k is obtained by contracting (5.5) with /2% and using
the Killing equation (4.15) with the defining relation (5.9).]

The scalar k defined at each point on the horizon in this way, will turn up
repeatedly in different contexts throughout the remainder of this course. (It also
plays an important role in the accompanying course of Stephen Hawking; in terms
of the Newman-Penrose notation used by Hawking, it is given by k = € + € where
€ is one of the standard spin coefficients for /%, defined with respect to a null-tetrad
which is Lie propagated by the field /%)
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This scalar was first discussed explicitly by Boyer in some work which was
written up posthumously by Ehlers and Stachel (Boyer 1968). To start with,
Boyer pointed out that the condition k = 0 is a criterion for degeneracy of the
horizon, in the sense in which we have previously used this description, as mean-
ing that the gradient of o, or in the non-rotating case, of V, is zero. To see this we
use (4.15) to convert (5.9) to the form

Vi, =2k, (5.14)

which makes it clear that the vanishing of k is necessary and sufficient for the
gradient of VT to be zero on the horizon, and hence for the gradient of ¥ to be
zero on the horizon in the non-rotating case, and (since Wt is always zero on the
horizon) for the gradient of o to be zero on the horizon in the rotating case.

Next, Boyer pointed out that since k is clearly constant on each null geodesic
of the horizon, i.e.

Kl =0, (5.15)

(this being evident from the fact that /%, in terms of which « is completely deter-
mined by (5.8) or {5.9), is a Killing vector) it follows that (5.13) can be integrated
explicitly to give the affine parameter w (with a suitable choice of scale and
origin) directly in terms of the group parameter v by

w= el (5.16)

except in the degenerate case, i.e. when « is zero, in which case it will be possible
simply to take w = v. This shows that in the non-degenerate case, the affine
parameter w varies only from O to o as the group parameter ranges from —o° to
o0, and hence that the horizon J#" is incomplete in the past. Moreover the vector
I? itself tends to zero, as measured against the affinely parameterized tangent
vector v? by (5.11) in the limit as w tends to 0, and hence unless the space-time
manifold .# itself is incomplete along the null geodesics of 7, there must exist
a fixed point of the subgroup action 7*T generated by [ at the end point, with
limiting parameter value w = 0, of each null geodesic of #, and also a continuation
of each null geodesic beyond the past boundary of # to negative values of the
affine parameter w. By continuity, such fixed points cannot be isolated in space-
time, but must clearly form spacelike 2-sections of the null hypersurface formed
by continuing the null geodesics of #* past their endpoints as subgroup trajec-
tories. (The null geodesics cannot intersect each other, since their spacelike
separation must remain invariant under the subgroup action.) Such a 2-surface,
being invariant under the group action, will obviously determine two null hyper-
surfaces which intersect on it, forming the boundaries of its past and future, these
null hypersurfaces being themselves also invariant under the subgroup action.
Furthermore since in the present case the spacelike 2-surface is pointwise invariant
under the subgroup action, it is clear that each individual null geodesic of the two
null hypersurfaces will be invariant under the subgroup action, so that both null
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hypersurfaces are Killing horizons on which V' is zero. [Both Boyer himself in his
original unpublished work, and also Ehlers and Stachel in their rather different
edited version (Boyer 1968) made rather heavier work than necessary of the
proof of this last point.] Since 5, from which we started this construction
process, forms the part of one of these null hypersurfaces lying to the future of
the fixed point 2-surface, it can be seen that the part of the other null hyper-
surface lying to zhe past of the fixed point 2-surface must also lie on the boundary
of €.#>, and hence must form part of 5. We could have made a similar
construction starting from 5. We thus arrive at the following conclusion:

THEOREM 5.1 (Boyer’s Theorem) Let the conditions of Theorem 4.1 or Theorem
4.2 be satisfied. Then if the horizon J# is non-degenerate, and if the closure <.#>
of <.#> is geodesically complete, then both #~ and J#" exist and they intersect
on a spacelike 2-surface (on which the Killing vector [ is zero) which contains

a future endpoint for every null geodesic of #, and a past endpoint for every
null geodesic of 7. On the other hand if 5 is degenerate, then #* contains null
geodesics which can be extended to arbitrary affine distance not only towards the
future (as always) but also towards the past.

Since a null geodesic on #" cannot approach .# when it is extended towards
the past (since it lies on the boundary of the past of .#) it follows that in the
degenerate case < ¥#> possesses an internal infinity, or in other words the hole is
bottomless, in the manner we became familiar with in Part I of this course, in the
limiting cases with a® + Q% + P? = M? of the generalized Kerr solution black
holes. This fact lends support to the conjecture, which is associated with the
cosmic censorship hypothesis, that degenerate black holes represent physically
unattainable limits, in much the same way that the speed of light represents an
unattainable limit for the speed of a massive particle, or (to introduce an analogy
which we shall see later can be pushed considerably further) in the same way that
the absolute zero of temperature represents an unattainable limit in thermo-
dynamics.

We shall continue this section with the description of some further important
boundary condition properties of Killing horizons. Substituting /? into the
Raychaudhuri identity

(ua;a);bub = (ua;bub);a - ua;bub;a - Rabuaub (5.17)

which is satisfied by any vector field u? whatsoever, where R, is the Ricci tensor,
and using (4.15), we obtain the identity

V’;i'ga = 21a;blb;a + 2Rablalb (518)
which is satisfied by any Killing vector field. Using the further identity
Viep. , = viyhe —20fwte (5.19)

which also follows directly from the Killing equation, where we have introduced
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the rotation vector w'? of the field given by
W] = 3€apeal® 1% (5.20)
(where €, is the alternating tensor) (5.19) can be expressed as

viyhie 40wt
,a

yte = o + 2R 1%° (5.21)

Evaluating the various terms on the horizon, we deduce directly from (4.15) and
(5.9) that the Laplacian of V7 takes the value

yise  =4k? (5.22)
on #, and hence from (5.8) and (5.18) that
Rpl4? =0 (5.23)

on . Since, by (5.5) the rotation vector wy is zero on S it is clear in the non-
degenerate case, and can be verified to be true even in the degenerate limit case,
that the ratio wZ wte/ VT tends to zero on S, it therefore follows that

____V}II//TT”“ g (5.24)

in the limit on 5#. This last equation gives rise to another interpretation of k. The
acceleration @ of an observer rigidly co-rotating with the hole, i.e. following one
of the trajectories of the field /%, is given by

Via® =1%,° (5.25)

Introducing the convention (which will be employed frequently in the following
sections) of using a bar to denote quantities associated with orbits which have
been renormalized by multiplication by the time dilatation factor of the orbit
(which in this case is ¥TY?), we define

a® = yTiZe (5.26)
In terms of this renormalized acceleration vector, we see that (5.24) has the form
a%a, > k* (5.27)

on %, i.e. k represents the limiting magnitude of the renormalized acceleration of
a co-rotating observer.

Since ordinary matter will always give positive contributions to Rg/°I?, the
equation (5.23) implies that the immediate neighbourhood of the hole boundary
must always be empty, except possibly for the presence of an electromagnetic
field, which can be contrived so as to give zero contribution to the term R, /%/°.
The restrictions required to satisfy this requirement are rather stringent however,
and place well defined boundary conditions on the field. Introducing the Maxwell
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energy tensor 7%, which will be proportional to the Ricci tensor under these
conditions, by

1
T = o [F“F? — 3FF 48] (5.28)

where F}, is the electromagnetic field tensor, we obtain
1
Trabl®l® = o [EfEYe + BiBtY (5.29)
m

where we have introduced the co-rotating electric and magnetic field vectors E}
and B} defined by

E} = Fypl® (5.30)
Bf = YeapcaFI® (5.31)

Since they are both orthogonal to /%, neither can be timelike within the closure of
<>, so that (5.29) is a sum of non-negative terms. Thus R,,/%° and Trabl®I®
can only be zero on S if E} and B} are both null on 5, and hence (by the ortho-
gonality) parallel to I, on S#. In other words the electromagnetic field must
satisfy the boundary conditions

Efyly =0 (5.32)
By =0 (5.33)
on .

6 Stationarity, Staticity, and the Hawking-Lichnerowicz Theorem

The terms stationary and static are used widely in different physical contexts.
Generally speaking a system is said to be stationary if it is invariant under a
continuous transformation group which maps earlier events into later ones. In
General Relativity this condition can be more precisely defined in terms of the
requirement that space-time be invariant under the action of a continuous one-
parameter isometry group generated by a Killing vector field which is either time-
like everywhere (in which case the space-time is said to be stationary in the strict
sense) or else timelike at least somewhere, e.g. in sufficiently distant asymptotic-
ally flat region, (in which case I shall refer to the space-time as pseudo-stationary).
It is not quite so easy to give a definition of what is meant by the statement that
a general physical system is static, without referring to the specific context, but
broadly speaking a system is said to be szatic if it is not only stationary in the
strict sense, but also such that there is no motion (i.e. no material flow or current)
relative to the stationary reference system. How this is to be interpreted will of
course depend on which kinds of flow or current are relevant. For example a river
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through which water is flowing at a steady rate could be said to be stationary, but
not static; on the other hand a stagnant pond might be describable as static in so
far as only liquid flow was being taken into account, while being non-static from
the point of view of a more detailed analysis in which perhaps the presence of a
steady downward heat “lux might need to be considered. In general relativity the
requirement that a flow represented by a current vector field be static means that
the vector field must be parallel to a timelike Killing vector.

The most fundamental generally defined flow vector in General Relativity is
the timelike eigenvector of the energy-momentum tensor, which by Einstein’s
equations is the same as the timelike eigenvector of the Ricci Tensor. Thus we are
led to the idea of a static Ricci tensor as one which satisfies the equation.

k°Roqgkp) = O (6.1)

where the timelike eigenvector k? is a Killing vector. When electromagnetism is
present another fundamental flow vector is the electric current vector j%. The
electric current vector is said to be static if it satisfies

Jiakp) =0 (6.2)

i.e. if it only has a component (representing a fixed electric charge density) parallel
to the Killing vector.

Now although the basic physical idea of what is meant by a system being static
depends essentially on the behaviour of current flows, the concept can be often
extended by means of the field equations, to apply to the fields of which the
relevant currents are the sources. In particular the definition of the term static
can be extended to apply both to the space-time metric tensor g, and to the
electromagnetic field tensor F,;. The space-time metric tensor (or simply the
space-time itself) is said to be static if the Killing vector trajectories are every-
where orthogonal to a family of spacelike hypersurfaces, i.e. (by Frobenius
theorem) if

Kia;pke) =0 (6.3)
and the electromagnetic field is said to be static if it satisfies
Flapke) =0 (6.4)

The justification for these definitions is that, by the field equations, they are not
only sufficient for the stacity condition (6.1) and (6.2) to be satisfied by the
corresponding source vectors, but also, at least under suitable global conditions,
necessary.

To prove that (6.3) and (6.4) are respectively sufficient conditions for (6.1)
and (6.2) to hold it is merely necessary to differentiate and use the appropriate
field equations locally. Using the Killing equations

ka;b = k[a;b] (6-5)
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together with the definition of the Riemann tensor, by which

ka;[b;c] = %Rgbckd > (66)
and using the Riemann tensor symmetries, we obtain the equation
ka;b;c = R‘aibckd (6-7)

for the second derivatives of the Killing vector, and hence, on contracting, the
condition

ka;c;c = Rgck® (6.8)

for the Dalembertian of the Killing vector. Thus again using (6.5), we obtain the
identity

{k[a;bkc] pe= %chc[akb] (6-9)
from which it is evident that the metric staticity condition (6.3) is sufficient for

the Ricci staticity condition (6.1) to hold.
To obtain (2) from (4) we must use the antisymmetry condition

Fap = Flap) (6.10)

together with the condition that F is invariant under the action generated by
kg i.e.

"gk [Fab] EFab;ckc - 2Fc{akc;b] =0 (6-1 1)
This, in conjunction with the Killing equation (6.5), leads to the identity

{F[abkc] };c = %k[an]c;c (61 2)
from which, using second of the Maxwell equations

F[ab;c] =0 (613)

F,, = 47j° (6.14)

it is evident that the electromagnetic field staticity condition (6.4) is a sufficient
condition for the current staticity condition (6.2) to hold.

If the field staticity condition (6.4) is satisfied, then it follows automatically
that the Maxwell energy tensor T% defined by 4.12 will satisfy the staticity
condition

k 8Pk = 0 (6.15)
If the Einstein equations '
Rap — 3Rgap = 87T (6.16)

hold, with the total energy tensor T, given by
7% = 1% + 1% (6.17)
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where T% is the matter contribution, then the Ricci staticity condition (6.1) will
be satisfied at the same time as the field staticity condition 6.4 if and only if the
analogous matter staticity condition

k, T3Pkl = 0 (6.18)
is satisfied. If the matter tensor is expressed in the canonical form
T% = puu® + p® (6.19)

where the velocity «? and the pressure tensor p® are required to satisfy the
normalization and orthogonality conditions

uu’ = —1 p®u, =0 (6.20)

and where the eigenvalue p represents the mass density, the staticity condition
(6.18) can be seen to be equivalent to

u[akb] =0 (6.21)

The basic idea of theorems of the Lichnerowicz type is to establish converses
to these results, i.e. to find global conditions under which the basic flow staticity
conditions (6.2) and (6.21) are sufficient as well as necessary for the metric and
field staticity conditions to hold. It is a well known result of classical electro-
magnetic theory that (6.2) is a sufficient condition for (6.4) to hold in asymptotic-
ally source free flat space. The first examination of this question in General
Relativity theory was made by Lichnerowicz (1939). It was shown by Lichnerowicz
and Choquet-Bruhat (see Lichnerowicz (1955)) that in a space-time which is
asymptotically Minkowskian and topologically Euclidean, (6.2) is a consequence
of (6.1) and hence, in the non-electromagnetic case, of (2.1). When (6.31) has
been established it is easy to show under the same conditions, that (6.4) is a
consequence of (6.2), but the demonstration that (6.3) itself is a consequence of
(6.21) and (6.2) involves certain technical difficulties which I did not succeed in
resolving until a few days before the beginning of this school. I have not had time
to undertake a thorough search of the literature, but as far as I know this section
contains the first published account of the full electromagnetic generalization of
the Lichnerowicz theorem.

The global topology conditions originally assumed by Lichnerowicz and
Choquet-Bruhat were such as to explicitly exclude the presence of a central black
hole. However Hawking has recently shown that the original theorem can be
extended to cover the case of a non-rotating black hole, (i.e. one whose horizon
is an ergosurface) provided it is assumed that the horizon is in fact the outer-
ergosurface. In the present section I shall show that Hawking’s result can also be
extended to the case where an electromagnetic field is present, at least in the
non-degenerate case. (At the time of writing I have not had time to verify that this
result still holds in the degenerate limit.)
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Formally the results which will be established in this section may be stated as
follows:

THEOREM 6.1 (Generalized Lichnerowicz Theorem If .# is topologically
Minkowskian and both asymptotically flat, and asymptotically source free, if it is
stationary in the szrict sense and if the electromagnetic and material current
staticity conditions (6.2) and (6.21) are satisfied everywhere, then the electro-
magnetic field staticity condition (6.4) and the metric staticity condition (6.3)
will be satisfied everywhere.

THEOREM 6.2 (Generalized Hawking-Lichnerowicz Theorem) If .# is asymptotic
ally flat and asymptotically source free, and the asymptotic magnetic monopole
moment is zero, if the domain of outer communications <.#>> is stationary in

the strict sense (which implies by Lemma 2 that 5# is the outer ergosurface) and
simply connected, and if the electromagnetic and material current staticity
conditions (6.2) and (6.21) are satisfied everywhere, then the electromagnetic
field staticity condition (6.4) and the metric staticity condition (6.3) will be
satisfied in <.#>, subject (provisionally) to the requirement that the horizon be
non-degenerate.

Proof of Theorem 6.1 We start by introducing the rotation vector w? of the
stationary Killing vector k% by the definition

Wg = S €apogkPk?* (6.22)

It is clear that the metric staticity condition (6.3) that we wish to establish, has
the form w, = 0. By differentiation of (6.22), is easy to verify using the identity
(6.7) that w, must satisfy

Wigb] = %eabcdchdeke (6.23)
We introduce electric and magnetic field vectors £ and B* defined by

E, = —Fu kP (6.24)
B, = Y€ 0akPFE¢ (6.25)

in terms of which the electromagnetic field tensor can be given by
VFup = —2k[,Ep] t €apcakB. (6.26)

It is clear that the field staticity condition (6.4) that we wish to establish has the
form B, = 0.
Evaluating (6.23) using the Einstein equations, we obtain

Wiap] = _2E-[a§b] - 47Teabcdchgdeke (6-27)
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From Maxwell’s equations (6.13) and the field invariance condition (6.11) it is
clear that we shall always have

E[a;b] =0 (628)
When the electric current staticity condition (6.4) is satisfied, we shall also have
E[a;b] =0 (629)

Since we are postulating that <.#> (which is the same as .# under the conditions
of Theorem 6.1) is simply connected, these two equations imply the existence of
globally well behaved scalars ® and ¥ such that

Eaz (D,a (6.30)
B,=V¥, (6.31)

When the matter staticity condition ((6.18) which follows from (6.21)) is also
true, (6.37) reduces to

U[a;b] =0 (6.32)
where we have used the abbreviation
U,=3w, + ®B, — VE, (6.33)

As in the case of (6.21) and (6.29), this equation implies the existence of a
globally well behaved scalar U such that

Up= U (6:39)
Now by their definition the scalars &, ¥ and U must satisfy the divergence identity

2 a D a nap
U+ CI;\II)w +2\IfBa =2w<;a+2BaBa
V | 4 a V V

+(U +207) {%}ﬂ + 2\1:((%)” + 21?%,,} (6.35)

Moreover it follows directly from the definition (6.22) that w, must satisfy the
identity

{%‘;—} "o (6.36)

and it follows from the Maxwell equations (6.13) that B* must satisfy
AT
7 +2E%0, =0 (6.37)
Hence the right hand side of (6.35) reduces to a sum of two terms which are non-

negative in <.#>, since under the postulated conditions V is positive and k¢ (to
which w? and B? are orthogonal by their definitions) is timelike in <.#>.
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We can convert the identity to which (6.35) reduces, from a scalar divergence
equation to a vector divergence equation by multiplication by k“, using the group
invariance conditions. In this way we obtain

{(U + 200 wlo%?] X 2\1/1'3'[“1«”1} B {w“w,, X EaB‘a} >
v Vo,

(6.39)

V V

We now construct an asymptotically flat spacelike hypersurface Z properly
imbedded in <> so that its only edge consists of a 2-surface where it intersects
S * (under the conditions of Theorem 4.1, £ will have no edge at all). According
to Stoke’s theorem, the integral of the divergence of any antisymmetric quantity
V2 over a hypersurface with metric normal element d =% must satisfy

[vepdz.= § v asa (6.40)
z 0

where dS, is the 2-dimensional antisymmetric normal element to the edge 0% of
Z. Applying this to 6.39 we obtain

j{aﬂw¢+ﬁﬁ%
2
5 |4 | 4

U+ 20%)wl%?] Blog?]
}k“dzﬁgj}dsab{( V2)“ +20 =

U + 20%)wlo?b] Blagbl
{( 2)“’ +2W (6.41)

~ $ dSa
H

where . dS,;, indicates the limit of large distance of the integral over a topologic-
ally spherical 2-surface in Z, and 5 dS,;, indicates the integral over the edge of
< where it meets #.

The product —k?dZ, is always positive since k% and d= are both timelike in
<.#>, and as we have already remarked, the terms w%uw,/V? and B°B,/V are non-
negative in <.#>. Hence we shall obtain the required result, i.e. that the spacelike
vectors w? and B? must be zero everywhere in <.#> if we can establish that the
surface integral terms on the right hand side of (6.41) must be zero.

Now by the asymptotic boundary conditions, w, must diminish like the
inverse cube, and £, and B, like the inverse square of the radial distance, which
makes it possible to choose U, ® and ¥ in such a way that their asymptotic limits
are all zero. With this choice, U will diminish like the inverse square, and ® and ¥
like the inverse first power of the radial distance, which will lead at once to the
condition

U+ 200 2wBlegb]
§ dSa {(——2—) wl%P1 + — (=0 (6.42)

(since by (3.3) the asymptotic limit of ¥ is 1). This is sufficient to establish
Theorem 6.1.

When a black hole is present, the situation is rather more complicated. The
integration on #* is rather more delicate than the integration in the asymptotic
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limit, since the quantity V in the denominators is zero. However the analysis is
not too difficult if the degenerate case, when the gradient of V is zero, is
excluded.

Since, under the conditions of Theorem 6.2, the horizon Killing vector /4
discussed in the previous section is the same as k“, it follows from the boundary
conditions (5.32) and (5.33) that £, and B, will be orthogonal to #*, and hence
that the scalars ® and ¥ must be constant on 5", which makes it possible to
choose ® and W to satisfy

®=T=0 (6.43)

on " . With this choice, it is clear at least in the non-degenerate case that ®/V
and ¥/ V will have finite limits on # . Since under the conditions assumed for
Theorem 6.2 k% is null on 5" and hence orthogonal to 5, it follows that the
Frobenius orthogonality condition w, = 0 will hold at least on 5#*, which implies
that subject to the choice (6.43) we shall have U, = 0 on the horizon, which will
make it possible to choose

U=0 (6.44)

on #*. With this choice it is clear (at least in the non-degenerate case) that not
only U/V but even U/V? will have a finite limit on ", so that we shall obtain

lagb] plagbl
§dSab{(U+ 2«1)\12r)w K1 2wBl%” o (645)
Vv V
H
This is still not sufficient to establish Theorem 6.2 since the choice =¥ =U=0
ons#" is not compatible with the choice of ®, ¥ and U in such a way that their
asymptotic large distance limits are zero, which was necessary in our previous
derivation of (6.42). In order to obtain 6.42 at the same time as (6.45) we must
use the additional assumption that the asymptotic magnetic monopole moment
is zero, which means that B, must diminish as the cube (not just the square) of
the asymptotic radial distance. In this case it is clear that 6.42 will be true
_independently of the choice of U, ¥ or ®. This enables us to deduce that

B,=0 (6.46)
W, = 0 (647)

everywhere in <.#> as required, thus completing the proof.

COROLLARY TO THEOREMS 6.1 AND 6.2 Under the conditions of Theorem 6.1
and 6.2 the field tensor can be derived by the standard equation

Fab = 2A[a;b] (648)
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from a well behaved vector potential 4, in <.#> which satisfies both the
invariance condition

P [A) S Agpk® + A4ymb =0 (6.49)
k
and also the vector potential staticity condition
Ajkp) =0 (6.50)

Proof It can easily be checked that the vector A, given in terms of the scalar
potential ®, (whose existence has already been established) by

VA, = ®k, (6.51)

satisfies all the conditions (6.48), (6.49), (6.50). (It is to be noted that it is possible
to choose @ either so that A, has a finite limit on £, or so that 4, tends asymp-
totically to zero at large radial distance, but not both at once.)

The Frobenius staticity condition implies (taking into account that <> is
required to be simply connected) that there exist a globally well behaved time
co-ordinate function ¢ on <.#> defined up to an additive constant, in terms of
which the metric ds? = g, dx® dx? can be expressed in the form

ds?® =g, dx* dx” — V di* (6.52)

where u and v run only from 1 to 3. The electromagnetic potential form A = A, dx®
will take the form

A=ddt (6.53)

7 Stationary-Axisymmetry, Circularity, and the Papapetrou Theorem

Just as a flow vector is said to be static if it is everywhere parallel to the stationary
Killing vector k%, so more generally it will be said to be circular or equivalently
non-convective if it is everywhere parallel to a general linear combination of the

two independent Killing vectors k% and m?, i.e. if each integral curve of the flow
field lies in one of the surfaces of transitivity of the 2-parameter group generated

by k% and m?, and therefore coincides with an integral curve of one of Killing

vector fields generating the group. (If furthermore the flow vector coincides with

a linear combination of k% and m® with everywhere constant coefficients, i.e. if it
coincides with a fixed Killing vector field generator of the group, then the flow is
said to be rigid.) Thus the circularity condition requires that each flow trajectory

be invariant under some one-parameter transformation sub-group, which is con-
sistent with steady circular motion relative to a non-rotating frame at infinity,
whereas the stronger staticity condition is incompatible with any motion at all
relative to such a frame. (A reasonably realistic example of a stationary-axisymmetric
but non-circular flow would be the case of a stationary-axisymmetric star containing
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two convective zones, one in the northern hemisphere and one in the southern,
with fluid rising towards the surface at the equator, and descending towards the
centre at the poles.)

As in the previous section the basic flow vectors we shall wish to consider are
the timelike eigenvector of the energy momentum tensor, or equivalently, of the
Ricci tensor, and the electric current vector. When the Ricci tensor eigenvector is
circular the Ricci tensor will be referred to as invertible (meaning that it is
invariant under the tangent space isometry transformation in which directions in
the plane of the Killing vectors are reversed while orthogonal directions are left
unchanged). The condition for this, i.e. the necessary and sufficient condition for
the timelike eigenvector of the Ricci tensor to be invertible, is that the equations

kaRd[akme] =0

7.1
ded[akbmc] =0 ( )

be satisfied. This circularity condition will play a role in the present section
analogous to that of the Ricci staticity condition (6.1) in the previous section.
The corresponding circularity condition for the electric current vector, i.e. the
analogue of (6.2), is simply

j[akbmc] =0 (7.2)

We can pursue the analogy with staticity by defining corresponding circularity
conditions for the space-time metric tensor and the electromagnetic field tensor.
The circularity condition for the metric is the condition that there should exist a
family of 2-surfaces everywhere orthogonal to the surfaces of transitivity of the
two-parameter group action, i.e. everywhere orthogonal to the plane of the Killing
vectors k? and m®. This orthogonal transitivity condition is the precise analogue of
the (one-parameter) orthogonal transitivity condition for metric staticity. By
Frobenius theorem the necessary and sufficient condition for orthogonal

transivity is
k[a;b’%’”d] =0 (7 3)
Ma;pkcMa) = 0

these equations jointly being the analogue of (6.3). The circularity condition for
the electromagnetic field tensor is that it should satisfy the equations

Fabkamb =
F[abkcmd] =0

these being jointly the analogue of (6.4).

As for the staticity conditions of previous section, so also here we justify the
description of the conditions (7.3) and (7.4) as circularity conditions by showing
not only that they are sufficient for the respective source flow circularity condi-
tions (7.1) and (7.2) to hold, but also, under global conditions much weaker than

(7.4)
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those which were necessary in the previous case, that they are necessary. To prove
that (7.3) is a sufficient condition for (7.1) to hold we simply use Killing equations

Map = Mia;p) (7.5)
and the consequent identity
{m[a;bmc] };C = %kCRc[akb] (76)

together with the analogous equations (6.5) and (6.6) for k%, and the commutation
condition

m®pk? — k%,m® =0 (7.7)
to derive the identities

{k[a;bkcmd]};d= _%ded[akbmc]

{m[a;bkcmd]};d = _%ded[akme]

It is immediately clear from these identities that the Ricci invertibility condition,
(7.1), is a consequence of the orthogonal transitivity condition (7.3).

To prove that (7.4) is sufficient for (7.2) to hold we use the group invariance
condition

(7.8)

-m? [Fab] EI'ﬂab;c””c - 2Fc[amgb] =0 (7-9)
together with the analogous equation (6.11) and the commutation condition (7.7)
to derive the identities

{Fabkamb};c= 3F[ab;c]ka""lb

{F[abkcmd]};d = %k[ame;c(id
from which, using the Maxwell equations (6.13) and (6.14), it is clear that the
current circularity condition (7.2) will hold whenever the field circularity
conditions (7.4) are satisfied.

Continuing the analogy with the previous section, we check that it follows

automatically from the electromagnetic field, circularity conditions that the
Maxwell energy tensor T% satisfies the staticity condition

k, T4k mA) = 0 }

m T4 md] = 0

(7.10)

(7.11)

from which it follows, if the Einstein equations hold, that the Ricci circularity
condition (7.1) will hold at the same time as the field staticity condition (7.4) if
and only if the analogous matter circularity condition

k T3Pkmd) = 0 }

7.12
m TPkme] = 0 (7.12)
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are satisfied, i.e. if and only if
ulkPnfl = 0 (7.13)

The basic converse theorem is due to Papapetrou (see Papapetrou 1966, Kundt
and Trumper 1966, Carter 1969). The electromagnetic generalization (Carter
1969) is quite straightforward, and does not require any special trick such as was
needed for the electromagnetic generalization of the Lichnerowicz theorem.
Moreover the topological and boundary conditions required for the Papapetrou
theorem are very much weaker than for the Lichnerowicz theorem, so that the
original theorem can be applied directly to the case where a hole is present.

The general result is as follows:

THEOREM 7 (Generalized Papapetrou Theorem) If .# is pseudo-stationary,
asymptotically flat and asymptotically source free, and if the electromagnetic and
material current circularity conditions (7.2) and (7.13) are satisfied in a connected
subdomain & of .# which intersects the rotation axes (or is otherwise known to
contain points at which (7.4) and (7.3) are satisfied) then the electromagnetic field
circularity condition (7.4) and the metric circularity condition (7.3) will be
satisfied everywhere in 9.

Proof We prove the basic Papapetrou theorem by introducing a second
twist vector Y, analogous to the vector w? introduced (by equation 6.22) in the
previous section, defined by

Vo = 3€apeam®m™? (7.14)

It is evident that the required metric circularity condition 7.3 will be satisfied if
and only if the twist scalars m°w, and k°Y are both zero. Now the identities (7.7)
can be converted to the equivalent dual forms

(mcwc);a = eabcdkb mCRdIkI }

(7.15)
(kcwc);a = eabcdkb mcRdlml

respectively. Hence it is clear that the Ricci circularity condition (7.1) will be
satisfied in the domain & if and only if the twist scalars are constant i.e.

(mfwe),q=0 }
(kYe),a=0

in 2. Since m€, and hence also Y, are zero on the rotation axis, the twist scalars
are also zero on the rotation axis, and hence by conditions of the theorem, at
some points of &. Thus (7.16) implies that we shall have

mfw,=0
kY.=0

(7.16)

(7.17)
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at all points of <. This completes the proof of the basic theorem establishing
that (7.3) is a consequence of (7.1), and hence in the non-electromagnetic case of
(7.13).

To cover the electromagnetic case, we proceed from the fact that using the
Maxwell equations (6.13) and (6.14), the identities (7.10) can be reduced to the
form

(Ebmb),a =0
Bym®),q = d€gpeak”m?
where Ep and B, are as defined by (6.24) and (6.25). It is clear therefore that the

correct statisticity condition (7.4) is sufficient to ensure that the scalar BymbP is
constant in 9, while £,m® will be constant in any case, i.e. we shall have

(E-bmb),a =0 }
(Ebmb),a =0

(7.18)

(7.19)

in &. Now the required electromagnetic field circularity condition (7.4) is clearly
equivalent to the requirement that the scalars £,m® and B,mP should be zero.
These scalars will obviously be zero on the rotation axis where m? is zero and
hence at some points of &, and therefore it follows from (7.19) that we shall

have
b:bmb = O
B = (7.19)
pmP =

which is equivalent to (7.4), at all points of &. We have already remarked that this
is sufficient for (7.11) and hence, subject to (7.13), for (7.1) to hold. Therefore
by the first part of the proof (7.3) will still hold in the electromagnetic case. This
completes the proof of the theorem.

COROLLARY TO THEOREM 7 If the conditions of Theorem 7.1 are satisfied, and
in addition the domain & is simply connected, then (except on the rotation axis)
the electromagnetic field tensor F, is derivable, via (6.48) from a vector potential
A, which satisfies the group invariance condition

P [Ag] = Agpm® + Apm?, = (7.20)
and its analogue (6.49), and also the electromagnetic potential circularity condition
A[akbmc] =0 ‘ (7.21)

(The vector potential will be well behaved on the rotation axis only if the magnetic
flux
4nP =% g €U ,,dS 4 (7.22)

over any compact 2-surface S is zero, i.e. only if there are no magnetic monopoles.)
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Proof 1t is clear that the electromagnetic field circularity condition (7.4)
implies that (except on the rotation axis) the field can be expressed in the form

Fap=2e(kp) + 2f[aMp) (7.23)

where e, and f, are vectors which satisfy the orthogonality conditions

ek =em*=0
a (7.24)
fok® = fm*=0

Moreover by the group invariance (7.8) and (6.11) e, and f, can be chosen to
satisfy the corresponding group invariance conditions

ea;bkb + eakl;’a =0 ea;bmb + eam’;’a =0
= b -
fa;bkb +fak?a =0 fa;bm +fam;a =0

Now it can be verified by a little algebra that the Maxwell equation (6.13) implies
that the vectors ®, and B, defined by

(7.25)

o, =Ve, — Wf, (7.26)

B,=Xfy t We, -
will satisfy

Ppazp) = 0 (7.27)

B[a;b] =0

It follows from the simple connectivity condition that there will exist scalars @
and B everywhere on & (including the rotation axis) such that

Pa=Pa (7.28)
B;=B,

It can now be checked that the vector 4, given by

XO+WB  Wd+VB
A=k +——m, (7.29)
(0} (o)

will satisfy the conditions (6.49), (7.20), (7.21). (However it follows from the
conditions (3.13) that this vector potential will be singular on the rotation axis
unless B can be chosen to be zero on the rotation axis, and it can be verified by
Stokes’ theorem that this will be possible only if the no magnetic monopole
condition is satisfied.) This completes the proof of the corollary.

Except where the Killing bivector pgp, = 2k is null or degenerate (and
hence, by Theorem 4.2, everywhere in <.#> except on the rotation axis) the
Frobenius orthogonality condition 4.3 implies that it is possible to choose locally
well behaved functions ¢ and ¢ that are constant on the 2-surfaces orthogonal to
the surfaces of transitivity of the action 7™, where ¢ is also constant on the



BLACK HOLE EQUILIBRIUM STATES 165

trajectories of the action 7 generated by m?, and v is also constant on the
trajectories of the action n° generated by k%. In other words 7 and ¢ can be chosen
so as to satisfy

t (dkvme) =0 (7.30)
@, (akpme) =0 (7.31)
t m*=0 (7.32)
0 k?=0 (7.33)

They will be determined uniquely up to an arbitrary additive constant if we also
impose the standard normalization conditions

t k=1 (7.34)
g m* =1 (7.35)

Under these conditions the metric form ds® = g, dx® dx® on < _#> can be
expressed (except on the rotation axis) in the form

ds® = gop dx* dxP + X dp? + 2Wdp dt — V dt? (7.36)

with X, W, V as defined in section 3, where «,  run from 1 to 2, and where the
co-ordinates x* are constant on the surfaces of transitivity of the action 754. For
many purposes it will be convenient to work not with ¢ but with a complementary
angle co-ordinate function ¢ defined analogously to ¢ except for the requirement
that it be constant on the trajectories of the action 71 instead of 7, i.e. ‘pT is
defined by the requirements

Olalpme) = 0 (7.37)
Pl®=0 (7.38)
olmt =1 (7.39)

which determines it uniquely up to an additive constant, which may be chosen in
such a way that ¢ is related to ¢ by

ol =9 — Q" (7.40)

In terms of ¢! the metric form (7.36) may be rewritten in the complementary
form

ds?=gop dx® dxP + X dp'? + 2WT dyt dt — VT dr? (7.41)

It can easily be seen that if <.#> is simply connected ¢ can be taken to be a
globally well behaved function on <.#>, and ¢ and cpT can be taken to be well
behaved angle co-ordinates, defined modulo 27, on < #>.

In terms of such a co-ordinate system, the electromagnetic field form A4 = 4, dx*
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can be expressed in terms of the scalars ® and B introduced in the proof of the
corollary to theorem 7, as

A=®dt+Bdy (7.42)
For many purposes it is convenient to use the complementary expression
A=®%dr + Bdy® (7.43)
where
o7 =0+ QFB. (7.44)

8 The Four Laws of Black Hole Mechanics

For many purposes it is useful to analyse the neighbourhood of the Killing
Horizon #*in terms of a canonical null co-ordinate system constructed as
follows. One first chooses a null hypersurface cutting across the Killing horizon
#* One can then construct a local null co-ordinate function v which is defined
by the requirement that it should be zero on the chosen null hypersurface, and
that it should satisfy v ,I” = 1, so that it will be constant on a family of null
hypersurfaces congruent to the original one. By requiring that the other
co-ordinate functions, 7*, x2, x> should be constant on the trajectories of the
action 77 generated by /% we ensure that v will be an ignorable co-ordinate.

We choose the co-ordinates x2, x3 so as to be constant on each of the null
geodesic generators of the null hyper-surfaces on which v is constant. The
co-ordinate 7* is then specified uniquely by the requirement that it be zero on
the Killing horizon 5# *and that it varies along the null geodesics, on which x?2
and x* are required to be constant, in such a way that the metric takes the
standard form

ds*=—V" dv? + 2 dv dr* + 21; dv dx’ + g;; dx’ dx/ (8.1)

where i, j run over 2, 3 and where V7, I, and [; are functions of r*, x2, x> only.

It is clear that in addition to the familiar condition VT = 0, we shall also have
lt' =0 (82)

on the Killing horizon /#*at r* = 0, and it follows further from (5.14) that in
terms of such a co-ordinate system we shall have
v 4 2 (8.3)
= K .
or*
on#". Now it is evident that when the conditions of the Hawking-Lichnerowicz
Theorem 6.2 or the Papapetrou Theorem 7 are satisfied, there must exist a local
co-ordinate transformation of the form

v=1+3F@*, x5 ) (8.4)
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relating the form (8.1) either to the form (6.52) with x! = r* (in the non-rotating
case) or to the form (7.41) with x! =r* T = x3 (in the rotating case), where F
is a function of r*, x2, x3 only. It is clear that this requires

oF
a—r; =2 (8.5)
F
vt % =1, (8.6)
X
F
yt OF o, (8.7)
ax3 3

(provided we adopt the convection that W7 is zero in the non-rotating case).
Since VT is a well behaved function which lends to zero on#, it follows from
(8.3) that in the non-degenerate case (i.e. when k is non-zero) we must have

In r*

K’ +G(r*, xY) (8.8)

F(r*, xi) =

if (8.5) is to be satisfied, where G(r*, x’) is a function of r* and x’ which is well
behaved in the limit as 7* > 0 on#*. Now since [, and /5 are all well behaved
functions which tend to zero on #*, (8.6) and (8.7) imply that the quantities
V1 (8F/0x") must also be well behaved functions which tend to zero on#*, This
will clearly be compatible with (8.4) only if the scalar k satisfies

0K
—=0. 8.
ox! (8.9)

Thus we arrive at the following conclusion

THEOREM 8 Under the conditions of Theorem 6.2 or Theorem 7, the quantity
k defined on the horizon s#*by (5.9) is constant over # ™. It is an immediate
consequence of this theorem that a connected component of # 'is either
degenerate everywhere or not at all.

The result contained in Theorem 8 was first noticed, in the particular context
of the Kerr solutions, by Boyer and Lindquist (1967) when they discovered that
transformation from the original co-ordinate system (which had the form (8.1))
in which the solution was discovered by Kerr (1963) to the now standard Boyer-
Lindquist co-ordinate system (which has the form 7.41). I cam across the more
general result given by Theorem 8 in the course of an examination of the necessary
and sufficient boundary conditions required for the black hole uniqueness
problem (Carter 1971, Carter 1972). This result was discovered independently
under even more general conditions by Hawking (1972) as a lemma in the proof
of the strong rigidity theorem. However this result has recently acquired a much
greater significance (which is the reason why I am giving it special attention at
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the present stage) from the work of Hartle and Hawking (1972), to be described
in the accompanying course by Hawking. As a result it is now clear that Theorem
8 (which Hawking and I had previously regarded as a minor lemma) deserves

to be dignified as the zeroth law of black hole mechanics for reasons which will
be explained in this section.

Before proceeding it is worth remarking that the fact that the limit (5.24)
must be constant on the horizon is closely analogous to the fact that the limit
(3.7) used in normalizing the axisymmetry Killing vector is constant on the
rotation axis. The analogy can be seen more clearly by considering the fixed
point axis # N #  predicted by Boyer’s Theorem 5—such an axis bearing the
same relation to a Lorentz rotation as the rotation axis does to an ordinary
space rotation.

The main content of this section will be to describe the extension to black
holes of very general heuristic argument originally due to Thorne (1969) and
Zeldovich (Zledovich and Novikov (1971)) relating variations in the equilibrium
mass of an isolated self gravitating system to corresponding variations in angular
momentum, chemical composition and entropy. Before doing so I shall rapidly
run through the basic argument, including its generalization (Carter 1972) to
include the effect of variation of electric charge.

The generalized Thorne-Zeldovich formula is derived as follows. We consider
a reversible change in the equilibrium state of the system, which to start with we
shall think of as a rotating star, assumed to be both stationary and axisymmetric,
which interacts with a freely falling particle of rest mass m, charge e, and unit
velocity vector v* which is sent in from infinity. The energy

E=—k, (8.6)
and angular momentum
L, =m’p, (8.7

of the particle are conserved during the free motion, where the momentum
vector p, is defined by

Pa =mv, —eA, (8.8)

where A, is the electromagnetic vector potential. Following Thorne and Zeldovich,
we suppose that the particle interacts with the matter of the star at some point,
transferring some of its matter and momentum in the process, and that it is then
ejected back to infinity. We suppose that the material motion of the star is purely
circular, in the sense of section 7, so that at any point the unit velocity vector

u® of the material is a linear combination of the Killing vectors, i.e.

u® = — (i) 2%i¢ (8.9)
where the renormalized flow vector #% has the form

i = k* + Qm°® (8.10)
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and where the quantity 2 defined by this equation is the local angular velocity
at the point under consideration. (In the case of a star with rigid motion Q will
be independent of position and the renormalized flow vector #? will itself be a
Killing vector.) [We shall consistently use a bar to denote any quantity which has
been renormalized by multiplication by the time dilatation factor (—ii,it®)’2]
In the local rest frame, the energy 8 U transferred to the material of the star will
be

86U = u, d(mv®)
=u?(dp, + A, de) (8.11)
= (—itgu®) V2 {—dE + QdL, + i®A, de }

Provided A4, is chosen so as to tend to zero in the limit of large distances, the
contributions to the charge in total mass M, angular momentum J and charge Q
of the star will be given by

oM = —dFE (8.12)

8J=—dL, (8.13)

8Q = —de (8.14)
and hence we obtain

M — Q8J — (i®A,)8Q = (—it, )26 U (8.15)

It the star is initially in local thermal and chemical equilibrium with a well

defined temperature ® and well defined chemical potentials u' associated with
various kinds of exchanged particles which are conserved in the interaction process,
and in the particular case of a thermodynamically reversible process (which will
only be possible, even in principle, if hysteresis effects can be neglected) the

local energy transfer will be given by

§U=uDsN; +05S (8.16)

where 6/V; are the numbers of the various kinds of conserved particles which are
transferred, and 6S is the entropy transferred. Thus introducing the renormalized
effective temperature © and effective chemical potentials ﬁ(’)defined by

0 = (—it%i,)*e (8.17)

7O = (—aiag)' *u® (8.18)
we are led to the basic formula

SM = Q8J +ii"4,8Q + i8N ;) +© 88 (8.19)

for the change in mass of the star. Of course after this process the star will no
longer be exactly in mechanical equilibrium. However the formula (8.19) should
still be valid for the change in mass after the star has settled down to a new
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equilibrium (by radiation and other damping mechanisms) in the small perturba-
tion limit provided that it can be argued that the energy corrections due to the
initial departure from mechanical equilibrium are of second order. If this is the
case, we may evaluate the total first order change dM in the mass between the
mechanical equilibrium states due to a sequence of such transfer operations by
integrating (8.19) in the form

M= [Qss+ [aa,80+ [ a®sN + [@ss (8.20)

In order for it to be practically useful it is necessary that this formula should
be able to be interpreted as a space integral of locally well defined quantities.
With any metric normal element d 2, associated with an element d2 of a space-
like hypersurface 2, there will be associated flux elements of, charge, particle
numbers, and entropy given by

do =7 dz, (8.21)
dNgy = ) dZ, (8.22)
ds=s%d2, (8.23)

where %, n{;) and s are the current vectors of charge particle numbers and
entropy, which satisfy the conservation laws

j%=0 (8.24)

Miya =0 (8.25)
and in the case of entropy, the semi-conservation law

2,20 (8.26)

the latter being a strict equality for the reversible processes under consideration
here. There is also a well defined angular momentum flux element given by

dJ = T*®m, dZ, (8.27)

associated with an angular momentum current 7% m,, which satisfies the
conservation law

[T%°mp];0 =0 (8.28)
in consequence of the conservation law
7%, =0 (8.29)

of the total energy momentum tensor 7% and of the Killing equations (7.5)
satisfied by m®. [It is not possible to give an equally meaningful local definition
of conserved mass since the time symmetry generated by k? is necessarily violated
during any alteration process.] With these definitions, and the interpretation

6 =d(d) where the (first d refers to the alteration and the second d refers to the
differential element in the integration) the terms in the formula (8.20) become
well defined space integrals. In the non-electromagnetic case such an inter-
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pretation will be perfectly valid, but in the electromagnetic case it must be born
in mind that the angular momentum transferred in an interaction is not well
localized at the point of exchange where 2 is measured, since only part of it

goes into the matter, the rest being located elsewhere in the electromagnetic field.
Thus the value of  to be associated with a contribution 8J =d(T%m;, dZ,) in
the angular momentum integral in (8.20) is not the locally measured value but
some weighted space average of 2 over nearby and to a lesser extent more distant
regions. Thus the straightforward interpretation will only be correct either when
there is no electromagnetic field (the case originally treated by Thorne and
Zeldovich) or when there is no differential rotation, at least of the electro-
magnetically interacting parts of the system. These are also conditions under
which one could expect that the deviations from mechanical equilibrium

caused by the variation process will be of second order in the perturbation, as
required for the above formula to be applicable. In particular one can be
confident that these deviations will be of second order in the particular case
when the star is not only in crude mechanical equilibrium but also in equilibrium
with respect to all relevant perturbation processes in the sense that there can be
no energy release by internal transfer processes; clearly from (8.20) this requires
(1) that the star be in thermal equilibrium in the sense that the effective tempera-
ture @ is constant, (2) that it be in chemical equilibrium in the sense that the
effective Gibbs potentials i® are constant, (3) that it be in rotational equilibrium
(i.e. rigid) in the sense that £ is constant, and (4) that it be in electrical equilibrium
in the sense that the comoving electrical potential

¥ =2%4, (8.30)

be constant within the star. It is to be noted that this last condition is equivalent,
subject to rigidity, to the requirement that the locally measured electric field £,
in the star be zero, since £, is given by

E, = (—i,it°) "' "?E, (8.31)
where
E, =%, (8.32)

in the rigid case. When all these equilibrium conditions are satisfied, (8.20) can
be integrated explicitly to give the change in mass in a reversible variation
directly in terms of the fotal changes in angular momentum, charge, particle
numbers and entropy in the form

dM=QdJ +®% dQ + gD dN) + 8 dS (8.33)

Under conditions when there are effective thermodynamic restraints which allow
the star to exist in equilibrium with variable €2, oS ﬁ(i), © more care is needed to
verify that the energy deviations from the mechanical equilibrium value after the
alteration process is really of second order. In fact non-uniform temperature ©

and chemical potentials i® cause no difficulties. In the non-electromagnetic case
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non-uniform angular velocity € (which requires zero viscosity) causes no
difficulty either since it is always possible consistently with the corresponding
restraint (that of local conservation of angular momentum in the individual
matter rings) to minimize the energy by appropriate expansions and displacements
of the matter rings. However in the electromagnetic case, when the zero viscosity
condition is extended to apply to the electric current, there will be additional
restraints (corresponding to conservation of magnetic flux through the matter
rings) which may be incompatible with the adjustments of the current rings
which would be required for energy minimization. Thus we are again led back

to the requirement that the electromagnetically interacting parts of the system
should be rigid if the formula (8.20) is to be applicable. Thus the most general
practically applicable formula which we can obtain by this line of reasoning has
the form

aM=p |81+ [ Qony+ [ @60+ [ @ sng + [B8s  (834)

where we have separated the angular momentum contributions of the electro-
magnetic field, given by the flux element

dlp=T%m, dZ, (8.35)
from those of the matter field, given by
dly =T%® m, dZ, (8.36)

in terms of the separate electromagnetic and matter energy tensors defined by
(5.28) and (6.19), and where we have been obliged to assume that there is a well
defined uniform angular velocity 2 associated with the electromagnetic
contributions.

Let us now consider the extension of this formula to cover variations, in the
case where instead of or in addition to the material system, there is a central
black hole. It is obvious (Carter 1972) that in the neighbourhood of the hole
we should set

7= (8.37)

where [? is the horizon Killing vector field determined by the rigid angular
velocity QH of the hole as described in section 4. There is no alternative to

this choice of #? in the black hole limit, since any vector of the form (8.7)

must approach the null tangent vector /4 of the horizon in the limit if it is to
remain timelike up to the horizon. The potential corresponding to ®5 as defined
by (8.30) in the case of a star will be

(I)‘{' - laAa (838)

which is clearly the same as the quantity introduced by (7.43). The electric field
vector E} introduced by (5.30) is clearly given by

Ef =}, (8.39)
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and it therefore follows from the boundary conditions (5.32) that is constant on
the horizon. We shall denote the value of this constant by & i.e. we set

ot = ¢ (8.40)

on #*, where ® is uniquely defined by the gauge condition, which we have
been using throughout this section, that A% (and hence also ®7) tends to zero

in the large distance asymptotic limit. Thus we see that a black hole is analogous
to an ordinary body (with finite viscosity and electrical conductivity) in rigid
electrical equilibrium.

In extrapolating the formula (8.34) to a black hole, it is clear that the entropy
and particle number contributions associated with the hole will be zero, since
the time-dilation factor (—it%it,)!’? in the definitions (8.17) and (8.18) of the
effective temperature and chemical potentials, tends to zero on the horizon. In
other words it is clear that the effective temperature 7 and the effective
chemical potentials 7?7 of the hole must all be taken to be zero i.e.

07=0 (8.41)
FOH = (8.42)

This is an expression of the so called “transcendence” of ordinary particle
conservation laws and the second law of thermodynamics by the black hole.

It is to be noted that though particles which go down a black hole are
neither extractable nor even externally detectable, such a process is not
necessarily irreversible from a thermodynamic point of view since it is always
possible to send in a corresponding number of antiparticles. Thus by considering
the black hole limit of Thorne-Zledovich type interaction processes, we are
lead to the heuristic deduction that a reversible variation of the equilibrium
state of a system consisting of an axisymmetric black hole with surrounding
matter rings should satisfy

dM = QP(dly + [ ) + | Qddy + " dgy + | #5s50 (8.43)
+[ B85+ [ g sng

where J;; and Qp are the angular momentum and charge of the hole itself, and
where we have supposed that the angular velocity of the electromagneticly
interacting parts of the system is the same as that of the hole.

In the particular case of the Kerr-Newman vacuum solutions @ and QF as
defined here are known functions of M, J and of Q (which in this case is the same

as Q) given by
Qf =M~ (oMr, — Q)7 (8.44)
7 = or, 2Mr, - Q*)! (8.45)
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where

re=M+M?* M - QH)V2, (8.46)

With these values, (8.43) reduces in this case to the exact differential of the mass
formula of Christodoulou and Ruffini (1970, 1971) which takes the form

M= {(Mo+3Q*Mg")* + 372 M M5} 2 (8.47)
where M, is an integration constant, given by the expression
1 1
M(%:F%:Z{Mz_Q2+2(M4_M2Q2_J2)1/2} (8.48)
m

where .7 is the surface area of the black hole (i.e. the integral of surface area over
a spacelike 2-dimensional section of ).

Although the basic variation formula for a (8.34) for a star was derived by
considering reversible processes, we can immediately deduce that it will hold for
any process if we assume that the equilibrium configuration is a well defined
function of the distribution of J, 0, § and N over the rotating matter rings,
which will be the case under a wide range of natural conditions. Now in the case
when a central black hole is present our experience with the Kerr solutions leads
to the generalized no-hair conjecture according to which the system as a whole
should have just two additional degrees of freedom in the non-electromagnetic
case, and three in the electromagnetic case (leaving a mathematically conceivable
magnetic monopole moment out of account) in addition to the degrees of
freedom (determining the distribution of J, Q, S, N\ associated directly with
the external matter rings.

Now the formula (8.43) derived by considering reversible variations, involves
just one additional degree of freedom, namely J;, associated with the hole in
the non-electromagnetic case, and just two, namely Jg and Qg in the electro-
magnetic case. However it has been shown by Hawking (1971) (in the manner
which he describes in the accompanying course) that the result discovered by
Christodoulou and Ruffini in the special case of the Kerr-Newman black holes
must be true in general, i.e. the surface area .27 of the hole must always remain
constant in any transformation which is reverisble. Taking .o/ itself as the additional
degree of freedom, it therefore follows from the generalized no hair conjecture
that the mass variation in a completely general {not necessarily reversible) change
between neighbouring black hole equilibrium states should be given by

dM =T dst+ QT+ [810)+ | Qaiy
+afdgy+ [eSe0+ [@s5+ [ 8N (8.49)

where the form of the coefficient .7 (which has the dimensions of surface
tension) remains to be determined. Since the 7 d &/ contribution (unlike all the
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other terms) can only be produced by a non-reversible transformation there is
no hope of evaluating it by considering a Thorne-Zeldovich type process. In the
particular case of the Kerr-Newman solutions, where M is a known function of
J, 0 and & only, it is of course possible to write down a differential formula of
the form (8.49) and read off the value of the co-efficient 7 empirically, as has
been done by Beckenstein (1972), but this does not give any insight into the
general form of the coefficient 7. However a simple and elegant solution to the
problem of evaluating 7 has come out of the recent work of Hartle and
Hawking (1972). By applying the Newman-Penrose equations to the perturba-
tion effect on the horizon of a test field which represents uncharged matter
falling from infinity through the horizon #° without interacting with any
external matter which may be present (so that there should be no contribution
either to dQy or to the variations 6/, §Q, 6/N(;), 6S in the matter) and using a
limit in which there should be no gravitational or electromagnetic radiation to
infinity, Hawking and Hartle obtained the formula

dM=;—nd o +QH dj (8.50)

(where k is the constant whose existence was established by Theorem 8) in the
manner described by Hawking in his accompanying course. If the generalized
no hair conjecture is correct, the coefficient of d. should be the same for a
general variation as in the special kind of variation considered by Hawking

and Hartle, and therefore we are led from (8.50) to the conclusion that the
coefficient  in the general mass variation formula (8.49) must be given by

K
= (8.51)

Since both the generalized Thorne-Zeldovich argument and the Hartle-Hawking
discussion (not to mention the generalized no-hair conjecture itself), on which
the present derivation of the general black hole mass variation formula (8.49)
is based, are essentially heuristic, it is obviously desirable to have a mathematical
proof of the validity of the formula (8.49). Such a proof has in fact been
constructed, during the course of the present summer school, by Bardeen,
Hawking and myself in collaboration. The existence of this proof, which is
described in the next section, provides strong evidence in favour of the generalized
no-hair conjecture.

Hawking (1971) showed not only that the surface area .27 of a black hole must
remain constant in any reversible variation, obut also that it must increase in any
irreversible transformation. This result inmediately suggested to many people
an analogy between the role played by the surface area .2/ in black hole mechanics
and the role played by entropy in what is traditionally known as thermodynamics
(although the term thermal equilibrium mechanics would be more appropriate).
The results of this section show that this analogy can be carried very much
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further, with the locally defined scalar k playing the role analogous to that of
temperature. Thus we are led to formulate the following four laws of black hole
equilibrium mechanics, which are closely analogous to the four standard laws of
thermodynamics.

The zeroth law of black hole mechanics will obviously be the result proved
in Theorem 8, that the scalar k is constant over the horizon #*

The first law of black hole mechanics will be the mass variation formula
(8.49) whose heuristic derivation has just been described, and which will be
proved rigorously in the next section.

The second law of black hole mechanics will of course be the rule

do =20 (8.52)
whose derivation and applications are described by Hawking in the accompany-
ing course.

Continuing the analogy, I suggest that the third law of black hole mechanics
should be the statement that it is impossible by any procedure, no matter how
idealized, to reduce the constant k of a black hole to zero by a finite sequence
of operations. In short, degenerate black hole states represent physically
unattainable limits.

Unlike the other three laws which are based on rigorous proofs, this third
law is still essentially conjectural. However the evidence provided by our
knowledge of the extreme (bottomless) Kerr and Reissner-Nordstrom black
hole spaces (as described in Part I of the present source and in the accompanying
course of Bardeen) provides strong evidence in favour of this conjecture, which
would appear to be a fairly direct consequence of the cosmic censorship hypo-
thesis. Conversely by showing that all degenerated black hole equilibrium states
are essentially bottomless, Boyer’s Theorem S suggests directly that degenerate
black hole states are unattainable and this in turn provides support for the cosmic
censorship hypothesis. Thus it seems that the third law as stated above is
virtually equivalent to the cosmic censorship hypothesis in the sense that they
will stand or fall together.

The four laws collected together above are clearly of fundamental importance
in their own right. Although they correspond closely to the classical laws of
thermodynamics, it is to be emphasized that this is only an analogy whose
significance should not be exaggerated. Although they are analogous, .7~ and
&/ play a quite distinct role from the temperature and entropy with which they
should not be confused (and which enter separately into the first law equation
(8.43)). The real effective temperature @ of a black hole is well defined and
unambiguously zero, as also are its chemical potentials g®H_ The ordinary
particle conservation laws, and the ordinary second law of thermodynamics are
unquestionably transcended by a black hole, in the sense that particles and
entropy can be lost without trace from an external point of view. It is not
possible to mitigate this trandescension by somehow relating the amount of
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entropy, (or the number of particles) which have gone in to the subsequent
increase in surface area 7.

9 Generalized Smarr Formula and the General Mass Variation Formula

The results described in this section were worked out by Bardeen, Hawking and
myself at Les Houches. This work originated as a search for a general black hole
mass formula of the kind discovered empirically by Smarr (1972) in the particular
case of the Kerr and Kerr-Newman solutions. This work leads us on naturally
to a generalization of the previous mass variation formulae of Hartle and Sharp
(1967) Bardeen (1970) and Carter (1972) so as to obtain a rigorous derivation
of the first law of black hole dynamics as given by the formula (8.49).

It follows from the asymptotic boundary conditions that the total mass M
and angular momentum J of a general stationary axisymmetric system can be
expressed in the Komar form

1 .
M=— o §k"”’dSa,, 9.1)
and
1 a;b
J=o ¢ mBP dSa (9.2)

where the integrals are taken over a spacelike 2-sphere with metric normal
element dS,,, surrounding the system at large distance. The fact that £%? and
m®? are antisymmetric makes it possible to apply the generalized Stokes
theorem to obtain

1 ) 1 .
= fk" by ds, — i jg k%P dS g (9.3)
H
and

1 . 1 .
= j m%Py dZ, + — §m“’b ds,p (9.4)
m 8
H

where the suffix is used to denote a boundary integral over a 2-sphere on the
surface of the central black hole (if there is one) and dZ, is a metric normal
element of a spacelike hypersurface 2 extending from the boundary of the
hole out to infinity.

Using the standard identities

K*P, = —R%kP 9.5)
a;b.b = _Rabmb (9.6)

b

m
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(derived in sections 6 and 7) which hold for any Killing vectors, and making the
obvious definitions

1 .
My = — ™ fﬁ k% ds,, 9.7)
H
and
1 a;b
Jy = Q m®” dS,p (9.8)
H

we can relate the boundary integrals to the Ricci tensor R,y in the intervening
space by
1

M= p fR‘,’,kb dX, + My 9.9)

and
1
- [ REmP az, v (9.10)
8

These formulae differ from the standard formulae for an ordinary star only
through the presence of the black hole boundary terms. For the Kerr solutions
on the other hand, these boundary terms will be the only ones that remain. The
neat mass formula recently discovered by Larry Smarr for the Kerr solution
prompts us to examine these terms more closely. Introducing the angular
velocity Q of the hole, and the rigidly co-rotating Killing vector

1= k% + QHme (9.11)

we obtain the formula

My = Q1 — éI; &la;bdsab (9.12)
H
Introducing a second null vector n® orthogonal to the 2-sphere on the horizon,
with the normalization condition /n, = 1, we can express the normal element
in the form dS,p, = [[4np) dS where dS is the element of surface area, and noting
that the gravitation constant k discussed in the previous section can be expressed
in the form

Kk =1%Pn, (9.13)

we thus obtain

K
IMy = Qpdy+ ™ R4 (9.14)
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We can use this expression to eliminate My; from the mass formula (9), which
leads to the basic generalized Smarr formula

M= é f kb dZ, + QHIy + T (9.15)
where 7 is given by the expression (8.45), which reduces to the original Smarr
formula, as obtained for the Kerr solutions, in the pure vacuum case when the
Ricci terms on the right hand side are zero.

The expression is not merely elegant. It is also extremely convenient as a
starting point for the rigorous derivation of the general mass variation formula.
Before starting on the variational calculation, we shall carry out a further
decomposition of the unperturbed mass formula, in order to separate the
electromagnetic field contributions in the manner suggested by the original
Smarr formula for the charged Kerr-Newman solutions. Thus we split up the
total energy momentum tensor T2 appearing in the Einstein equations

R _ 1Rg"b = 87 T% (9.16)
in the form
T° = T80 + TE (9.17)

where T4 is given by (6.19) and T# is given by (5.28).
The field is assumed to have the form F,p = 24 4,5 Where the electro-
magnetic potential satisfies the group invariance conditions

Agpk? + Apk®4=0

Aa;bmb +Abmb;a= 0 (9.18)
The electric current vector j¢ is defined as usual by
F,, = 4nj® (9.19)

We can decompose the angular momentum into matter, field, and hole con-
tributions, the two former being defined by

Toy = f T8, mP d=, (9.20)

and
Jp= f T&m? dZ,

1
= f mEAG A2y + - §£ mCA F° dS,, (9.21)
H

where in deriving the last formula we have used the asymptotic boundary
conditions to eliminate a surface integral contribution. (We have also used the
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fact—which will enable us to drop out many angular momentum contributions—
that 2 can be chosen in such a way that m® dZ, = 0.) In terms of these the total
angular momentum takes the form

J=dy +Jp +Jg (9.22)

Before giving the corresponding subdivision of the mass term, we introduce
the total charge Q of the system, defined analogously to the mass and angular
momentum by a boundary integral at infinity as

1
Q=— y § F®ds., (9.23)

oo

Using (9.19) we can write this as

0=— fjadza+QH (9.24)

with the obvious definition

1
QH = — E § Fab dSab (925)
H
It was shown in the previous section that

df =194, (9.26)

is constant on the boundary of the hole. Using this to evaluate the boundary
integrals

3€ 1°4 ,F% dS,, = —4n®HQy (9.27)
H
and (with a little more work)

§ A Fb dS,, = 20H0,, (9.28)
H

we obtain the basic generalization of the electromagnetic Smarr formula in the
form

M= [ [Tk? — 4Tyk®] d, — Q7T

1 .[chcj"dEa + fA,,jl”laldza

+ QHJ + 727+ 1y, (9.29)

In the source free case, when the electric current and the matter contributions
are zero, so that only the last three terms are left, this reduces to the original
Smarr formula as given for the Kerr-Newman solutions.
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Although the expression (9.29) shows the connection with the original Smarr
formula most clearly, it is rather more convenient for starting the variational
calculation to recast it in a form in which the Lagrangian densities R and
F,qF*“? for the gravitational and electromagnetic fields are brought into evidence.
Thus (again using (9.28)) we choose to set it out as

~

1
M= [[Thk® — 44" dZ, + —— j R +FAF§)kd3,

+iM+ QFJ + QH Iy + @0y + T A (9.30)

where the term $M on the right hand side is to be interpreted as being given
directly by (9.7).

Up to this point we have been able to work with a fully general matter tensor
(subject only to group invariance) but in order to carry out the variational
calculation we shall now specialize to the case when the circularity conditions
discussed in section 7 are satisfied, so that the vector #? introduced in the
previous section is well defined.

We now begin the actual variational calculation. In any variational calculation
there is a certain freedom of choice in the way in which one identify parts of the
manifold before and after the variation. When matter is present a naturally
convenient choice is to identify particular particle world lines, i.e. trajectories
of u® or equivalently /% before and after the variation. In the present cases
however an even more important consideration, to which we shall give priority,
is the preservation of the invariance group properties. Thus we shall require that
the Killing vectors (in their natural contravariant form) be left invariant by the
variation, i.e.

dk®=0  dm®=0 (9.31)

Unfortunately (except in the restrictive case when the angular velocities are left
invariant by the variation, i.e. when d<2 = 0) this will not be compatible with
preservation of the particle world lines taken as a whole. This is not a very
serious problem however, since we are only interested in quantities evaluated on
“a particular spacelike hypersurface Z or on its boundary, and we can, and
therefore shall, require that the points at which particle world lines cross 2 be
left invariant. In particular we require that the boundary points on which
particular null generators of the horizon meet the boundary of 2 remain the
same, even though the canonical null tangent vector itself will have a variation
given by

di®=m? dQf (9.32)
Introducing the metric variation tensor A, given by

dgap =hgp; ~ dg’®=—h" . (9.33)
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we can express the variation of the covariant form of 7, as
dl, =hgy1° + m,dH (9.34)

Since I/, remains normal to the horizon, which itself remains invariant, this vector
must also satisfy the restriction

ligdlp) =0 (9.35)
Using this, together with the group invariance condition
P(dly)p+ P pdly =0 (9.36)

it is easy to verify that the differential of the black hole surface gravity constant
K is given by

dk = —3(dl,)® — mg,p1°n® dQF
= 310010 — mgpl°n® dQF (9.37)
The corresponding formula for the differential of the black hole surface potential
¢ is simply
d¢H =1%dA, + m®d, dQH (9.38)

We can now proceed with the evaluation of the variations of the integrals in
(9.30), noting that for any integrand

d[  dZ,]=(-g) '*d[(-»)"? 1dz, (9.39)
and that
d(—g)''? =3(—g""*)n§ (9.40)

It is evident that

d [‘lé—chch(_g)lh} = {%T%dhcd + 4LF€d(dAd);c} (_g)l/z (9.41)
m .

It is well known (see any good standard textbook, such as Landau and Lifshits,
whose sign conventions I am following here) that

1 1/2 1 cd 1p.cd 1 (en)
[ _ = __ — . R + 3 . 1/2
d{161rR( g) } {161r(R 2Rg“)hca Sﬂhc b | (—8)

(9.41)

It is also true (see Carter 1972) that in a perfectly elastic variation of a solid
or perfect fluid

d{TepkP(—g) V?} dZ, = —Qd {TopmP(—g) *} dZ,
—1° d{p(-g) "} q dZ, (9.42)

where dp | denotes the variation in p calculated as it would be if d$2 were held
equal to zero. (It is not true that 9p/9d<2 is itself zero, as would be the case in the
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Newtonian limit, but the contribution to which it gives rise cancels out.) In a
purely elastic variation, in which entropy and particle numbers are conserved,
the variation will be given by dp lq = (00/0g4p) hap Where

0p
agab
(see Carter 1972). In a perfectly elastic case the entropy and particle number
flux vectors can have no components transverse to the flow since it is necessary
to be able to regard the system as being in local thermal and chemical equilibrium,
i.e. we must have

= 1@ + pg? + pu®u®) (9.43)

S? = Su’ (9.44)
ny = neu’ (9.55)

Under these conditions it is easy to allow for more general variations in which

the local thermal and chemical equilibrium is altered, i.e. variations which do not
preserve entropy and particle numbers, provided that p is a well defined function
not only of the geometry but also of the entropy and particle number density
scalars s and ng) defined by (9.44) and (9.45) so that the local temperature © and
Gibbs chemical potentials u® are well defined by

0p

‘a—s =0 (9.46)
P _ o (9.47)

an(,-)

It is to be noted that these quantities are not all independent, being related by
the identity

ptp=0s+ u(i)n(,) (9.48)
where we define
p = 3p; (9.49)

When these more general variations are allowed, (9.43) will still be valid provided
we substitute

dplg = —3(™ + puu® + pg™®) + © ds + u® dngy, (9.50)

where ds and dn ;) are not the total variations in s and the n;) but only the
contributions due to non-conservation of entropy and particle numbers in the
local matter rings, i.e. they are given by

d(su® d2,) =dsu® dZ, (9.51)
d(ngu® dZ,) = dn(i)u“ dz, (9.52)
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Under these conditions (9.42) becomes

d{Tipk®(—0)"?} dZ, = Qd{Thym"(—g)'} dZ,
+ 1°Tth o (—g)V? A=, — (@ ds + fD dng)} u(—g)"? d=, (9.53)

where we have introduced the effective temperature and chemical potentials ©®
and i® defined by (8.17) and (8.18).

Having thus worked out the contributions to the variational integrands, we
are now ready to perform the actual integration. Using the group invariance
condition

Papsck® + hockSy + hpckS, =0 (9.54)
to cast the integrand k% 12 ];,, as a divergence in the form

kahCIC;b];b = {k°n JeP1 _ gbp Lo ]};b (9.55)
we obtain

1 : 1 . 1 .
o Jk"héﬁ’b”]dza = §kﬂh£@b1 dSap — - 3@ kehlesb1ds,,
e H

=YaM + Ad T + J dH (9.56)

where the standard contribution 4dM from the surface integral at infinity is
easily obtained from the a symptotic boundary conditions, and where the hole
terms d J +Jy dSUH are obtained with the aid of the formula (9.36). Ina
similar manner we can cast the integrand k°F "d(dAd); ¢ as a divergence in the
form

KF4(dAg).. = 2{F°l°kP1 dA }. , + 4mk%° dA,
and hence we obtain

1

o f k°F°9(dAg),. dZ, = —Q dd”

(g f j*meA, dZ)df + [ 19° dA, dZ, (9.57)

with the aid of (9.37). Finally the variation of the second term in (9.30) gives
simply

df flCch“ dz,} = fle“ dA, d3,
+dQy f *meA, dZ, — f 14, 8Q (9.58)

where we have introduced the abbreviation

§Q =d[—j* dZ,] (9.59)
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Introducing the analogous abbreviations

8Ny = d[—nfy dZ,] (9.60)
8S =d[—s?dZ,] (9.61)
8Jpy =d[—TipymP dZ,) (9.62)

combining (9.40), (9.41), (9.51) with the Einstein equations, and finally using
(9.54), (9.55), (9.56) to simplify the residual integrals, we obtain the variation
of (9.30) in the form

M = QH Ty + i)+ | Qo + [®ss
+ [ @9 5N + 97 gy + [ 124, 50
+ X ag+2 199 da, az, (9.63)
8

This variation formula, which represents our final expression of the first law of
black hole mechanics, reduces to the formula (8.49) when the electromagnetic
rigidity condition

jlerel =0 (9.64)

is satisfied so that the last term drops out; this last term also drops out for any
variation which satisfies the perfect conductivity condition that the magnetic flux
(cf. equation (7.22)) through any comoving circuit be conserved.

10 Boundary Conditions for the Vacuum Black Hole Problem

From this point onward we shall restrict our attention to the case of black hole
spaces in which the pure vacuum or source free Einstein-Maxwell equations are
satisfied, excluding the degenerate limit case due to lack to time and space.
(Further details of the degenerate limit case are given by Bardeen.) As has been
explained in the preceding sections it has been established with certainty in the
rotating case, and it is virtually certain in the non-rotating case also, that such a
space will satisfy the conditions of Theorem 7 and Theorem 4.2 and it is also
virtually certain that the horizon will be connected, with topologically spherical
space sections. These various conditions can be summed up as follows.

Condition 10 .# is time orientable asymptotically flat, pseudo-stationary

and axisymmetric. The causality axiom is satisfied in .#. The domain of outer
communications < .#> of # is topologically the product of the Euclidean

2-plane and the 2-sphere, and the horizon #*is non-degenerate and is

topologically the product of a Euclidean line and a 2-sphere. The Einstein equations

Rab =0 (10.1)
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or the Einstein-Maxwell equations

R = 8nT®

=0 (10.2)
are satisfied in .

It follows from Condition 10, by Theorem 4.2 and Theorem 7, as we have
seen in section 7, that the metric on the union < .# > U * can be expressed in
the form

ds?=ds} + X dp® + 2W dy dt — V dt? (10.3)

where dsfy = 8ap AX* dx® (a, 8 =1, 2) is the metric projected orthonally onto a
2-dimensional surface, Z say, which intersects each surface of transitivity within
< # > U of the action 7 once. The form (10.3) will be well behaved
except on#* and on the rotation axis, which form an edge to Z. Since the
topological conditions are such that the rotation axis will have two branches
(extending respectively from the north and south poles of the hole to infinity)
7 will have the topology of a square in Euclidean 2-space possessing three
edges, but from which the remaining edge has been excluded, the included edges
corresponding in order, to the intersection of & with the southern rotation axis,
the horizon % and the northern rotation axis.

The purpose of this section is to show that the system of Einstein equations
and global conditions required by Condition 10 can be reduced to a comparatively
simple set of partial differential equations with boundary conditions for V, W, X
and the scalars B, ® defined by (7.28) as functions on %.

We start by considering the metric form ds?jon 42 . In deriving the general
form (10.3) or (7.36) for the metric and the form (7.42) for the field potential
we have in effect made use of and satisfied only the Einstein-Maxwell equations
involving the cross components in the Ricci-tensor between directions lying in
and orthogonal to the surfaces of transitivity, but we have made no use of the
equations for the components of the Ricci tensor lying wholly in or wholly
orthogonal to the surfaces of transitivity. Now it is true generally that the source-
free Einstein-Maxwell equations require that the Ricci tensor as a whole be
trace-free; and in the case of a field satisfying the circularity conditions (7.4),
it is easy to see further that the energy momentum tensor is such that the
projections of the Ricci tensor into the orthogonal to the surfaces of transitivity
must be trace free separately. Now it is well known from the work of Papapetrou
and others that the condition that the projection of the Ricci tensor into the
surfaces of transitivity be trace free, i.e. (in terms of the co-ordinate system of
the form (10.3))

XR;; — 2WR,, + VR =0 (10.4)

is equivalent to the condition that the scalar p defined, (whenever it is real) as
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the non-negative root of the equation
p’=o0 (10.5)

must be harmonic i.e. its Laplacian, defined in terms of the two dimensional
metric dsg, is zero. We can use this fact to show that p has no critical points in
the interior of % (i.e. no points where its gradient vanishes) and hence that can
p be used as a globally well behaved co-ordinate in <.# > except on the axi-
symmetry axis (Figure 10.1).

o axis

P

Figure 10.1. Plan of the 2-surface Z. The continuous lines indicate locuses on which p is
constant and the dotted lines indicate locuses on which z is constant.

To prove this we remark that since by Theorem 4.2, o is strictly positive in
< > except on the rotation axis (which corresponds to the boundary of #),
p is strictly positive in the interior of 2. On the other hand p is zero on the
whole of the boundary of 4, since it is immediately clear that p is zero both on
the rotation axis where X and W are both zero (because m? is zero) and on
the horizon #”, since, by Theorem 4.2, # *lies on the rotosurface where o is
zero. Furthermore the asymptotic flatness boundary conditions at infinity
ensure that p behaves in the limit at large distances like an ordinary cylindrical
radial co-ordinate, and hence that it has no critical points at large distances.
Under such well defined boundary conditions as these, ordinary Morse theory
tells us that provided there are no degenerate critical points, (i.e. points where
higher than first deviations of p are zero) the number of maxima plus the
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number of minima minus the number of saddle points of p in the interior of
Zis an invariant of the differential topology. By considering the special case
of a cylindrical co-ordinate in ordinary flat space it is obvious that in the present
case this invariant is zero. Since a harmonic function can have no maxima or
minima, it follows that in the present case there can be no saddle points either,
provided there are no degenerate critical points.

Now the more specialized harmonic Morse theory and Heinz (1949) enables
us to exclude degenerate critical points as well. The critical points of a harmonic
function can be classified with a positive integral index number which is the
order of the highest partial derivative which vanishes at the point under considera-
tion, this index number being unity for a non-degenerate critical point. According

rotation axig

Figure 10.2. Plan of hypothetical alternative form of the 2-surface & corresponding to the
mathematically conceivable (but physically impossible) case of a topologically toroidal as

opposed to a spherical hole. The continuous lines indicate locuses on which p is constant.

In this case there is necessarily just one non-degenerate critical point.

to this theory, if degenerate critical parts are present, the sum of the indices of
the critical points will be equal to the Morse invariant. In the present case this
tells us unambiguously that there are no critical points of p at all degenerate or
otherwise in 4. (In the case where the topology of Zcorresponded to that of a
toroidal black hole, this theory would tell us equally unambiguously that there
would be one non-degenerate critical point (Figure 10.2); in the case of two
distinct toroidal black holes there would be an ambiguity, since there might be
either two non-degenerate critical points or one degenerate critical point of

index two.)
Having established that p has no critical points in the interior of 4 it follows

that the curves on which it is constant have no intersections, and that they have
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everywhere the same topology, namely that at the Euclidean line. Hence not
only can we take p itself to be a globally well defined co-ordinate on 2%, but we
can also choose a globally well behaved scalar z without critical points, and
constant on curves orthogonal to those on which z is constant, as a second
globally well behaved co-ordinate. In terms of such a co-ordinate system, the
metric ds?; on % will have the form

ds¥ = Z(dp?* + Zdz?) (10.6)

where 2 and Z are strictly positive functions in the interior of 2. Now it follows
at once by further application of the harmonicity condition that Z is a function of
of z only, and hence that by a variable rescaling of the function z we can arrange
to set Z equal to unity thus reducing the metric to

dsy = Z (dp? +dz?) (10.7)

In this form the co-ordinate z is uniquely defined to an additive constant, and
this constant may itself be specified uniquely by the requirement that z take
equal and opposite values,

z=tc (10.8)

say, where c is a positive constant, in the limit as the junction of the symmetry
axis and the horizon is approached.

Thus we deduce finally that < .#> may be covered globally apart from the
degeneracy on the symmetry axis, by a Weyl-Papapetrou co-ordinate system
P, z, ¢, t in which the metric takes the canonical form

ds?=Z (dp?+dz?) + X dp® + 2Wdp dt — V dt? (10.9)
while the electromagnetic field will have the form
F=2B ,dp+B ,dz) Ndpo+2® ,dp+® ,dz) \dt (10.10)

where the co-ordinate ¢ is defined modulo 27, the co-ordinate p ranges over the
positive half of the real line, and where ¢ and z range over the entire real line, and
where these co-ordinates are defined uniquely apart from the possibility of
adding a (clearly ignorable) constant to ¢ or . The same applies to the comple-
mentary forms

ds? = 3(dp? + dz%) + X dp™ + 2WT dyt dt — VT ar? (10.11)
F=2(B,,dp+B,,)Ndp' +2(®7,dp + ®T,dz) Ndt (10.12)

It is well known (see e.g. Ernst (1969) that for a metric of the simple form
(10.9) with an electromagnetic field of the form (10.10), the source free
Einstein-Maxwell field equations for the metric and potential components in
the surfaces of transitivity, i.e. for the variables V, W, X and B, ® decouple from
the remaining field equations which are either redundant or serve to determine
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% on % uniquely, (up to a constant multiplicative factor fixed by the boundary
conditions), by an explicit quadrature, as a function of V, W, X, B, ®.

In this section we shall give boundary conditions on these five variables V,

W, X, B, ® and % which we shall show to be both necessary and (subject to the
field equations) sufficient for the axisymmetry axis and the horizon #™ in
M to be well behaved.

We start by considering the more familiar case of the axisymmetry axis, on
which m® and hence also X and W, are zero, leaving out of consideration for the
time being the intersection (on which V will be zero also) of the axis with the
horizon. Since the Killing vector squared magnitude X must increase in proportion
to the square of the orthogonal spacelike distance from the axis, the same must be
true also of ¢, and it follows that its square root p can be used as well behaved co-
ordinate, with finite non-vanishing gradient not only in the interior of & but also
in the part of the boundary corresponding to the axisymmetry axis. It follows
that the coefficient ¥ in the metric form, must be finite on the rotation axis (in
fact it must satisfy £ = 7! there) and that the orthogonal co-ordinate z on 4 is
also well behaved there.

Now (by considering the affect of a rotation by an angle m about the axis)
it is evident that in order to be well behaved on the axis the scalars V, W, X, ®,

B must all be even functions of p, and hence can be expressed as well behaved
functions not only of p and z but also of o and z. Thus we see at once that
necessary boundary conditions on X, W, V are

V= V(o,2) (10.13)
W=oW,(o,z) (10.14)
X = 0X,(0, 2) (10.15)

where the functions W, X; and V are well behaved functions of o and z, the
two last being strictly positive on the axis where o is zero. We can deduce
corresponding conditions for ® and B by considering the requirements for the
regularity of (10.10). The form dt in <.# > is well behaved, but the form dy

is singular on the axis, and therefore B must be correspondingly restricted in
order to ensure that (B , dp + B, , dz) Ady is well behaved. Now since we have
B , dp = B , do and since the form do tends to zero on the axis in such a way
that do A dy is well behaved, it follows that the restriction applies only to the
partial derivative B ;,which must itself tend to zero on the axis. Thus we obtain
the conditions

(I>=(I)(0,Z) (1016)
B =B+ 0B,(0,2) (10.17)

where ® and B, are well behaved functions of ¢ and z, and B4is a constant, which
will be the same on both the north and south branches of the axis only if the
magnetic flux defined by (7.22) is zero.

The conditions (10.13), (10.14), (10.15), (10.16), (10.17) are not only
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necessary for the symmetry axis to be well behaved, but they are also sufficient,
provided that the Einstein-Maxwell field equations are satisfied, since it follows
from the conditions (10.16) and (10.17) that the p, z component of the energy-
momentum tensor, and hence also at the Ricci tensor, in terms of the co-ordinate
system of the metric form (10.9), must tend to zero on the symmetry axis. Now
by analysing the explicit form of the Ricci tensor, using (10.13), (10.14), (10.15)
it can be checked that satisfying the equation R,, = 0 on the axis automatically
ensures that the scalar function 2 in the metric satisfied the boundary condition

T=€"2[X,(0,2) + 0 Z,(0,2)] (10.18)

on the axis where € is a non-zero multiplicative constant of integration, X, is a
well behaved function of 0 and z, and X; is the same function as was introduced
in equation (10.15). It is now easy to see that the condition (10.13), (10.14),
(10.15) together with (10.18) are sufficient for the cylindrical co-ordinate
degeneracy of the form (10.7) on the symmetry axis p = 0 to be removable in
the usual way be replacing p and ¢ by Cartesian type co-ordinates x, y defined
by

X=pCcosy

y=psing (10.19)

provided that the constant € has the value unity, which will in fact be the case
under the assumed global topological conditions, since both disconnected com-
ponents of the axisymmetry axis extend to asymptotically large distances, where
the asymptotic flatness conditions ensure that € is indeed unity. Under these
conditions the use of (10.13), (10.14), (10.15), (10.18) in conjunction with the
transformation (10.19) reduces the cylindrical co-ordinate form (10.9) of the
metric to the Cartesian form

ds?=X,[dx®+dy? +dz?]+ Z,[(x dx +y dy)? + (x? + y?) dz?]
+2W,(x dy — y dx)dt — V dt? (10.20)

which can easily be seen to be well behaved on the axisymmetry axis where
x =y = 0. Similarly the use of (10.16) and (10.17) in conjuction with the
transformation (10.19) reduces the cylindrical co-ordinate form (7.41) of the
vector potential to the form

A=®dt +By(ydx —x dy) + B4 dp ©(10.21)
Since B is a constant on each branch of the axis, the final singular term can be
removed by a canonical form preserving gauge transformation whenever the
magnetic monopole (7.22) is zero, and in any case, the electromagnetic field
will have the well behaved Cartesian form

F=2d®N\dt+2dB, \(y dx — xdy) + 4B, dy Ndx (10.22)

We now move on to consider the analogous boundary conditions required by
the regularity of the horizon #, again excluding for the time being the junction
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of the horizon with the axis. For analysing the horizon, on which as we have
seen, 0 and V7T, and theref. re also W' are zero, it is convenient to work with the
complementary form (10.17) of the metric instead of (10.9). In consequence the
non-degeneracy condition che gradient of ¥, and therefore also (since we are
excluding the rotation axis where X is zero) the gradient of ¢ in .# are non-zero
on #*, and it follows this time that ¢ can be used as a well behaved co-ordinate
with finite non-vanishing gradient not only in the interior of 4 but also on the
part of the boundary of # corresponding to the horizon. Thus the square root,
p, of o will have a singular gradient on the horizon boundary of Z (in contrast with
the situation on the axis boundary where p, but not o, is well behaved as a co-
ordinate). Now using (5.24) we can easily see that we must have

Tl=p p%=kX (10.23)
led

on #". Since Z thus tends to a finite limit on the horizon boundary of 4, it
follows that z is a well behaved co-ordinate on the horizon boundary. Hence
we deduce that VT, WT, X, ®%, B will be well behaved functions of ¢ and z on
the horizon boundary, and therefore that in the neighbourhood of the horizon
boundary they will have the form

vi=0V](o,z2) (10.24)
wt = owi(o,2) (10.25)
X =X(0, 2) (10.26)

where the functions W7, V}L and X are well behaved functions of ¢ and z, the
two last being strictly positive, and

®T = o + 6o} (0, 2) (10.27)

B=B(0,2) (10.28)
where <I)11' and B are well behaved functions, and & is the constant previously
introduced by (8.40).

As before it can be seen these conditions are also sufficient for the regularity
of the horizon when the Einstein-Maxwell field equations are satisfied since as in
the previous section the conditions (10.27), (10.28) imply that the Ricci com-
ponent R, in the form (10.11) must tend to zero on the horizon, and hence by
(10.24), (10.25), (10.26) that the scalar functions 2 must have the form

X=k"2[V,(0,2) + 0 Z,(0, 2)] (10.29)

where 2, is a well behaved function of o and z, and « is a strictly positive
multiplicative constant or integration, which is clearly, by (10.23) the same as
the constant k with which we are already familiar. Thus the boundary conditions
(10.24) to (10.28) are sufficient to ensure that the condition (whose necessity
was shown in Theorem 8) that k be constant will be satisfied. We can therefore
remove the co-ordinate degeneracy on the horizon by a Finkelstein (1958) type
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co-ordinate transformation in which ¢ and p are replaced in the form (10.11)
by 0 and a new ignoreable co-ordinate v defined by

v=t+k 'in|p]| (10.30)
which leads to the form
ds*=V,[k %dz?* - (cdv — 4k 1 do)dv] + X dy'?
+k7 22, [0dz? +3do?]+2W, (0 dv — 3k do) T (10.31)

which, can easily be seen to be well behaved on the horizon where o is zero,
since V| and X are strictly positive there. The corresponding forms for the
vector potential A and the electromagnetic field F are

A=Bdo" + ®l[odv — 3k 1 do] + Dk pVdp (10.32)

which is non-singular except for the final term, which could be removed by a
gauge change, and

F=2dB Ndo" + 2d®1 A\ [0 dv — 3k " do] +2®T do A dv (10.33)

which is well behaved in any case.

The condition (10.24) to (10.28) are not only sufficient for the future
bounding horizon J# *of < .# > to be well behaved, as we have just shown (still
leaving aside the junction of the horizon with the axisymmetry axis) but they
are also sufficient for there to exist a Kruskal type co-ordinate extension of
< # > to cover both a corresponding past boundary horizon #~ of <.# >
and a crossover axis 5N s#~ on which [* is zero, where the past and future horizons
bounding < .# > meet (Whether or not the past boundary horizon and the
crossover axis were included in .# as it was originally specified). To see this
we introduce co-ordinates w* and w™ in plane of ¢ and p, by the equation

w* =p e*K? (10.34)
and thus obtain transform (10.11) to
ds? =k 2V [dwtdw™ +dz?] + X do'?
+k 22 Bw awt +wraw )2 + wtw dz?
+kTIW [wTdwt — whdw ] dof (10.35)

which is well behaved both in the neighbourhood of the future bounding horizon,
#* which is represented by w* = 0, and on the past bounding horizon #~
represented by w™ = 0, including the crossover where they both meet. The
corresponding values for the vector potential and field are

A=Bdy' +ik71®,[w dw" — w dw ]+ & dt (10.37)
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which is well behaved in the neighbourhood of the horizons, except for the final
singular term which is removable by a gauge transformation, and

F=2BNdot+ k1 dd, AN [w dw" —w"adw"]
+ 2k '@, aw " Adw' (10.39)

which is well behaved near the horizons in any case.
We now come finally to the question of regularity on the north and south
poles of the black holes i.e. on the junctions of the two rotation axis components

Figure 10.3. Plan of the 2-surface Z. The continuous lines indicate locuses on which A is
constant and the dotted lines indicate locuses on which u is constant.

with the horizon. It is clear from symmetry considerations that the axis must
intersect the horizons orthogonally, and therefore it will obviously be convenient
to discuss the junction in terms of a new orthogonal co-ordinate system chosen
transverse to the p, z system, in such a way that one co-ordinate is constant on
#*while the other is constant on the rotation axis. The simplest way to construct
such a system is by introducing ellipsoidal polar type co-ordinates (Figure 10.3),
u running from —1 to +1 and A running from ¢ to o (where f¢ are the values of

z on the junctions and where c is strictly greater than zero since as we have seen,
z is a well behaved co-ordinate function of the horizon), these co-ordinates being
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defined on # and hence on < .# > U s#*in terms of p and z by
p2=0=A%=c)H( - u? (10.40)
zZ=MNu (10.41)

In this system the two axisymmetry axis components are characterized by

1 = % 1 respectively, and the horizon boundary is characterized by A = c.
Corresponding to the conditions that p is well behaved on the axis while ¢

is well behaved on the horizon, we shall have the conditions that (1 — u2)!/2

is well behaved on the axis (and hence everywhere except on the equator where
1 =0) and A is well behaved on the horizon (and hence everywhere without
exception).

It follows that we can replace the separate axis and horizon boundary
condition that the co-ordinate functions X, etc., be well behaved as functions
of ¢ and z, by the joint boundary conditions that they be well behaved as
functions of A and u everywhere. Thus the necessary boundary conditions
(10.13) to (10.17) and (10.24) and (10.25) can be replaced (noting that the
differences between V', W, ® and VT w', & tend to zero on the axisymmetry
axis) by the single set of necessary boundary conditions

X=X (1042)
wh=2-c)Q —uH W N (10.43)
Vi=\2—c) V(N (10.44)
B=B4+(1 - u®»Bu,N) (10.45)
ot = + (\? — cH)D(u, \) (10.46)

where X , fV, 17, l§, d are well behaved functions of U, A everywhere including
both the axis where 1 = 1 and on the horizon where A = ¢ and where B4 and &4
are the gauge constants which have already been introduced (and where Xand V
are strictly positive in the neighbourhood of both the axis and the horizon).
positive in the neighbourhood of both the axis and the horizon).

It follows that the metric on % takes the form

| ax? du?
dsf == {k2_02+ - (10.47)
where the function =, which is related to the function X by
E=\2-cu}H Z, (10.48)

is well behaved and non-zero everywhere including the north and south poles,
provided that the field equations are satisfied, since (in consequence of the
identities X; = (A% — ¢?) "' X and V;r = (1 — u?)~' V) the consequential boundary
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conditions (10.18) and (10.24) for 2 imply that we can write

E=u?[X+(1 - u®)E] (10.49)
and

E=Nk 2P+ (N2 = c?)ET] (10.50)

for suitably chosen functions =, and EJ{ which will be well behaved functions
of A and u on the axis u =+1 and the horizon A = ¢ respectively, and hence both
well behaved also on the poles where the axis and horizon meet.

We can now introduce co-ordinates X, y (analogous to the previous cartesian
co-ordinates x, y) and w*, W™ (analogous to the previous Kruskal type null
co-ordinates w*, w™) simultaneously by the definitions

=41 —ui sin«pJr
=1 — 2 cos ot
wt =AT =2 K (10.51)

which transforms (10.11) to the form

=

+

ds?=E | + =2 . ~
whwT+e? 1 — &2+

| awtawT  d=?+dp? }
+k T TWW T awt — wrdw ] [Rdy — P dR] (10.52)
+ 32 ZT0” Wt —Wwraw )2 — ;[ dp - J dx]?

which is well behaved everywhere in both the northern hemisphere (i.e. where

z > 0) and in the southern hemisphere (i.e. where z < 0) including the horizon

on which w* = 0, (and it can also be extended over a past bounding horizon of

< .# > on which w~ = 0, and over a Kruskal crossover axis w* = w~ = 0) although

it is singular on the equator z = 0 since we have X% = = 1 there.

The field in these co-ordinates, is derived from the vector potential

A=B[%dp— §dR]+k L ddA W v~ — W aw] (10.53)
+B4 dcpT + & gt
and therefore has the form
F=2dBA[#dp—pdz] +k 1dd A [Wdw™ —w dw?]
+4Bdx Ndp + 2k ' d dwt Adw™ (10.54)

which is also well behaved in each hemisphere, although not on the equator.
Since we have already covered the equator by the Kruskal type co-ordinate
patch (10.35) (which is well behaved everywhere except at the poles), this
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completes the verification that (subject to the field equations) the necessary
conditions (10.42) to (10.46)are also completely sufficient for the whole of
< ¢ > and its future boundary horizon # *to be regular, and also that they
imply the existence of a symmetric past boundary horizon 5#~, with a regular
topologically two-spherical intersection #* N~ in a suitable extension of
< #> U # *(although not necessarily in ).

Before proceeding, it is worth commenting on the precise interpretation of the
parameter ¢, which puzzled me when I originally worked out these results. The
solution to this problem (as was pointed out to me by Bardeen) is provided by the
generalized Smarr formula (9.29). It follows directly from (10.23) using the metric
form (10.9) that the surface area .o/ of the hole is given in terms of ¢ by

L (10.55)
K

Hence using the source free form of (9.29) we obtain

c=M-2Q7 - dfQ (10.56)

11 Differential Equation Systems for the Vacuum Black Hole Problem

It is well known, from the work of Papapetrou and others, that the source free
Einstein-Maxwell equations for the form (10.9) in conjunction with (7.41) can

be reduced to a set of four independent equations for the four unknowns V, W,
®, B and also that the asymptotic boundary conditions reduce to a corresponding
set of four conditions on these four unknowns, in terms of the four corresponding
conserved asymptotic quantities, namely the mass M, the angular momentum J,
the electric charge Q, and the magnetic monopole moment P. What we have
shown here so far is that the remaining regularity conditions for a system
satisfying the conditions (10) can also be reduced to a set of four boundary
conditions, namely (10.42), (10.43), (10.45), (10.46) for the four unknowns

V, W, ®, B only (since the fifth condition (10.44) for X is not independent but
clearly a consequence of (10.42) and (10.43).

The tranditional form of the field equations, in terms of V, W, ®, B is very
convenient for studying properties at large asymptotic distances, but unfortunately
these equations become singular on the ergosurface where V is zero. We can get
over this difficulty by noticing that the metric form (10.9) and the electro-
magnetic field (7.41) are algebraicly invariant under a change in which V, W, @,
B are replaced by — X, W, B, ® respectively. By making this interchange we get
over the singularity difficulty, since as has already been remarked, the causality
condition ensures that X is never zero except of course in an entirely predictable
way on the rotation axis.
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The equations we obtain may be expressed conveniently in terms of the
background metric

d\? du?
d§121=>\2_02+1_u2 (11.1)
on 8 as two Maxwell equations
XV¢ — WVB
VIJJ—J=O (11.2)
VB W [XV¢—-WVB
v, VB, W XV9 I _o (11.3)
X X p
and two Einstein equations
XVW - WVX XVo—- WVB
V[ +4B[ ve ]}=O (11.4)
p P
_ 2 _ 2
v pVX +IXVW ZVVXl +2|XV<1> WVB|
X pX pX
| VB |?
+2 =0 11.5
P (11.5)

Noting that the co-ordinates A, u can be related to co-ordinates r and 6 which
behave asymptotically like the traditional Schwarzschild spherical co-ordinates
by the transformation A = r — M and u = cos §, we can easily express the standard
Papapetrou (1948) type boundary conditions in the terms of the requirement
that W, B, ® and A\ 2X are well behaved functions of u and A ! in the limit as

A~! = 0, and that they satisfy.

=N T+00N7? (11.6)
B=—Pu+ OQAYH) (11.7)
W=_2A"1+0Q07? (11.8)
ATZX =(1+p®)[1+2MN 1+ 0N 72) (11.9)

as A~ ! > 0 (In imposing these conditions we have fixed the gauge of ¢ and B.)
The boundary conditions derived in the previous section can be expressed as

b 3D

£=0(1) =0 (11.10)
9B _ 9B _ o1 — 2

a“-0(1) .= 01 — 1) (11.11)

W=0(1—u?) (11.12)
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1 0X
X=0(1 —udH)——=1+001 — u? 11.
( “)Xau (1 —u%) (11.13)

asu—>=*1 and

9P 30 ;0B

= =0 FPRRL a“=0()\2—c2) (11.14)

B 3B

= =0 a_,fo(l) (11.15)

W+ QHX=002-c? (11.16)

X=0(1) )17=0(1) (11.17)
as A —~c.

Thus our results so far amount to a demonstration of the following key
lemma:

To each domain of outer communications < ¥ > in a spacetime in which the
condition 10 of the previous section satisfied, there corresponds a cannonically
defined solution of the system of equations (11.2) to (11.5)on the \, u plane
in the co-ordinate range —1 < u <1, ¢ < X <0 subject to the boundary
condition (11.6) to (11.17), and conversely to each solution of this system
there corresponds a canonically defined manifold < # > which can be extended
to form a manifold .# within which < .# > is the domain of communications,
and in which the conditions 10 are satisfied.

In short there is a one-one correspondence between source-free stationary
axisymmetric black hole exterior solutions and solutions of the above system.
The only known solutions of this system are the pure vacuum family of Kerr
(1963), and its electromagnetic generalization given by Newman et al. (1965).
These solutions are given by

c1>=%r+_—af;’l% (11.18)
B=Pu(r2+r;z)+—azQ:2r(1 — 1) (11.19)
=" _”2(%11; Q- P) (11.20)
X=(01-pu? r2+a2+532(i_—2“—? [2Mr — Q% — P?] (11.21)

r-ta‘u
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where we have used the standard notation

r=A+M (11.22)
J
a=- (11.23)

These solutions are uniquely specified by the values of Q, P, J, M (the gravita-
tional part being invariant under a duality rotation in which Q and P are altered
in such a way that the sum of their squares remains constant) which are
restricted only by the condition that the boundary valve parameter ¢, which

is given by

ct=M? —q* - P? - Q? (11.24)

should remain real and positive. The other parameter involved in the specification
of the boundary-conditions, namely the black hole rotation velocity, 2, is given
by

a
o= — — 11.25
(M+c)2+a2 ( )

The fundamental conjecture which one would like to verify is that there
exists a uniqueness theorem for the system according to which these should be
the only solutions. However due to the essential non-linearity of the system it
has not yet been possible to attain this objective, except in the static case. It is
therefore worthwhile to start by investigating the truth of the weaker conjecture
that there exists what has come to be known loosely as a no-hair theorem
according to which a continuous variation (in a suitably defined sense) of a
solution of this system should be uniquely determined by the corresponding
continuous variation of the four conserved quantities Q, P,J, M, i.e. any
solutions other than those above should also form discrete non-bifurcating
families depending on at most these four parameters.

It is evident that if the no-hair conjecture is correct the parameters ¢, QF
and ® which appear in the boundary conditions must be essentially redundant
[part of this redundancy being made explicit by the relation (10.56)] merely
duplicating the information on the rotation and scale of the black hole already
given by M, J and Q. The scale parameter c is necessary to define the manifold
on which we are working and therefore cannot easily be eliminated from the
problem, so that it is more convenient instead to eliminate the mass parameter
M which also controls the overall scale, and which governs only the higher
order asymptotic corrections to X. However it turns out that Q7 and & can
be made to drop out of the problem altogether by recasting the problem in the
manner described by Ernst (1967, 1969).

The Ernst method, whose basic purpose is to simplify the field equations,
consists of taking advantage of the fact that the equation (11.2) can be inter-
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preted as an integrability condition which is necessary and (under the present
global conditions) sufficient for the existence of an electric pseudo-potential
E satisfying

(1-u®E, =Xo— WB

11.26)
— ()\2 — C2)E’)\ = Xd),“ — WB,“ (

and hence that (11.4) can be interpreted as an integrability condition which is
necessary and sufficient for the existence of a twist potential Y satisfying

(1 -p®Y, =XW — WX\ +2(1 —u*BE, — EB )
—(A2 =AY \=XW, - WX, +2A* — c®)(BEx—EB ) (11.27)

The final stage in the Ernst procedure is to eliminate the variables ¢ and W in
favour of the new variable £ and Y. It was pointed out by Ernst (1967) that in
the pure vacuum case (when £ and B are zero) the resulting field equations can
be derived from a very simple positive definite Lagrangian. It turns out that in
the electromagnetic case the equations can still be derived from a positive definite
(but not quite so simple) Lagrangian. The Lagrangian integral to be varied has

the form

I=[ Landy (11.28)
where the Lagrangian density is

|VX|?+|VY +2(EVB — BVE) |2+2 IVE|?+|VB |?

L= 2X2 X

(11.29)

(the gradient contractions still being expressed in terms of the metric form
given by (11.1)) which reduces to the Lagrangian given by Ernst when E and B
are set equal to zero. It is to be remarked that this Lagrangian is invariant under
a duality rotation in which £ and B are replaced by E cos a + B sin « and

B cos a — E sin « respectively, where « is a constant duality angle, as also is

the resulting system of field equations. These equations consist of two Maxwell
equations

Eg= V{%Bi—} ¥ 5?3 VE[VY + 2EVB — BVE)] =0 (11.30)
VE
Ep= V{p—X—} —%VB[VY+2(EVB—BVE)]=O (11.31)

and two Einstein equations

Ey= V{)% [VY +2(EVB — BVE)]| =0 (11.32)
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pVX| |VX|>+|VY+2@EVB - BVE)|?
2+ E2
+2p|VB|X2|V I 0 (1133)

the two latter being obtained directly by variation with respect to Y and X
respectively and the two former being obtained with the aid of (9.9), by
variation with respect to B and E respectively.

The asymptotic boundary conditions, necessary and sufficient for asymptotic
flatness, (but dropping the higher order restriction the explicity specifying the
mass M in the condition on X) are that £, B, Y and A"2X, be well behaved
function of A™! and y in the limit as A™* - 0, and that they satisfy

=—Qu+0Q\™H (11.34)
= _—Pu+0Q7Y (11.35)
Y=2u@B -upH)+oQA™h (11.36)
AT2X=(1—-ud)+0\7YH (1137

as A~ = 0, (with suitable choice of gauge for £ and Y). The symmetry axis
boundary conditions which are necessary and sufficient for (11.10), (11.11),
(11.12),(11.13) to hold are that £, B, Y, X should be well behaved functions
of u and A and that they satisfy the conditions

oF oE

P oy Zy=0d — 1) (11.39)
S0 Si=001-u

%M(E%E—B%E)wa_m %\;0(1—#2) (11.40)
X=0(1 -u? )17%=1+0(1_,12) (11.41)

as u—> * 1. The horizon boundary conditions are extremely simple in the present
formulation, and are merely that £, B, Y, X be well behaved functions of A and
u as A > ¢, with X non-vanishing, (the parameter Q7 disappearing from the
specification completely) i.e.

oF oF
a:O(l) a—'u—O(l) (1142)
B _o1 2B
5— 0(1) a#—O(l) (11.43)
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oY oY

5=0(1) a—u=0(1) (11.44)

X=001) X '=o0() (11.45)
asA—c.

This Ernst formulation of the problem is completely equivalent to the
previous formulation, i.e. there is a one-one correspondence between solutions
of (11.30) to (11.33) subject to (11.34) to (11.45), and solution of (11.2) to
(11.5) subject to (11.6) to (11.17) [and hence also a one one correspondence
with domains of communications in manifolds satisfying the basic stationary
axisymmetric source free black hole conditions (10)].

The values of the Ernst potentials £ and Y in the Kerr-Newman solutions are

_Qu(r? +a®) — Par(1 — p?)
r? +a2u2

E (11.46)

20u(1 — p?)

r?+ a2’ (@ +P*)r —Ma® (1-u?)] (1147)

Y =2aMp (3 — u?) -

It is evident that the Ernst formulation of the problem is as effective in
simplifying the boundary conditions as it is in simplifying the field equations.
This simplification would not have occurred if we had worked with the
complementary form of the equations using V instead of X. (On the other
hand the actual solution is more complicated this way round.) The condition
that the Lagrangian density is positive definite and well behaved also depends
on using X, which is non-vanishing. The complementary form of the Lagrangian
density, obtained by using — ¥ in place of X contains terms of opposite signs
outside the ergosurface, and is singular on the ergosurface. Unfortunately even
in the present case the positive definiteness of the Lagrangian cannot easily be
used for drawing global conclusions, since the boundary conditions on X as
u—> t1 ensure that the integral / is divergent when taken over the whole
domain.

The only case in which proper black hole uniqueness theorems (as opposed
to no-hair theorems) are available at present are those in which the angular
momentum is zero. In conjunction with theorem 4.1, the theorems of Israel
(1969), (1968) and their refinements (cf. Muller zum Hagen, Robinson, Siefert
(1972) give an almost complete demonstration that a black hole solution of given
mass and charge is unique, (Schwarzschild or Riesmer-Nordstrom), provided that
staticity is assumed. We shall complete this section by proving the following
result.

Theorem 11 If the condition (10) is satisfied and if the angular momentum is
zero, then the metric is necessarily static (in the sense that Y and hence also W
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are zero) and if furthermore the magnetic monopole moment is zero, then

the electromagnetic field is also static (in the sense that the magnetic potential

B is zero).

Proof: We shall start by considering the special case when the magnetic monopole
moment P is taken to be zero. The proof depends on the identity

VY +2(EVB — BVE) |2 VB |?
p| (;2 ) | +4pl Xl
+ _
_ v p(Y + 2EB)[VY 22(EVB BVE)] . 4pBVB
X X
— (Y + 2EB)Ey — 4BEjg (11.48)

When the field equations E'y = 0, Eg = 0 are satisfied, the right hand side
reduces to a divergence, and hence the integral of the left hand side over the
entire domain Z can be expressed in terms of a boundary integral. Since the
quantities Y, E, B, X 1 are all well behaved on the horizon, the presence of the
factor p in the divergence ensures that the horizon gives no contribution to the
boundary integral. The situation on the axis s = £ 1 is more critical, since X! is
singular there; however the boundary conditions ensure that ¥ and B are always
constant on the axis, and hence in the particular case when J and P are zero

Y and B are respectively zero also on the axis. Hence we see using (9.22) that
the axis gives no contribution to the boundary integral when J and P are both
zero, and it is also clear that under these conditions the same applies to the
asymptotic boundary integral. It follows that each of the two non-negative
terms on the left hand side must be zero everywhere. In conjunction with the
boundary conditions, the vanishing of the second term implies that B is zero,
and hence the vanishing of the first term, in conjunctions with the boundary
conditions, implies that Y is zero also.

To see that Y must be zero whenever the angular momentum is zero, even
when a magnetic monopole P (and hence also a non-zero magnetic contribution
B to the field) is present, we have only to notice that it is always possible to reduce
the magnetic monopole moment to zero by a duality rotation which of course
leaves Y invariant. This completes the proof.

In conjunction with this result, Israel’s theorems provide an almost complete
proof of uniqueness for black holes with zero angular momentum, subject to
the axisymmetry assumption.

[Approaching the same conclusions from a slightly different angle, the closely
related generalised Hawking—Lichnerowicz Theorem 6.2, in conjunction with
Israels’ theorems, provides an almost complete proof of uniqueness for black
holes with zero angular velocity, subject to the assumption that the hole
boundary ergosurface is the outer ergosurface.]
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12 The Pure Vacuum No-Hair Theorem

In order to make progress when non-zero angular momentum is present, we shall
restrict our attention in this section to the purely gravitational case where there
is no electromagnetic field present, i.e. when £ and B are zero.

In this case the field equations reduce to

_ | vx|. [VXP+|VY]
Gx(X,Y)= V{p F}*‘ﬁ X3 =0 (12.1)
Y
Gy(X, Y)= V{p z,—z} =0 (12.2)

and the boundary conditions are simply that as A™' = 0, Y and A™2.X must be
well behaved functions of A} and u with

A2X=(1-uH)[1+0(A" Y] (12.3)
Y =3Ju(l —u?+0QA7hH (12.4)
that as u =~ £1, X and Y must be well behaved functions of u and A with
oX

X=0(1-up®» Xx! i 14001 —u? (12.5)
i}

oY Y

= =0(1 — 2 — =0(1 = u? 12.6

5X (1 —wu%) o (1-up9 (12.6)

and that as A > ¢, X and Y must be well behaved function of A, u with no other
restrictions than

X=0(1) X 1=001) (12.7)
Y Y
=0 _aﬂ=0(1) (12.8)

Simple as it is, this system remains essentially non-linear, and it is therefore
not easy to obtain a solution of the full uniqueness problem. However it turns
out that we can, without too much difficulty, prove the truth of the fundamental
no-hair conjecture by showing that continuous variations of these solutions are
uniquely determined by the corresponding continuous variations of the scale
parameter ¢ and the angular momentum parameter J. We use the term continuous
in this statement to denote a restriction on solution families under discussion
sufficient to ensure that if {X;, Y}/, ¢) and {X,, Y,}{/, ¢) are two distinct
continuous families of solutions, which are functions over a set of values of the
parameter pairs (/, c¢), and which tend (in some appropriate topology on the
space of functions) to a common limit {Xg, Yo} as (/, ¢) tends to (Jy, co) then
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there exists at least one subset of values of (/, ¢) such that over this subset the
difference {X, — X5, Y, — Y, }J, ¢) has a well defined limit direction,
represented by a non-zero function-space tangent vector {X’ , f’}, as(J, ¢)

tends to (Jo, ¢g), (in the sense that there exists some parameter § say which is

a function of (J, ¢) on the subset, tending to zero as (J, c¢) tends to (Jo, ¢o), and
such that 71 {X, — X,, Y, — Y, } tends to {X, Y} as {X; — X,, Y; — Y,} tends
to zero).

In view of a comment made by Wald we emphasize that this continuity
requirement has nothing to do with analyticity or even piece-wise analyticity; in
fact in a finite dimensional vector space the continuity property postulated
above would be an automatic consequence of the ordinary continuity condition
that any neighbourhood of the point {X,, Y} contains members of the families
{X,,Y,}and {X,, Y,} other than {X,, Y} (in consequence of the fact that
in a finite dimensional vector space, as opposed to an infinite dimensional
Banach space, the unit sphere is compact). We shall not attempt to investigate
here the precise restrictivity of this continuity requirement in terms of explicitly
defined Banach space structure of function space. For anyone who may be
interested in following up such fine mathematical points, we refer to a discussion
of such questions in the context of a rather simple kind of non-linear partial
differential equation system by Berger (1969).

The continuity property we have postulated implies that if there are two
distinct families {X;, Y}, {X5, Y, } of solutions bifurcating from some given
solution {Xy, Yo} then there will exist some subset of values, parametrized as
functions over some corresponding subset of values of a parameter § such that

Xo(J, ©) = X1(J, ¢) + BX + 0(B) (12.9)
Ya(J, ¢) = Yq(J, ¢) + BY + O(B) (12.10)

as §— 0 over this subset for some (not everywhere vanishing) functions X LY.

[We emphasize again that this condition does not imply any assumption that
{X,,Y,}and {X,, Y,} or the associated parameter values (/, ¢) are analytic

or even differentiable functions of §, so that the present treatment automatically
covers “higher order bifurcation” in which the derivatives of {X, — X, Y, — Y}

with respect to (J, ¢)—if indeed such derivatives exist—are zero at (J, cg).]
On substitution of the above expression into the operators defining the field

equations we obtain
GX(X2’ Y2) = GX(XI’ Yl) + ﬁG.X(Xl’ YI;X; Y) + O(B) (121 1)

Gy(X2, Y2) =Gy(Xy, Y1) +BGy(Xy, Yi; X, ¥) + 0(B) (12.12)

as B~ 0 where the linearized perturbation operators G xX,Y; X , Y) and
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CY(X, Y; )'(, Y) are given by

. VX Xvx VXVX + VYVY
GX= V{p ?—2p7}+2p{ X3 }

-3 [VXPP+ VYT X 12.13
p X (12.13)

. VY _ YVX
Gy = V[pF—Qp—X‘g—} (12.14)

Using the fact that {X,, Y, } and {X;, Y} are solutions of the exact field
equations, Gx(X2, Y2) =Gy(Y,,Y;)=0and Gx(X;,Y,) =Gy(X,,Y,) =0,
and dividing by 8, we obtain

Gx(X,, Y; X, Y)+0(1)=0 (12.15)

Gy(X,,Y;; X, ¥)+0(1) =0 (12.16)
Hence we finally deduce that we must have

Gx(X,Y;X,Y)=0 (12.17)

Gy(X,Y;X,Y)=0 (12.18)

when X, Y take the values X, Y of the solutions at which the hypothetical
bifurcation takes place.

Similarly by substituting (12.9), (12.10) into the boundary conditions
(12.3),(12.4), (12.5),(12.6), (12.7), (12.8), dividing by B, and taking the
limit, we obtain the corresponding linearized boundary conditions on X , Y
in the form of conditions that as A = © = ¥ and A"2.X be well behaved
functions of u and \~! with

A2X =0\ (12.19)

Y=0A7} (12.20)
that as u > *1, X and Y.must be well behaved functions of A, u with

X=0(1-p? (12.21)

oY aY

—=0(1 — pu? —=0(1 — u? 12.22

a>\ (1 —wu) ou (1 —p9) ( )

and that as A > ¢, X, Y must be well behaved functions of A, 1 with no other
restrictions than

X=0(1) (12.23)
3y Y _
-0 =00 (12.24)
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We prove that the families {X,, Y, } and {X>,, Y, } must be identical, i.e.
that there can be no bifurcations by showing that if X, ¥ satisfy the equations
(12.17), (12.18) and the boundary conditions (12.19), (12.20), (12.21), (12.22),
(12.23), (12.24) they must always be zero everywhere and so cannot determine
a well defined direction in function space. We point out that the converse
deduction could not be made i.e. although the non-existence of a non-zero
linearized bifurcation solution is sufficient to rule out the existence of a
bifurcating family of exact solutions, the existence of a non-zero linearized
bifurcation solution would not necessarily imply the existence of a bifurcating
family of solutions of the full non-linear system; it would only be in this latter
case that higher order analysis might be relevant.

The proof depends on the identity

x\ Yvy |? Y\ Xxvy Xvy - Yvx|?
o V|5 )+ vix] -5 —

X X2 X2

sl )

2X2 + Y2 Xy
+——rGX _Gy XGx — YGy

which is analogous to that of the previous section in that the right hand reduces
to a divergence when the field equations Gx = Gy = 0 and the linearized field
equations G x =Gy = 0 are satisfied, so that the integral of the left hand side
over the entire domain % can be expressed in terms of a boundary integral,
which can be seen to vanish in consequence of the boundary conditions (12.19),
(12.20), (12.21),(12.22), (12.23), (12.24). Since each term on the left hand side
is non-negative, it follows that they must all three be zero everywhere. Thus we
obtain three linear first order differential equations for X and Y, from which,
by taking linear combinations we can obtain VY = YX~! VX which implies (by
the boundary condition that Y is zero on the axis, together with the standard
uniqueness theorem for the solution of a homogeneous gradient equation of
this type) that Y is zero everywhere. The remaining first order differential
equations then imply directly that X is zero also, which completes the proof

of the following result:

THEOREM 12 (No-Hair Theorem) The mathematically possible domains of
communications < .# > of space-time manifolds .# satisfying the conditions
10, fall in to discrete continuous families depending on at most the two para-
meters J and c.

COROLLARY There is at most one such family for which the angular momentum
parameter J can take the value zero.
This family consists of course of the Kerr vacuum solution with a2 < M? for
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which J can take any value without restriction for arbitrary positive valves of C,
the mass parameter M being given as a function of Cby M? =4 {C? +(C? +4J%)}/?}.
The corollary follows immediately from the staticity Theorem 11 and the
appropriate form of the Israel theorem establishing uniqueness in the static

case.
We can give a simple explicit proof of the relevant restriction of Israel’s theorem

(i.e. the restriction to the axisymmetric pure vacuum case) by noticing that in the
static case when Y is zero the system Gx = Gy = 0 reduces simply to

V{pV(InX)}=0 (12.24)

which is linear in In X, and hence will also be satisfied if X is replaced by the
quotient X;/X, of any two different solutions X; and X,. Hence using the
further identity

pIV(InX)I>= V{pInXV(nX)} - (In X) V{pV(n X)} (12.25)

we can deduce that the quotient of any two solutions of (12.24) satisfies

P B e

By integrating over the whole domain &, we can again use the relevant
boundary conditions (12.3), (12.5), (12.7) to deduce that the non-negative term
on the left hand side is zero everywhere, which proves that X; = X, i.e. that

the solution is unique, and must therefore be the relevant Schwarzschild solution
for which X = (A + C)*(1 — u?).

P

We remark that although this proof is much more restricted than Israel’s
original (1967) demonstration in that it assumes axisymmetry at the outset, it
has the advantage of being independent of Israel’s assumption that the gradient
of V is nowhere vanishing, instead making use of the condition that X is
nowhere vanishing (except on the axis).

(In a static as opposed to merely stationary domain, it is clear that X must be
non-zero except on the axis, whether or not the global causality requirement is
satisfied in .#.)

It has in fact recently been shown by Muller-zum-Hager, Robinson and Siefert
that Israel’s postulate that the gradient of 7 be non-zero can in fact be dispensed
with in the general (non-axisymmetric) vacuum Israel theorem, albeit at the
expense of considerable technical complexity in the demonstration. It would
be desirable to extend both the general demonstration of Muller-zum-Hagen,
Robinson and Siefert, and the very much simpler restricted demonstration
given here, to cover the electromagnetic case. Unfortunately, the demonstration
given in this section depends essentially on the linearization of the system which
can be achieved when both the angular momentum and the electromagnetic field
are zero, but which fails when even a static electric field is present.
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13 Unsolved Problems

Having succeeded in proving the truth of the no-hair conjecture in the pure
vacuum case, we now consider the question of the electromagnetic generalization,
according to which any two continuous families

{Xla Y19E1,Bl}(C,JaQ9P) and {X2, Y2,E27B2}(C7J)Q7P)

of solutions {X, Y, E, B} of the system (11.30) to (11.45), parametrized by the
four quantities c, J, Q, P should coincide if they have any solution, { X, Y, £,
By} say, in common. As before we may assume that if they do not coincide there
exist non-zero perturbation functions X, Y, E, B such that for a subset of values
of some parameter there exists a corresponding subset of values of ¢, J, Q, P for
which the equations (12.9) and (12.10) and the further equations

E,=E, +BE+0(p) (13.1)
B, =B, + BB +0(p) (13.2)

as § — 0 are satisfied, where {X,, Y, E,,B,} and {X,, Y,, E;, B, } both tend
to {Xo, Yo, EY, BO} as § > 0. By the same reasoning as used before the perturba-
tion functions X, Y, £, B must satisfy the linearized equations

Ex(X,Y,E,B;X,Y,E,B) (13.3)

Ey(X,Y,E,B;X, Y, E,B) (13.4)

Eg(X,Y,E,B;X,Y,E,B) (13.5)

Eg(X,Y,E,B;X,Y,E, B) (13.6)
when {X, Y, E, B } takes the value { X, Y, £, Bo}, Where

Ex= VpVX)f 2pXVX—3£[|VX|2+IVY+2(EVB BVE)|?]

X2
+ — VXVX + — [VY + 2(E'VB — BVE))]
X [fo + 2AEVB — BVE + EVB — BVE)]

2 . .
- IVE 1>+ |VBI?] +< [VEVE +VBVE] (13.7)

Ey=V )% (VY + 2(EVE — BVE + EVB — BVE)]

_ 2p§ [VY + 2EVB — BVE)]} (13.8)
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) VE  XVE VB XVB
= - +2 B — BVE
Eg v{ ~ e } ( e )[VY (EV VE)]

+)%VB[VY+ 2AEVS — BVE +EVB — BVE)] (13.9)
. VB  XVB E X
fp= Vi B _ XV }+ (V VE)[VY+2(EVB BVE)]

x P x|t ety
—%VE[VI"+2(EV1§—BVE‘+EVB—1§VE)] (13.10)

The corresponding homogeneous boundary conditions, derived from (11.34) to
(11.45) are that A"2X, Y, E, B be well behaved functions of u, A1 satisfying

A2X =0(A7) (13.11)

Y=0Q"Y (13.12)

E=0(\"} (13.13)

B=0(\"YH (13.14)

as\~! - 0, that X , l'f', E , B be well behaved function of U, A satisfying

X=0(1 —ud (13.15)

oY

—=0(1 — 2

a>\ 0(1 —u*)

oY OB -0E .0B .OoF

42| E=_-B=+E=_B 0(l —u 13.16

oM ( ou au oM au) ( ) ( )

OF

—=0(1 — pu? —=01 13.17

" (1 —p9) » (D ( )

B 0B

—=0(1 — u? —=0(1 13.18

™ (1 —u) » (1) ( )

asu —~> +1, and that )2’, Y, E,B be well behaved functions of A, u subject only to

X=0(1) (13.19)

oY aY

—=0(1) —=0(1) (13.20)

BN

oF oF

—=0(1) —=0(1) (13.21)
ou

0B aB

. 0(1) —=0(1) (13.22)

as A —>C.
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I have not found any way of determining whether or not this system can have
non-zero solutions X Y E, B for general values of X, Y, E, B subject to (11.30)
to (11.45). If non-zero solutions do exist for some eigenvalues of ¢, J, Q, P it
would suggestf, but would not prove that the solution family bifurcates at the
corresponding solutions. There is however a special case which is much more
tractable, namely the case where the electromagnetic field in the unperturbed
solution is zero, i.e. when E' = B = 0, since in this case the general form of the
Einstein-Maxwell equations ensures (independently of the special symmetry
conditions assumed in the present problem) that the linearized equations for the
gravitational perturbation decouple from those for the electromagnetic per-
turbation, the latter reducing simply to a set of pure Maxwell equations in the
curved space background. Advantage has been taken of this by Wald (1971), and
also independently by Ipser (1971), who have shown that in the particular case
of a pure (non-electromagnetic) Kerr solution background the perturbation
solution of the Maxwell equations are indeed zero when the corresponding
perturbed values of the charge Q and monopole moment P are zero, from which
it follows that even if bifurcations from the Kerr-Newman family do exist, they
cannot start from the pure vacuum members.

We shall conclude this course by presenting a generalization of this Wald-
Ipser theorem showing that the conclusion holds for electromagnetic
perturbations about any pure vacuum black hole solution family satisfying
conditions (10) even if it is not the Kerr family. That is to say it is true not only
for the Kerr-Newman family but for any other family of electromagnetic black
hole solutions of the system (11.30) to (11.45) (if there are any others) that no
bifurcation can take place starting from the pure vacuum members.

To prove this we use the fact that when £ and B are zero, the full linearized
equations Eg = 0, E g = 0 reduce simply to the pure Maxwell equations

VE VYVB
Mg = —=_ =0 13.24
=V {p X } P x2 (13.24)
VA VYVB
=V {p X } P X2 0 ( )

(the other two equations Ex =0, E y = 0 reducing to the equations Gx =0,
G y = 0 which we have already studied).
To establish that the only solution of (13.24), (13.25) subject to (13.17) to
(13.22) and (12.1) to (12.8) is £ = B = 0, we use the identity
]

2 D2
=V {pv(E ;B )} + (£? + BHGy— 2(EMg + BMp) (13.26)

1 ] - coe o] E\|2 B
— — + _ —_—
53 UXVE-BVY " +|XVB - EVY| }+X”V(—X)I +'V(—X)

t The existence of a perturbation eigenvalue might be a symptom of the setting in of a
dynamic instability even where no exactly stationary bifurcation exists.
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When the Maxwell equations Mg = 0, Mg = 0 are satisfied, and when the
unperturbed pure vacuum field equation Gy = 0 is satisfied, the right hand side
reduces to a divergence whose integral over the whole domain is a boundary
integral which can easily be seen to vanish by the boundary conditions. It follows
that each of the non-negative terms on the left hand side is zero. Hence, with
further use of the boundary conditions, it is clear that £ and B themselves must
be zero everywhere, as required.

By an examination (based on the work of Vishveshwara (1968)) of stationary
perturbations of the Schwarzschild and Reissner Nordstrom solutions it has also
been shown by Wald (1972) that there can be no bifurcation from the spherical
members of the Kerr-Newman family of electromagnetic black hole solutions.
(This work is a generalization of an earlier perturbation analysis, now superseded
by the Vaccuum No Hair Theorem 12, which was carried out by Hartle and
Thorne (1968).)

Although it represents an amusing mathematical challenge, the problem of
generalizing these partial results to a complete electromagnetic no-hair theorem—
or finding a counter-example—is less important (and probably less difficult) than
the problem of generalizing the vacuum no-hair theorem to an absolute unique-
ness theorem for vacuum black holes—or finding a counter example, i.e. a
family of non-Kerr pure vacuum black holes with the pathological property that
the angular momentum cannot be varied to zero. Neither of these problems is as
pressing as that of determining the stability of the black hole equilibrium states
which we have been discussing. (In the unlikely event that non-Kerr stationary
pure vacuum black holes are discovered, the physical implications would be less
startling if it were to turn out that they were all unstable.)
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